The Prokaryotes pp 643-676 | Cite as
The Family Flavobacteriaceae
- 15 Citations
- 8.9k Downloads
Abstract
The family Flavobacteriaceae is the largest family in the phylum Bacteroidetes. It contains at least 90 genera and hundreds of species. Members of the family are found in a wide variety of marine, freshwater, and soil habitats, and some are also associated with animals or plants. In spite of this diversity, some generalities regarding members of the family can be identified. Most, but not all, are aerobic, with primarily respiratory metabolism. Menaquinones of type 6 (MK6) are the major respiratory quinones and help to distinguish members of the family Flavobacteriaceae from many other families within the phylum Bacteroidetes. Most species have rod-shaped cells, with some of them exhibiting long filamentous cells. Utilization of macromolecules such as polysaccharides and proteins is a common feature of many members of the family. Polysaccharide utilization appears to involve novel cell-surface machinery common to members of the phylum Bacteroidetes to bind polysaccharides and transport oligomers across the outer membrane. Many, but not all, genera and species move over surfaces by a form of gliding motility that appears to be confined to members of the phylum Bacteroidetes. Genome analyses suggest that most members of the family also use a novel protein secretion system referred to as the Por secretion system to secrete proteins beyond the outer membrane. There are no known photosynthetic flavobacteria, but some marine members of the Flavobacteriaceae use proteorhodopsin to harvest light energy and supplement their energy needs. The family Flavobacteriaceae includes important fish pathogens such as Flavobacterium psychrophilum, Flavobacterium columnare, and Tenacibaculum maritimum; bird pathogens such as Riemerella anatipestifer, Ornithobacterium rhinotracheale, and Coenonia anatina; human pathogens such as Capnocytophaga canimorsus and Elizabethkingia meningoseptica; and numerous bacteria of environmental and biotechnological significance.
Keywords
Fish Pathogen Protein Secretion System Algal Polysaccharide Genus Flavobacterium Attenuate Vaccine StrainSupplementary material
Movie 51.1
MOV file: 5946 kB
Movie 51.2
MOV file: 5863 kB
References
- Abbanat DR, Leadbetter ER, Godchaux W III, Escher A (1986) Sulphonolipids are molecular determinants of gliding motility. Nature 324:367–369Google Scholar
- Abell GC, Bowman JP (2005) Ecological and biogeographic relationships of class Flavobacteria in the southern ocean. FEMS Microbiol Ecol 51:265–277PubMedGoogle Scholar
- Abt B, Lu M, Misra M, Han C, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Ovchinikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Detter JC, Brambilla E, Rohde M, Tindall BJ, Goker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2011) Complete genome sequence of Cellulophaga algicola type strain (IC166). Stand Genomic Sci 4:72–80PubMedCentralPubMedGoogle Scholar
- Achenbach H, Kohl W, Wachter W, Reichenbach H (1978) Investigations of the pigments from Cytophaga johnsonae Cy jl. New flexirubin-type pigments. Arch Microbiol 117:253–257PubMedGoogle Scholar
- Agarwal S, Hunnicutt DW, McBride MJ (1997) Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc Natl Acad Sci USA 94:12139–12144PubMedCentralPubMedGoogle Scholar
- Alexander BJR, Stewart A (2001) Glasshouse screening for biological control agents of Phytophthora cactorum on apple (Malus domestica). New Zeal J Crop Hort 29:159–169Google Scholar
- Allouch J, Jam M, Helbert W, Barbeyron T, Kloareg B, Henrissat B, Czjzek M (2003) The three-dimensional structures of two beta-agarases. J Biol Chem 278:47171–47180PubMedGoogle Scholar
- Allouch J, Helbert W, Henrissat B, Czjzek M (2004) Parallel substrate binding sites in a beta-agarase suggest a novel mode of action on double-helical agarose. Structure 12:623–632PubMedGoogle Scholar
- Alvarez B, Guijarro JA (2007) Recovery of Flavobacterium psychrophilum viable cells using a charcoal-based solid medium. Lett Appl Microbiol 44:569–572PubMedGoogle Scholar
- Alvarez B, Secades P, McBride MJ, Guijarro JA (2004) Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 70:581–587PubMedCentralPubMedGoogle Scholar
- Alvarez B, Secades P, Prieto M, McBride MJ, Guijarro JA (2006) A mutation in Flavobacterium psychrophilum tlpB inhibits gliding motility and induces biofilm formation. Appl Environ Microbiol 72:4044–4053PubMedCentralPubMedGoogle Scholar
- Alvarez B, Alvarez J, Menendez A, Guijarro JA (2008) A mutant in one of two exbD loci of a TonB system in Flavobacterium psychrophilum shows attenuated virulence and confers protection against cold water disease. Microbiology 154:1144–1151PubMedGoogle Scholar
- Amita K, Hoshino M, Honma T, Wakabayashi H (2000) An investigation on the distribution of Flavobacterium psychrophilum in the Umikawa river. Fish Pathol 35:193–197Google Scholar
- Anacker RL, Ordal EJ (1955) Study of a bacteriophage infecting the myxobacterium Chondrococcus columnaris. J Bacteriol 70:738–741PubMedCentralPubMedGoogle Scholar
- Anderson KL, Salyers AA (1989) Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 171:3199–3204PubMedCentralPubMedGoogle Scholar
- Araujo LS, Kagohara E, Garcia TP, Pellizari VH, Andrade LH (2011) Screening of microorganisms producing cold-active oxidoreductases to be applied in enantioselective alcohol oxidation. An Antarctic survey. Mar Drugs 9:889–905PubMedCentralPubMedGoogle Scholar
- Austin B, Austin DA (2007) Bacterial fish pathogens: diseases of farmed and wild fish. Springer, ChichesterGoogle Scholar
- Avendano-Herrera R, Magarinos B, Toranzo AE, Beaz R, Romalde JL (2004) Species-specific polymerase chain reaction primer sets for the diagnosis of Tenacibaculum maritimum infection. Dis Aquat Organ 62:75–83PubMedGoogle Scholar
- Avendano-Herrera R, Toranzo AE, Magarinos B (2006a) A challenge model for Tenacibaculum maritimum infection in turbot, Scophthalmus maximus (L.). J Fish Dis 29:371–374PubMedGoogle Scholar
- Avendano-Herrera R, Toranzo AE, Magarinos B (2006b) Tenacibaculosis infection in marine fish caused by Tenacibaculum maritimum: a review. Dis Aquat Organ 71:255–266PubMedGoogle Scholar
- Bae SS, Kwon KK, Yang SH, Lee HS, Kim SJ, Lee JH (2007) Flagellimonas eckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome. Int J Syst Evol Microbiol 57:1050–1054PubMedGoogle Scholar
- Bakunina IY, Nedashkovskaya OI, Kim SB, Zvyagintseva TN, Mikhailov VV (2012) Distribution of alpha-N-acetylgalactosaminidases among marine bacteria of the phylum Bacteroidetes, epiphytes of marine algae of the Seas of Okhotsk and Japan. Microbiology 81:373–378Google Scholar
- Baliarda A, Faure D, Urdaci MC (2002) Development and application of a nested PCR to monitor brood stock salmonid ovarian fluid and spleen for detection of the fish pathogen Flavobacterium psychrophilum. J Appl Microbiol 92:510–516PubMedGoogle Scholar
- Barbeyron T, Michel G, Potin P, Henrissat B, Kloareg B (2000) Iota-carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J Biol Chem 275:35499–35505PubMedGoogle Scholar
- Barbeyron T, L’Haridon S, Corre E, Kloareg B, Potin P (2001) Zobellia galactanivorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol Microbiol 51:985–997PubMedGoogle Scholar
- Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147PubMedCentralPubMedGoogle Scholar
- Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, Würdemann CA, Quast C, Kuhl H, Knaust F, Woebken D, Bischof K, Mussmann M, Choudhuri JV, Meyer F, Reinhardt R, Amann RI, Glöckner FO (2006) Whole genome analysis of the marine Bacteroidetes ‘Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 8:2201–2213PubMedGoogle Scholar
- Beck BH, Farmer BD, Straus DL, Li C, Peatman E (2012) Putative roles for a rhamnose binding lectin in Flavobacterium columnare pathogenesis in channel catfish Ictalurus punctatus. Fish Shellfish Immunol 33:1008–1015PubMedGoogle Scholar
- Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906PubMedGoogle Scholar
- Bernardet JF (1989) Flexibacter-Columnaris—1st description in France and comparison with bacterial strains from other origins. Dis Aquat Organ 6:37–44Google Scholar
- Bernardet J-F (1997) Immunization with bacterial antigens: Flavobacterium and Flexibacter infections. Dev Biol Stand 90:179–188PubMedGoogle Scholar
- Bernardet JF (2006) The genus Flavobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 481–531Google Scholar
- Bernardet J-F (2011) Family I: Flavobacteriaceae. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 106–314Google Scholar
- Bernardet J-F, Bowman JP (2011) Genus I. Flavobacterium. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s Manual of systematic bacteriology, vol 4. Springer, New York, pp 112–154Google Scholar
- Bernardet J-F, Bruun B (2011) Genus XVII. Elizabethkingia. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s Manual of systematic bacteriology, vol 4. Springer, New York, pp 202–210Google Scholar
- Bernardet J-F, Grimont PAD (1989) Deoxyribonucleic acid relatedness and phenotypic characterization of Flexibacter columnaris sp. nov., nom. rev., Flexibacter psychrophilus sp. nov., nom. rev., and Flexibacter maritimus Wakabayashi, Hikida, and Masumura 1986. Int J Syst Bacteriol 39:346–354Google Scholar
- Bernardet J-F, Nakagawa Y (2006) An introduction to the family Flavobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 455–480Google Scholar
- Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a gordian knot: emended classification and description of the genus Flavobacterium, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148Google Scholar
- Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070PubMedGoogle Scholar
- Bernardet J-F, Hugo C, Bruun B (2006) The genera Chryseobacterium and Elizabethkingia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 638–676Google Scholar
- Bernardet J-F, Hugo CJ, Bruun B (2011) Genus X. Chryseobacterium. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 180–196Google Scholar
- Bertolini JM, Rohovec JS (1992) Electrophoretic detection of proteases from different Flexibacter columnaris strains and assessment of their variability. Dis Aquat Organ 12:121–128Google Scholar
- Bitter W, Houben EN, Luirink J, Appelmelk BJ (2009) Type VII secretion in mycobacteria: classification in line with cell envelope structure. Trends Microbiol 17:337–338PubMedGoogle Scholar
- Bocklisch H, Huhn F, Herold W, Tomaso H, Diller R, Hotzel H (2012) Ostrich—a new avian host of riemerella columbina. Vet Microbiol 154:429–431PubMedGoogle Scholar
- Borg AF (1948) Studies on myxobacteria associated diseases in salmonid fishes. University of Washington, SeattleGoogle Scholar
- Bowman JP (2006) The marine clade of the family Flavobacteriaceae: The genera Aequorivita, Arenibacter, Cellulophaga, Croceibacter, Formosa, Gelidibacter, Gillisia, Maribacter, Mesonia, Muricauda, Polaribacter, Psychroflexus, Psychroserpens, Robiginitalea, Salegentibacter, Tenacibaculum, Ulvibacter, Vitellibacter and Zobellia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 677–694Google Scholar
- Braun TF, McBride MJ (2005) Flavobacterium johnsoniae GldJ is a lipoprotein that is required for gliding motility. J Bacteriol 187:2628–2637PubMedCentralPubMedGoogle Scholar
- Braun TF, Khubbar MK, Saffarini DA, McBride MJ (2005) Flavobacterium johnsoniae gliding motility genes identified by mariner mutagenesis. J Bacteriol 187:6943–6952PubMedCentralPubMedGoogle Scholar
- Brenner DJ, Hollis DG, Fanning GR, Weaver RE (1989) Capnocytophaga canimorsus sp. nov. (formerly CDC Group DF-2) a cause of septicemia following dog bite and C. cynodegmi sp. nov., a cause of localized wound infection following dog bite. J Clin Microbiol 27:231–235PubMedCentralPubMedGoogle Scholar
- Brown LL, Cox WT, levine RP (1997) Evidence that the causal agent of bacterial coldwater disease Flavobacterium psychrophilum is transmitted within salmonid eggs. Dis Aquat Organ 29:213–218Google Scholar
- Bruun B, Ursing J (1987) Phenotypic characterization of Flavobacterium meningosepticum strains identified by DNA-DNA hybridization. Acta Pathol Microbiol Immunol Scand B 95:41–47PubMedGoogle Scholar
- Bullock GL, Hsu TC, Shotts EB (1986) Columnaris disease of fishes. Fish Disease Leaflet 72; US Fish and Wildlife Service, US Department of the InteriorGoogle Scholar
- Cain KD, LaFrentz BR (2007) Laboratory maintenance of Flavobacterium psychrophilum and Flavobacterium columnare. Curr Protoc Microbiol 6:13B.1.1-13B.1.12, http://onlinelibrary.wiley.com/doi/10.1002/9780471729259.mc13b01s6/abstract
- Calmes R, Rambicure GW, Gorman W, Lillich TT (1980) Energy metabolism in Capnocytophaga ochracea. Infect Immun 29:551–560PubMedCentralPubMedGoogle Scholar
- Carson J, Schmidtke LM, Munday BL (1993) Cytophaga-johnsonae—a putative skin pathogen of juvenile farmed barramundi, Lates Calcarifer bloch. J Fish Dis 16:209–218Google Scholar
- Castillo D, Higuera G, Villa M, Middelboe M, Dalsgaard I, Madsen L, Espejo RT (2012) Diversity of Flavobacterium psychrophilum and the potential use of its phages for protection against bacterial cold water disease in salmonids. J Fish Dis 35:193–201PubMedGoogle Scholar
- Chang LYE, Pate JL (1981) Nutritional requirements of Cytophaga johnsonae and some of its auxotrophic mutants. Curr Microbiol 5:235–240Google Scholar
- Chen S, Bagdasarian M, Kaufman MG, Bates AK, Walker ED (2007a) Mutational analysis of the ompA promoter from Flavobacterium johnsoniae. J Bacteriol 189:5108–5118PubMedCentralPubMedGoogle Scholar
- Chen S, Bagdasarian M, Kaufman MG, Walker ED (2007b) Characterization of strong promoters from an environmental Flavobacterium hibernum strain by using a green fluorescent protein-based reporter system. Appl Environ Microbiol 73:1089–1100PubMedCentralPubMedGoogle Scholar
- Cipriano RC, Holt RA (2005) Flavobacterium psychrophilum, cause of bacterial cold-water disease and rainbow trout fry syndrome. U. S. G. S. U. S. Department of Interior, National Fish Health Research LaboratoryGoogle Scholar
- Dalsgaard I (1993) Virulence mechanisms in Cytophaga psychrophila and other Cytophaga-like bacteria pathogenic for fish. Ann Rev Fish Dis 3:127–144Google Scholar
- Darwish AM, Ismaiel AA, Newton JC, Tang J (2004) Identification of Flavobacterium columnare by a species-specific polymerase chain reaction and renaming of ATCC43622 strain to Flavobacterium johnsoniae. Mol Cell Probes 18:421–427PubMedGoogle Scholar
- Davis HS (1922) A new bacterial disease of freshwater fishes. Bull US Bur Fish 38:261–280Google Scholar
- Decostere A, Haesebrouck F, Devriese LA (1997) Shieh medium supplemented with tobramycin for selective isolation of Flavobacterium columnare (Flexibacter columnaris) from diseased fish. J Clin Microbiol 35:322–324PubMedCentralPubMedGoogle Scholar
- Decostere A, Haesebrouck F, Charlier G, Ducatelle R (1999) The association of Flavobacterium columnare strains of high and low virulence with gill tissue of black mollies (Poecilia sphenops). Vet Microbiol 67:287–298PubMedGoogle Scholar
- Delong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934Google Scholar
- Desvaux M, Hebraud M, Talon R, Henderson IR (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17:139–145PubMedGoogle Scholar
- Duchaud E, Boussaha M, Loux V, Bernardet JF, Michel C, Kerouault B, Mondot S, Nicolas P, Bossy R, Caron C, Bessières P, Gibrat JF, Claverol S, Dumetz F, Hénaff ML, Benmansour A (2007) Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat Biotechnol 25:763–769PubMedGoogle Scholar
- Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV, Pugsley AP (2006) Secretion by numbers: protein traffic in prokaryotes. Mol Microbiol 62:308–319PubMedGoogle Scholar
- Eilers H, Pernthaler J, Peplies J, Glockner FO, Gerdts G, Amann R (2001) Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67:5134–5142PubMedCentralPubMedGoogle Scholar
- Evans JR, Napier EJ, Fletton RA (1978) G1499-2, a new quinoline compound isolated from the fermentation broth of Cytophaga johnsonii. J Antibiot (Tokyo) 31:952–958Google Scholar
- Ferguson HW, Delannoy CM, Hay S, Nicolson J, Sutherland D, Crumlish M (2010) Jellyfish as vectors of bacterial disease for farmed salmon (Salmo salar). J Vet Diagn Invest 22:376–382PubMedGoogle Scholar
- Flemming L, Rawlings D, Chenia H (2007) Phenotypic and molecular characterisation of fish-borne Flavobacterium johnsoniae-like isolates from aquaculture systems in South Africa. Res Microbiol 158:18–30PubMedGoogle Scholar
- Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131PubMedGoogle Scholar
- Frandsen EV, Poulsen K, Kononen E, Kilian M (2008) Diversity of Capnocytophaga species in children and description of Capnocytophaga leadbetteri sp. nov. and Capnocytophaga genospecies AHN8471. Int J Syst Evol Microbiol 58:324–336PubMedGoogle Scholar
- Fuhrman JA, Schwalbach MS, Stingl U (2008) Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol 6:488–494PubMedGoogle Scholar
- Gaastra W, Lipman LJ (2010) Capnocytophaga canimorsus. Vet Microbiol 140:339–346PubMedGoogle Scholar
- Garnjobst L (1945) Cytophaga columnaris (Davis) in pure culture: a myxobacterium pathogenic to fish. J Bacteriol 49:113–128PubMedCentralPubMedGoogle Scholar
- Glew MD, Veith PD, Peng B, Chen YY, Gorasia DG, Yang Q, Slakeski N, Chen D, Moore C, Crawford S, Reynolds E (2012) PG0026 is the C-terminal signal peptidase of a novel secretion system of Porphyromonas gingivalis. J Biol Chem 287:24605–24617PubMedCentralPubMedGoogle Scholar
- Godchaux W III, Leadbetter ER (1983) Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group. J Bacteriol 153:1238–1246PubMedCentralPubMedGoogle Scholar
- Godchaux W 3rd, Leadbetter ER (1984) Sulfonolipids of gliding bacteria. Structure of the N-acylaminosulfonates. J Biol Chem 259:2982–2990PubMedGoogle Scholar
- Godchaux W III, Leadbetter ER (1988) Sulfonolipids are localized in the outer membrane of the gliding bacterium Cytophaga johnsonae. Arch Microbiol 150:42–47Google Scholar
- Gomez E, Perez-Pascual D, Fernandez L, Mendez J, Reimundo P, Navais R, Guijarro JA (2012) Construction and validation of a GFP-based vector for promoter expression analysis in the fish pathogen Flavobacterium psychrophilum. Gene 497:263–268PubMedGoogle Scholar
- Gomez-Consarnau L, Gonzalez JM, Coll-Llado M, Gourdon P, Pascher T, Neutze R, Pedros-Alio C, Pinhassi J (2007) Light stimulates growth of proteorhodopsin-containing marine flavobacteria. Nature 445:210–213PubMedGoogle Scholar
- Gomez-Pereira PR, Fuchs BM, Alonso C, Oliver MJ, van Beusekom JE, Amann R (2010) Distinct flavobacterial communities in contrasting water masses of the North Atlantic Ocean. ISME J 4:472–487PubMedGoogle Scholar
- Gonzalez JM, Fernandez-Gomez B, Fernandez-Guerra A, Gomez-Consarnau L, Sanchez O, Coll-Llado M, Del Campo J, Escudero L, Rodriguez-Martinez R, Alonso-Saez L, Latasa M, Paulsen I, Nedashkovskaya O, Lekunberri I, Pinhassi J, Pedros-Alio C (2008) Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc Natl Acad Sci USA 105:8724–8729PubMedCentralPubMedGoogle Scholar
- Gonzalez JM, Pinhassi J, Fernandez-Gomez B, Coll-Llado M, Gonzalez-Velazquez M, Puigbo P, Jaenicke S, Gomez-Consarnau L, Fernandez-Guerra A, Goesmann A, Pedros-Alio C (2011) Genomics of the proteorhodopsin-containing marine flavobacterium Dokdonia sp. strain MED134. Appl Environ Microbiol 77:8676–8686PubMedCentralPubMedGoogle Scholar
- Gorski L, Godchaux W III, Leadbetter ER (1993) Structural specificity of sugars that inhibit gliding motility of Cytophaga johnsonae. Arch Microbiol 160:121–125Google Scholar
- Gosink JJ, Woese CR, Staley JT (1998) Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48(1):223–235PubMedGoogle Scholar
- Gunasinghe RN, Ikiriwatte CJ, Karunaratne AM (2004) The use of Pantoea agglomerans and Flavobacterium sp. to control banana pathogens. J Hortic Sci Biotech 79:1002–1006Google Scholar
- Han X, Ding C, He L, Hu Q, Yu S (2011) Development of loop-mediated isothermal amplification (LAMP) targeting the GroEL gene for rapid detection of Riemerella anatipestifer. Avian Dis 55:379–383PubMedGoogle Scholar
- Hansen GH, Bergh O, Michaelsen J, Knappskog D (1992) Flexibacter ovolyticus sp. nov., a pathogen of eggs and larvae of Atlantic halibut, Hippoglossus hippoglossus L. Int J Syst Bacteriol 42:451–458PubMedGoogle Scholar
- Hayes PR (1977) A taxonomic study of flavobacteria and related gram negative yellow pigmented rods. J Appl Bacteriol 43:345–367Google Scholar
- Hebbar P, Berge O, Heulin T, Singh SP (1991) Bacterial Antagonists of Sunflower (Helianthus-Annuus L) Fungal Pathogens. Plant Soil 133:131–140Google Scholar
- Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912PubMedGoogle Scholar
- Higgins DA, Henry RR, Kounev ZV (2000) Duck immune responses to Riemerella anatipestifer vaccines. Dev Comp Immunol 24:153–167PubMedGoogle Scholar
- Hoagland KD, Rosowski JR, Gretz MR (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol 29:537–566Google Scholar
- Högfors-Rönnholm E, Wiklund T (2010) Hemolytic activity in Flavobacterium psychrophilum is a contact-dependent, two-step mechanism and differently expressed in smooth and rough phenotypes. Microb Pathog 49:369–375PubMedGoogle Scholar
- Holmes B (1992) The genera Flavobacterium, Sphingobacterium, and Weeksella. In: Ballows HGTA, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 4. Springer, Berlin, pp 3620–3630Google Scholar
- Holt SC (2011) Genus VIII. Capnocytophaga. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 168–176Google Scholar
- Hu Q, Han X, Zhou X, Ding C, Zhu Y, Yu S (2011) OmpA is a virulence factor of Riemerella anatipestifer. Vet Microbiol 150:278–283PubMedGoogle Scholar
- Hu Q, Zhu Y, Tu J, Yin Y, Wang X, Han X, Ding C, Zhang B, Yu S (2012) Identification of the genes involved in Riemerella anatipestifer biofilm formation by random transposon mutagenesis. PLoS One 7:e39805PubMedCentralPubMedGoogle Scholar
- Huang B, Kwang J, Loh H, Frey J, Tan HM, Chua KL (2002) Development of an ELISA using a recombinant 41 kDa partial protein (P45N’) for the detection of Riemerella anatipestifer infections in ducks. Vet Microbiol 88:339–349PubMedGoogle Scholar
- Hugo CJ, Bruun B, Jooste PJ (2006a) The genera Bergeyella and Weeksella. In: Dworkin SFM, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 532–538Google Scholar
- Hugo CJ, Bruun B, Jooste PJ (2006b) The genera Empedobacter and Myroides. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 630–637Google Scholar
- Hung AL, Alvarado A (2001) Phenotypic and molecular characterization of isolates of Ornithobacterium rhinotracheale from Peru. Avian Dis 45:999–1005PubMedGoogle Scholar
- Hunnicutt DW, McBride MJ (2000) Cloning and characterization of the Flavobacterium johnsoniae gliding motility genes, gldB and gldC. J Bacteriol 182:911–918PubMedCentralPubMedGoogle Scholar
- Hunnicutt DW, McBride MJ (2001) Cloning and characterization of the Flavobacterium johnsoniae gliding motility genes gldD and gldE. J Bacteriol 183:4167–4175PubMedCentralPubMedGoogle Scholar
- Hunnicutt DW, Kempf MJ, McBride MJ (2002) Mutations in Flavobacterium johnsoniae gldF and gldG disrupt gliding motility and interfere with membrane localization of GldA. J Bacteriol 184:2370–2378PubMedCentralPubMedGoogle Scholar
- Imai S, Fujioka K, Furihata K, Fudo R, Yamanaka S, Seto H (1993) Studies on cell-growth stimulating substances of Low-molecular-weight.3. Resorcinin, a mammalian-cell growth-stimulating substance produced by Cytophaga-Johnsonae. J Antibiot 46:1319–1322PubMedGoogle Scholar
- Irschik H, Reichenbach H (1978) Intracellular location of flexirubins in Flexibacter elegans (Cytophagales). Biochim Biophys Acta 510:1–10PubMedGoogle Scholar
- Izumi S, Fujii H, Aranishi F (2005) Detection and identification of Flavobacterium psychrophilum from gill washings and benthic diatoms by PCR-based sequencing analysis. J Fish Dis 28:559–564PubMedGoogle Scholar
- Jansen R, Chansiripornchai N, Gaastra W, van Putten JP (2004) Characterization of plasmid pOR1 from Ornithobacterium rhinotracheale and construction of a shuttle plasmid. Appl Environ Microbiol 70:5853–5858PubMedCentralPubMedGoogle Scholar
- Jarrell KF, McBride MJ (2008) The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6:466–476PubMedGoogle Scholar
- Johansen JE, Nielsen P, Binnerup SJ (2009) Identification and potential enzyme capacity of flavobacteria isolated from the rhizosphere of barley (Hordeum vulgare L.). Can J Microbiol 55:234–241PubMedGoogle Scholar
- Johnson JL, Chilton WS (1966) Galactosamine glycan of Chondrococcus columnaris. Science 152:1247–1248PubMedGoogle Scholar
- Jooste PJ, Hugo CJ (1999) The taxonomy, ecology and cultivation of bacterial genera belonging to the family Flavobacteriaceae. Int J Food Microbiol 53:81–94PubMedGoogle Scholar
- Kamiyama T, Umino T, Satoh T, Sawairi S, Shirane M, Ohshima S, Yokose K (1995) Sulfobacins A and B, novel von Willebrand factor receptor antagonists. I. Production, isolation, characterization and biological activities. J Antibiot (Tokyo) 48:924–928Google Scholar
- Kampfer P, Lodders N, Martin K, Avendano-Herrera R (2012) Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. Int J Syst Evol Microbiol 62:1402–1408PubMedGoogle Scholar
- Kato T, Hinoo H, Shoji J, Matsumoto K, Tanimoto T, Hattori T, Hirooka K, Kondo E (1987) PB-5266 A, B and C, new monobactams: I. Taxonomy, fermentation and isolation. J Antibiot 55:135–138Google Scholar
- Kazuoka T, Oikawa T, Muraoka I, Kuroda S, Soda K (2007) A cold-active and thermostable alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1. Extremophiles 11:257–267PubMedGoogle Scholar
- Kempf MJ, McBride MJ (2000) Transposon insertions in the Flavobacterium johnsoniae ftsX gene disrupt gliding motility and cell division. J Bacteriol 182:1671–1679PubMedCentralPubMedGoogle Scholar
- Kim JH, Gomez DK, Nakai T, Park SC (2010) Isolation and identification of bacteriophages infecting ayu Plecoglossus altivelis altivelis specific Flavobacterium psychrophilum. Vet Microbiol 140:109–115PubMedGoogle Scholar
- King EO (1959) Studies on a group of previously unclassified bacteria associated with meningitis in infants. Am J Clin Pathol 31:241–247PubMedGoogle Scholar
- Kingsbury DT, Ordal EJ (1966) Bacteriophage infecting the myxobacterium Chondrococcus columnaris. J Bacteriol 91:1327–1332PubMedCentralPubMedGoogle Scholar
- Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100PubMedGoogle Scholar
- Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Rev 26:259–315Google Scholar
- Kolton M, Meller Harel Y, Pasternak Z, Graber ER, Elad Y, Cytryn E (2011) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 77:4924–4930PubMedCentralPubMedGoogle Scholar
- Kolton M, Green SJ, Harel YM, Sela N, Elad Y, Cytryn E (2012) Draft genome sequence of Flavobacterium sp. strain F52, Isolated from the rhizosphere of bell pepper (Capsicum annuum L. cv. Maccabi). J Bacteriol 194:5462–5463PubMedCentralPubMedGoogle Scholar
- Kondo M, Kawai K, Kurohara K, Oshima S (2002) Adherence of Flavobacterium psychrophilum on the body surface of the ayu Plecoglossus altivelis. Microbes Infect 4:279–283PubMedGoogle Scholar
- Kondo M, Kawai K, Okabe M, Nakano N, Oshima S (2003) Efficacy of oral vaccine against bacterial coldwater disease in ayu Plecoglossus altivelis. Dis Aquat Organ 55:261–264PubMedGoogle Scholar
- Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) (2011) Bergey’s manual of systematic bacteriology. Springer, New YorkGoogle Scholar
- Kumagai A, Takahashi K, Yamaoka S, Wakabayashi H (1998) Ineffectiveness of iodophore treatment in disinfecting salmonid [Oncorhynchus] eggs carrying Cytophaga psychrophila. Fish Pathol 33:123–128Google Scholar
- Kumagai A, Yamaoka S, Takahashi K, Fukuda H, Wakabayashi H (2000) Waterborne transmission of Flavobacterium psychrophilum in coho salmon eggs. Fish Pathol 35:25–28Google Scholar
- Kunttu HM, Suomalainen LR, Jokinen EI, Valtonen ET (2009a) Flavobacterium columnare colony types: connection to adhesion and virulence? Microb Pathog 46:21–27PubMedGoogle Scholar
- Kunttu HMT, Valtonen ET, Jokinen EI, Suomalainen LR (2009b) Saprophytism of a fish pathogen as a transmission strategy. Epidemics 1:96–100PubMedGoogle Scholar
- Kunttu HM, Jokinen EI, Valtonen ET, Sundberg LR (2011) Virulent and nonvirulent Flavobacterium columnare colony morphologies: characterization of chondroitin AC lyase activity and adhesion to polystyrene. J Appl Microbiol 111:1319–1326PubMedGoogle Scholar
- Laanto E, Sundberg LR, Bamford JK (2011) Phage specificity of the freshwater fish pathogen Flavobacterium columnare. Appl Environ Microbiol 77:7868–7872PubMedCentralPubMedGoogle Scholar
- LaFrentz BR, Klesius PH (2009) Development of a culture independent method to characterize the chemotactic response of Flavobacterium columnare to fish mucus. J Microbiol Methods 77:37–40PubMedGoogle Scholar
- LaFrentz BR, LaPatra SE, Call DR, Cain KD (2008) Isolation of rifampicin resistant Flavobacterium psychrophilum strains and their potential as live attenuated vaccine candidates. Vaccine 26:5582–5589PubMedGoogle Scholar
- Lami R, Cottrell MT, Campbell BJ, Kirchman DL (2009) Light-dependent growth and proteorhodopsin expression by Flavobacteria and SAR11 in experiments with Delaware coastal waters. Environ Microbiol 11:3201–3209PubMedGoogle Scholar
- Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688PubMedGoogle Scholar
- Leadbetter ER (1974) Order II. Cytophagales nomen novum. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology. Williams and Wilkins, BaltimoreGoogle Scholar
- Leadbetter ER (2006) The genus Capnocytophaga. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 709–711Google Scholar
- Lee CC, Smith M, Kibblewhite-Accinelli R, Williams TG, Wagschal K, Robertson GH, Wong DWS (2006) Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr Microbiol 52:112–116PubMedGoogle Scholar
- Lillich TT, Calmes R (1979) Cytochromes and dehydrogenases in membranes of a new human periodontal bacterial pathogen, Capnocytophaga ochracea. Arch Oral Biol 24:699–702PubMedGoogle Scholar
- Lindstrom NM, Call DR, House ML, Moffitt CM, Cain KD (2009) A quantitative enzyme-linked immunosorbent assay and filtration-based fluorescent antibody test as potential tools to screen broodstock for infection with Flavobacterium psychrophilum. J Aquat Anim Health 21:43–56PubMedGoogle Scholar
- Liu M, Li YH, Liu Y, Zhu JN, Liu QF, Gu JG, Zhang XX, Li CL (2011) Flavobacterium phragmitis sp. nov., an endophyte of reed (Phragmites australis). Int J Syst Evol Microbiol 61:2717–2721PubMedGoogle Scholar
- Liu ZX, Liu GY, Li N, Xiao FS, Xie HX, Nie P (2012) Identification of immunogenic proteins of Flavobacterium columnare by two-dimensional electrophoresis immunoblotting with antibacterial sera from grass carp, Ctenopharyngodon idella (Valenciennes). J Fish Dis 35:255–263Google Scholar
- Lorenzen E, Karas N (1992) Detection of Flexibacter psychrophilus by immunofluorescence in fish suffering from fry mortality syndrome: a rapid diagnostic method. Dis Aquat Organ 13:231–234Google Scholar
- Lorenzen E, Brudeseth BE, Wiklund T, Lorenzen N (2010) Immersion exposure of rainbow trout (Oncorhynchus mykiss) fry to wildtype Flavobacterium psychrophilum induces no mortality, but protects against later intraperitoneal challenge. Fish Shellfish Immunol 28:440–444PubMedGoogle Scholar
- Lumsden JS, Ostland VE, MacPhee DD, Derksen J, Ferguson HW (1994) Protection of rainbow trout from experimentally induced bacterial gill disease caused by Flavobacterium branchiophilum. J Aquat Anim Health 6:292–302Google Scholar
- Madetoja J, Wiklund T (2002) Detection of the fish pathogen Flavobacterium psychrophilum in water from fish farms. Syst Appl Microbiol 25:259–266PubMedGoogle Scholar
- Madetoja J, Nyman P, Wiklund T (2000) Flavobacterium psychrophilum, invasion into and shedding by rainbow trout Oncorhynchus mykiss. Dis Aquat Organ 43:27–38PubMedGoogle Scholar
- Madetoja J, Dalsgaard I, Wiklund T (2002) Occurrence of Flavobacterium psychrophilum in fish-farming environments. Dis Aquat Organ 52:109–118Google Scholar
- Madetoja J, Nystedt S, Wiklund T (2003) Survival and virulence of Flavobacterium psychrophilum in water microcosms. FEMS Microbiol Ecol 43:217–223PubMedGoogle Scholar
- Mally M, Cornelis GR (2008) Genetic tools for studying Capnocytophaga canimorsus. Appl Environ Microbiol 74:6369–6377PubMedCentralPubMedGoogle Scholar
- Mally M, Shin H, Paroz C, Landmann R, Cornelis GR (2008) Capnocytophaga canimorsus: a human pathogen feeding at the surface of epithelial cells and phagocytes. PLoS Pathog 4:e1000164PubMedCentralPubMedGoogle Scholar
- Manfredi P, Pagni M, Cornelis GR (2011a) Complete genome sequence of the dog commensal and human pathogen Capnocytophaga canimorsus strain 5. J Bacteriol 193:5558–5559PubMedCentralPubMedGoogle Scholar
- Manfredi P, Renzi F, Mally M, Sauteur L, Schmaler M, Moes S, Jeno P, Cornelis GR (2011b) The genome and surface proteome of Capnocytophaga canimorsus reveal a key role of glycan foraging systems in host glycoproteins deglycosylation. Mol Microbiol 81:1050–1060PubMedGoogle Scholar
- Manh HD, Matsuo Y, Katsuta A, Matsuda S, Shizuri Y, Kasai H (2008) Robiginitalea myxolifaciens sp. nov., a novel myxol-producing bacterium isolated from marine sediment, and emended description of the genus Robiginitalea. Int J Syst Evol Microbiol 58:1660–1664PubMedGoogle Scholar
- Mannisto MK, Tiirola MA, Salkinoja-Salonen MS, Kulomaa MS, Puhakka JA (1999) Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch Microbiol 171:189–197PubMedGoogle Scholar
- Martens EC, Koropatkin NM, Smith TJ, Gordon JI (2009) Complex glycan catabolism by the human gut microbiota: the bacteroidetes sus-like paradigm. J Biol Chem 284:24673–24677PubMedCentralPubMedGoogle Scholar
- Matsuo Y, Suzuki M, Kasai H, Shizuri Y, Harayama S (2003) Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum. Environ Microbiol 5:25–35PubMedGoogle Scholar
- Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314PubMedGoogle Scholar
- Mavrommatis K, Gronow S, Saunders E, Land M, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Lucas S, Chen F, Tice H, Cheng JF, Bruce D, Goodwin L, Pitluck S, Pati A, Ivanova N, Chen A, Palaniappan K, Chain P, Hauser L, Chang YJ, Jeffries CD, Brettin T, Detter JC, Han C, Bristow J, Goker M, Rohde M, Eisen JA, Markowitz V, Kyrpides NC, Klenk HP, Hugenholtz P (2009) Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845). Stand Genomic Sci 1:101–109PubMedCentralPubMedGoogle Scholar
- McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55:49–75PubMedGoogle Scholar
- McBride MJ (2004) Cytophaga-Flavobacterium gliding motility. J Mol Microbiol Biotechnol 7:63–71PubMedGoogle Scholar
- McBride MJ, Baker SA (1996) Development of techniques to genetically manipulate members of the genera Cytophaga, Flavobacterium, Flexibacter, and Sporocytophaga. Appl Environ Microbiol 62:3017–3022PubMedCentralPubMedGoogle Scholar
- McBride MJ, Braun TF (2004) GldI is a lipoprotein that is required for Flavobacterium johnsoniae gliding motility and chitin utilization. J Bacteriol 186:2295–2302PubMedCentralPubMedGoogle Scholar
- McBride MJ, Kempf MJ (1996) Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. J Bacteriol 178:583–590PubMedCentralPubMedGoogle Scholar
- McBride MJ, Zhu Y (2013) Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J Bacteriol 195:270–278PubMedCentralPubMedGoogle Scholar
- McBride MJ, Braun TF, Brust JL (2003) Flavobacterium johnsoniae GldH is a lipoprotein that is required for gliding motility and chitin utilization. J Bacteriol 185:6648–6657PubMedCentralPubMedGoogle Scholar
- McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B, Rhodes RG, Goltsman E, Wang W, Xu J, Hunnicutt DW, Staroscik AM, Hoover TR, Cheng YQ, Stein JL (2009) Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 75:6864–6875PubMedCentralPubMedGoogle Scholar
- Meyer S, Shin H, Cornelis GR (2008) Capnocytophaga canimorsus resists phagocytosis by macrophages and blocks the ability of macrophages to kill other bacteria. Immunobiology 213:805–814PubMedGoogle Scholar
- Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W (2006) Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol 71:23–33PubMedGoogle Scholar
- Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in eukaryotes. New Phytol 188:82–97PubMedGoogle Scholar
- Mignot T (2007) The elusive engine in Myxococcus xanthus gliding motility. Cell Mol Life Sci 64:2733–2745PubMedGoogle Scholar
- Miyashita M, Fujimura S, Nakagawa Y, Nishizawa M, Tomizuka N, Nakagawa T, Nakagawa J (2010) Flavobacterium algicola sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 60:344–348PubMedGoogle Scholar
- Miyata M (2010) Unique centipede mechanism of Mycoplasma gliding. Annu Rev Microbiol 64:519–537PubMedGoogle Scholar
- Moore AA, Eimers ME, Cardella MA (1990) Attempts to control Flexibacter columnaris epizootics in pond-reared channel catfish by vaccination. J Aquat Anim Health 2:109–111Google Scholar
- Morita Y, Hasan Q, Sakaguchi T, Murakami Y, Yokoyama K, Tamiya E (1998) Properties of a cold-active protease from psychrotrophic: Flavobacterium balustinum P104. Appl Microbiol Biotechnol 50:669–675PubMedGoogle Scholar
- Murthy TR, Dorairajan N, Balasubramaniam GA, Dinakaran AM, Kalaimathi R (2007) The effect of vaccination of pullets against Ornithobacterium rhinotracheale infection. Avian Pathol 36:481–485PubMedGoogle Scholar
- Nelson SS, Glocka PP, Agarwal S, Grimm DP, McBride MJ (2007) Flavobacterium johnsoniae SprA is a cell-surface protein involved in gliding motility. J Bacteriol 189:7145–7150PubMedCentralPubMedGoogle Scholar
- Nelson SS, Bollampalli S, McBride MJ (2008) SprB is a cell surface component of the Flavobacterium johnsoniae gliding motility machinery. J Bacteriol 190:2851–2857PubMedCentralPubMedGoogle Scholar
- Nematollahi A, Decostere A, Pasmans F, Haesebrouck F (2003) Flavobacterium psychrophilum infections in salmonid fish. J Fish Dis 26:563–574PubMedGoogle Scholar
- Nett M, Konig GM (2007) The chemistry of gliding bacteria. Nat Prod Rep 24:1245–1261PubMedGoogle Scholar
- Newton JC, Wood TM, Hartley MM (1997) Isolation and partial characterization of extracellular proteases produced by isolates of Flavobacterium columnare derived from catfish. J Aquat Anim Health 9:75–85Google Scholar
- Nguyen KA, Travis J, Potempa J (2007) Does the importance of the C-terminal residues in the maturation of RgpB from Porphyromonas gingivalis reveal a novel mechanism for protein export in a subgroup of Gram-Negative bacteria? J Bacteriol 189:833–843PubMedCentralPubMedGoogle Scholar
- Oh HM, Giovannoni SJ, Lee K, Ferriera S, Johnson JT, Cho JC (2009) Complete genome sequence of Robiginitalea biformata HTCC2501. J Bacteriol 191:7144–7145PubMedCentralPubMedGoogle Scholar
- Oh HM, Kang I, Ferriera S, Giovannoni SJ, Cho JC (2010) Complete genome sequence of Croceibacter atlanticus HTCC2559T. J Bacteriol 192:4796–4797PubMedCentralPubMedGoogle Scholar
- Oh HM, Kang I, Yang SJ, Jang Y, Vergin KL, Giovannoni SJ, Cho JC (2011) Complete genome sequence of strain HTCC2170, a novel member of the genus Maribacter in the family Flavobacteriaceae. J Bacteriol 193:303–304PubMedCentralPubMedGoogle Scholar
- Oikawa T, Yamamoto N, Shimoke K, Uesato S, Ikeuchi T, Fujioka T (2005) Purification, characterization, and overexpression of psychrophilic and thermolabile malate dehydrogenase of a novel antarctic psychrotolerant, Flavobacterium frigidimaris KUC-1. Biosci Biotech Biochem 69:2146–2154Google Scholar
- Olivares-Fuster O, Arias CR (2011) Development and characterization of rifampicin-resistant mutants from high virulent strains of Flavobacterium columnare. J Fish Dis 34:385–394PubMedGoogle Scholar
- Olivares-Fuster O, Baker JL, Terhune JS, Shoemaker CA, Klesius PH, Arias CR (2007) Host-specific association between Flavobacterium columnare genomovars and fish species. Syst Appl Microbiol 30:624–633PubMedGoogle Scholar
- Ordal EJ, Rucker RR (1944) Pathogenic myxobacteria. Proc Soc Exp Biol Med 56:15–18Google Scholar
- Ostland VE, Lumsden JS, MacPhee DD, Ferguson HW (1994) Characteristics of Flavobacterium branchiophilum, the cause of salmonid bacterial gill disease in Ontario. J Aquat Anim Health 6:13–26Google Scholar
- Ostland VE, Byrne PJ, Speare DJ, Thorburn MA, Cook A, Morrison D, Ferguson HW (1995) Comparison of formalin and chloramine-T for control of a mixed gill infection (bacterial gill disease and icthyobodiasis) in rainbow trout. J Aquat Anim Health 7:118–123Google Scholar
- Pate JL (1988) Gliding motility in procaryotic cells. Can J Microbiol 34:459–465Google Scholar
- Pate JL, Chang L-YE (1979) Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes. Curr Microbiol 2:59–64Google Scholar
- Pati A, Abt B, Teshima H, Nolan M, Lapidus A, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani I, Mavromatis K, Ovchinikova G, Chen A, Palaniappan K, Land M, Hauser L, Jeffries CD, Detter JC, Brambilla EM, Kannan KP, Rohde M, Spring S, Goker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Ivanova N (2011) Complete genome sequence of Cellulophaga lytica type strain (LIM-21). Stand Genomic Sci 4:221–232PubMedCentralPubMedGoogle Scholar
- Peng F, Liu M, Zhang L, Dai J, Luo X, An H, Fang C (2009) Planobacterium taklimakanense gen. nov., sp. nov., a member of the family Flavobacteriaceae that exhibits swimming motility, isolated from desert soil. Int J Syst Evol Microbiol 59:1672–1678PubMedGoogle Scholar
- Pérez-Pascual D, Gómez E, Alvarez B, Méndez J, Reimundo P, Navais R, Duchaud E, Guijarro JA (2011) Comparative analysis and mutation effects of fpp2-fpp1 tandem genes encoding proteolytic extracellular enzymes of Flavobacterium psychrophilum. Microbiology 157(4):1196–1204PubMedGoogle Scholar
- Perry LB (1973) Gliding motility in some non-spreading Flexibacteria. J Appl Bacteriol 36:227–232PubMedGoogle Scholar
- Peterson SB, Dunn AK, Klimowicz AK, Handelsman J (2006) Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga-Flavobacterium group. Appl Environ Microbiol 72:5421–5427PubMedCentralPubMedGoogle Scholar
- Prasad Y, Arpana DK, Sharma AK (2011) Lytic bacteriophages specific to Flavobacterium columnare rescue catfish, Clarias batrachus (Linn.) from columnaris disease. J Environ Biol 32:161–168PubMedGoogle Scholar
- Pulkkinen K, Suomalainen LR, Read AF, Ebert D, Rintamäki P, Valtonen ET (2010) Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proc R Soc B 277:593–600PubMedCentralPubMedGoogle Scholar
- Qin QL, Zhang XY, Wang XM, Liu GM, Chen XL, Xie BB, Dang HY, Zhou BC, Yu J, Zhang YZ (2010) The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation. BMC Genomics 11:247PubMedCentralPubMedGoogle Scholar
- Rasmussen MA, Madsen SM, Stougaard P, Johnsen MG (2008) Flavobacterium sp Strain 4221 and Pedobacter sp. Strain 4236 beta-1,3-Glucanases that are active at low temperatures. Appl Environ Microbiol 74:7070–7072PubMedCentralPubMedGoogle Scholar
- Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7PubMedCentralPubMedGoogle Scholar
- Rebuffet E, Groisillier A, Thompson A, Jeudy A, Barbeyron T, Czjzek M, Michel G (2011) Discovery and structural characterization of a novel glycosidase family of marine origin. Environ Microbiol 13:1253–1270PubMedGoogle Scholar
- Rhodes RG, Samarasam MN, Shrivastava A, van Baaren JM, Pochiraju S, Bollampalli S, McBride MJ (2010) Flavobacterium johnsoniae gldN and gldO are partially redundant genes required for gliding motility and surface localization of SprB. J Bacteriol 192:1201–1211PubMedCentralPubMedGoogle Scholar
- Rhodes RG, Nelson SS, Pochiraju S, McBride MJ (2011a) Flavobacterium johnsoniae sprB is part of an operon spanning the additional gliding motility genes sprC, sprD, and sprF. J Bacteriol 193:599–610PubMedCentralPubMedGoogle Scholar
- Rhodes RG, Pucker HG, McBride MJ (2011b) Development and use of a gene deletion strategy for Flavobacterium johnsoniae to identify the redundant motility genes remF, remG, remH, and remI. J Bacteriol 193:2418–2428PubMedCentralPubMedGoogle Scholar
- Rhodes RG, Samarasam MN, Van Groll EJ, McBride MJ (2011c) Mutations in Flavobacterium johnsoniae sprE result in defects in gliding motility and protein secretion. J Bacteriol 193:5322–5327PubMedCentralPubMedGoogle Scholar
- Riemer O (1904) Kurze Mitteilung über eine bei Gänsen beobachtete exsudative Septikämie und deren Erreger. Zentbl Bakteriol I Abt 37:641–648Google Scholar
- Rodgers M, Flanigan D, Pfaller S, Jakubowski W, Kinkle B (2003) Identification of a flavobacterium strain virulent against Giardia lamblia cysts. World J Microbiol Biotechnol 19:703–709Google Scholar
- Romero M, Avendano-Herrera R, Magarinos B, Camara M, Otero A (2010) Acylhomoserine lactone production and degradation by the fish pathogen Tenacibaculum maritimum, a member of the Cytophaga-Flavobacterium-Bacteroides (CFB) group. FEMS Microbiol Lett 304:131–139PubMedGoogle Scholar
- Sack ELW, van der Wielen PW, van der Kooij D (2011) Flavobacterium johnsoniae as a model organism for characterizing biopolymer utilization in oligotrophic freshwater environments. Appl Environ Microbiol 77:6931–6938PubMedCentralPubMedGoogle Scholar
- Salyers AA, Shoemaker NB, Guthrie EP (1987) Recent advances in Bacteroides genetics. CRC Crit Rev Microbiol 14:49–71Google Scholar
- Salyers AA, Reeves A, D’Elia J (1996) Solving the problem of how to eat something as big as yourself: diverse bacterial strategies for degrading polysaccharides. J Ind Microbiol Biot 17:470–476Google Scholar
- Sang MK, Kim KD (2012) The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J Appl Microbiol 113:383–398PubMedGoogle Scholar
- Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M, McBride MJ, Rhodes RG, Nakayama K (2010) A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci USA 107:276–281PubMedCentralPubMedGoogle Scholar
- Secades P, Alvarez B, Guijarro JA (2001) Purification and characterization of a psychrophilic, calcium-induced, growth-phase-dependent metalloprotease from the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 67:2436–2444PubMedCentralPubMedGoogle Scholar
- Secades P, Alvarez B, Guijarro JA (2003) Purification and properties of a new psychrophilic metalloprotease (Fpp2) in the fish pathogen Flavobacterium psychrophilum. FEMS Microbiol Lett 226:273–279PubMedGoogle Scholar
- Seers CA, Slakeski N, Veith PD, Nikolof T, Chen YY, Dashper SG, Reynolds EC (2006) The RgpB C-terminal domain has a role in attachment of RgpB to the outer membrane and belongs to a novel C-terminal-domain family found in Porphyromonas gingivalis. J Bacteriol 188:6376–6386PubMedCentralPubMedGoogle Scholar
- Segers P, Mannheim W, Vancanneyt M, De Brandt K, Hinz KH, Kersters K, Vandamme P (1993) Riemerella anatipestifer gen. nov., comb. nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group. Int J Syst Bacteriol 43:768–776PubMedGoogle Scholar
- Shamsudin MN, Plumb JA (1996) Morphological, biochemical, and physiological characterization of Flexibacter columnaris isolates from four species of fish. J Aquat Anim Health 8:335–339Google Scholar
- Shieh HS (1980) Studies on the nutrition of a fish pathogen, Flexibacter columnaris. Microbios Lett 13:129–133Google Scholar
- Shin H, Mally M, Meyer S, Fiechter C, Paroz C, Zaehringer U, Cornelis GR (2009) Resistance of Capnocytophaga canimorsus to killing by human complement and polymorphonuclear leukocytes. Infect Immun 77:2262–2271PubMedCentralPubMedGoogle Scholar
- Shindo K, Kikuta K, Suzuki A, Katsuta A, Kasai H, Yasumoto-Hirose M, Matsuo Y, Misawa N, Takaichi S (2007) Rare carotenoids, (3R)-saproxanthin and (3R,2 ’ S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. Appl Microbiol Biotechnol 74:1350–1357PubMedGoogle Scholar
- Shoemaker CA, Arias CR, Klesius PH, Welker TL (2005) Technique for identifying Flavobacterium columnare using whole-cell fatty acid profiles. J Aquat Anim Health 17:267–274Google Scholar
- Shoemaker CA, Klesius PH, Evans JJ (2007) Immunization of eyed channel catfish, Ictalurus punctatus, eggs with monovalent Flavobacterium columnare vaccine and bivalent F. columnare and Edwardsiella ictaluri vaccine. Vaccine 25:1126–1131PubMedGoogle Scholar
- Shoemaker CA, Olivares-Fuster O, Arias CR, Klesius PH (2008) Flavobacterium columnare genomovar influences mortality in channel catfish (Ictalurus punctatus). Vet Microbiol 127:353–359PubMedGoogle Scholar
- Shoemaker CA, Klesius PH, Evans JJ, Arias CR (2009) Use of modified live vaccines in aquaculture. J World Aquacult Soc 40:573–585Google Scholar
- Shoemaker CA, Klesius PH, Drennan JD, Evans JJ (2011) Efficacy of a modified live Flavobacterium columnare vaccine in fish. Fish Shellfish Immunol 30:304–308PubMedGoogle Scholar
- Shoji M, Sato K, Yukitake H, Kondo Y, Narita Y, Kadowaki T, Naito M, Nakayama K (2011) Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35. PLoS One 6:e21372PubMedCentralPubMedGoogle Scholar
- Shotts EB, Starliper CE (1999) Flavobacterial diseases: columnaris disease, cold-water disease and bacterial gill disease. In: Woo PTK, Bruno DW (eds) Fish diseases and disorders, vol 3. CABI Publishing, Oxford, UK, pp 559–576Google Scholar
- Shrivastava A, Rhodes RG, Pochiraju S, Nakane D, McBride MJ (2012) Flavobacterium johnsoniae RemA is a mobile cell-surface lectin involved in gliding. J Bacteriol 194:3678–3688PubMedCentralPubMedGoogle Scholar
- Shulman BH, Johnson MS (1944) A case of meningitis in a premature infant due to a proteolytic Gram-negative bacillus. J Lab Clin Med 29:500–507Google Scholar
- Slakeski N, Seers CA, Ng K, Moore C, Cleal SM, Veith PD, Lo AW, Reynolds EC (2011) C-terminal domain residues important for secretion and attachment of RgpB in Porphyromonas gingivalis. J Bacteriol 193:132–142PubMedCentralPubMedGoogle Scholar
- Sohn JH, Lee JH, Yi H, Chun J, Bae KS, Ahn TY, Kim SJ (2004) Kordia algicida gen. nov., sp. nov., an algicidal bacterium isolated from red tide. Int J Syst Evol Microbiol 54:675–680PubMedGoogle Scholar
- Song YL, Fryer JL, Rohovec JS (1988) Comparison of six media for the cultivation of Flexibacter columnaris. Fish Pathol 23:91–94Google Scholar
- Spratt DA, Greenman J, Schaffer AG (1996) Capnocytophaga gingivalis: effects of glucose concentration on growth and hydrolytic enzyme production. Microbiology 142(Pt 8):2161–2164PubMedGoogle Scholar
- Staley JT (2011) Genus XLI. Polaribacter. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 255–258Google Scholar
- Stanier RY (1947) Studies on non-fruiting myxobacteria. I. Cytophaga johnsonae, n. sp., a chitin-decomposing myxobacterium. J Bacteriol 53:297–315PubMedCentralGoogle Scholar
- Starliper CE (2011) Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. J Adv Res 2:97–108Google Scholar
- Staroscik AM, Hunnicutt DW, Archibald KE, Nelson DR (2008) Development of methods for the genetic manipulation of Flavobacterium columnare. BMC Microbiol 8:115PubMedCentralPubMedGoogle Scholar
- Staufenberger T, Thiel V, Wiese J, Imhoff JF (2008) Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiol Ecol 64:65–77PubMedGoogle Scholar
- Stenholm AR, Dalsgaard I, Middelboe M (2008) Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 74:4070–4078PubMedCentralPubMedGoogle Scholar
- Stringer-Roth KM, Yunghans W, Caslake LF (2002) Differences in chondroitin AC lyase activity of Flavobacterium columnare isolates. J Fish Dis 25:687–691Google Scholar
- Sugahara K, Eguchi M (2012) The use of warmed water treatment to induce protective immunity against the bacterial cold-water disease pathogen Flavobacterium psychrophilum in ayu (Plecoglossus altivelis). Fish Shellfish Immunol 32:489–493PubMedGoogle Scholar
- Sun B, Ko K, Ramsay JA (2011) Biodegradation of 1,4-dioxane by a Flavobacterium. Biodegradation 22:651–659PubMedGoogle Scholar
- Suomalainen LR, Tiirola M, Valtonen ET (2006) Chondroitin AC lyase activity is related to virulence of fish pathogenic Flavobacterium columnare. J Fish Dis 29:757–763PubMedGoogle Scholar
- Suzuki M, Nakagawa Y, Harayama S, Yamamoto S (2001) Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51:1639–1652PubMedGoogle Scholar
- Tekedar HC, Karsi A, Gillaspy AF, Dyer DW, Benton NR, Zaitshik J, Vamenta S, Banes MM, Gulsoy N, Aboko-Cole M, Waldbieser GC, Lawrence ML (2012) Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512. J Bacteriol 194:2763–2764PubMedCentralPubMedGoogle Scholar
- Thomas F, Barbeyron T, Tonon T, Genicot S, Czjzek M, Michel G (2012) Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ Microbiol 14:2379–2394PubMedGoogle Scholar
- Touchon M, Barbier P, Bernardet JF, Loux V, Vacherie B, Barbe V, Rocha EP, Duchaud E (2011) Complete genome sequence of the fish pathogen Flavobacterium branchiophilum. Appl Environ Microbiol 77:7656–7662PubMedCentralPubMedGoogle Scholar
- Triyanto H, Wakabayashi H (1999) Genotypic diversity of strains of Flavobacterium columnare from diseased fishes. Fish Pathol 34:65–71Google Scholar
- Trzesickamlynarz D, Ward OP (1995) Degradation of polycyclic aromatic-hydrocarbons (PAHS) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil. Can J Microbiol 41:470–476Google Scholar
- Van Empel P, Vrijenhoek M, Goovaerts D, van den Bosch H (1999) Immuno-histochemical and serological investigation of experimental Ornithobacterium rhinotracheale infection chickens. Avian Pathol 28:187–193Google Scholar
- Vancanneyt M, Vandamme P, Segers P, Torck U, Coopman R, Kersters K, Hinz KH (1999) Riemerella columbina sp. nov., a bacterium associated with respiratory disease in pigeons. Int J Syst Bacteriol 49:289–295Google Scholar
- Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B (1994a) New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44:827–831Google Scholar
- Vandamme P, Segers P, Vancanneyt M, van Hove K, Mutters R, Hommez J, Dewhirst F, Paster B, Kersters K, Falsen E et al (1994b) Ornithobacterium rhinotracheale gen. nov., sp. nov., isolated from the avian respiratory tract. Int J Syst Bacteriol 44:24–37PubMedGoogle Scholar
- Vandamme P, Vancanneyt M, Segers P, Ryll M, Kohler B, Ludwig W, Hinz KH (1999) Coenonia anatina gen. nov., sp. nov., a novel bacterium associated with respiratory disease in ducks and geese. Int J Syst Bacteriol 49(2):867–874PubMedGoogle Scholar
- Vandamme P, Hafez HM, Hinz KH (2006) Capnophilic bird pathogens in the family Flavobacteriaceae: Riemerella, Ornithobacterium, and Coenonia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 695–708Google Scholar
- Vela AI, Fernandez A, Sanchez-Porro C, Sierra E, Mendez M, Arbelo M, Ventosa A, Dominguez L, Fernandez-Garayzabal JF (2007) Flavobacterium ceti sp. nov., isolated from beaked whales (Ziphius cavirostris). Int J Syst Evol Microbiol 57:2604–2608PubMedGoogle Scholar
- Wagner BA, Wise DJ, Khoo LH, Terhune JS (2002) The epidemiology of bacterial diseases in food-size channel catfish. J Aquat Anim Health 14:263–272Google Scholar
- Wakabayashi H (1971) Effect of environmental conditions on the infectivity of Flexibacter columnaris to fish. J Fish Dis 14:279–290Google Scholar
- Wakabayashi H (1993) Columnaris disease. In: Inglis V, Roberts RJ, Bromage NR (eds) Bacterial diseases of fish. Blackwell, Oxford, UK, pp 23–29Google Scholar
- Wakabayashi H, Hikida M, Masumura K (1986) Flexibacter maritimus sp. nov., a pathogen of marine fishes. Int J Syst Bacteriol 36:396–398Google Scholar
- Wakabayashi H, Huh GJ, Kimura N (1989) Flavobacterium branchiophila sp. nov., a causative agent of bacterial gill disease of freshwater fishes. Int J Syst Bacteriol 39:213–216Google Scholar
- Warren RA (1996) Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 50:183–212PubMedGoogle Scholar
- Weeks OB (1955) Flavobacterium aquatile (Frankland and Frankland) Bergey et al., type species of the genus Flavobacterium. J Bacteriol 69:649–658PubMedCentralPubMedGoogle Scholar
- Welker TL, Shoemaker CA, Arias CR, Klesius PH (2005) Transmission and detection of Flavobacterium columnare in channel catfish Ictalurus punctatus. Dis Aquat Organ 63:129–138PubMedGoogle Scholar
- Wiklund T, Dalsgaard I (2003) Association of Flavobacterium psychrophilum with rainbow trout (Oncorhynchus mykiss) kidney phagocytes in vitro. Fish Shellfish Immunol 15:387–395PubMedGoogle Scholar
- Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14:259–263PubMedGoogle Scholar
- Winans SC, Bassler BL (2002) Mob psychology. J Bacteriol 184:873–883PubMedCentralPubMedGoogle Scholar
- Wolkin RH, Pate JL (1984) Translocation of motile cells of the gliding bacterium Cytophaga johnsonae depends on a surface component that may be modified by sugars. J Gen Microbiol 130:2651–2669Google Scholar
- Xie HX, Nie P, Chang MX, Liu Y, Yao WJ (2005) Gene cloning and functional analysis of glycosaminoglycan-degrading enzyme chondroitin AC lyase from Flavobacterium columnare G4. Arch Microbiol 184:49–55PubMedGoogle Scholar
- Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73:3536–3546PubMedCentralPubMedGoogle Scholar
- Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedGoogle Scholar
- Yoshizawa S, Kawanabe A, Ito H, Kandori H, Kogure K (2012) Diversity and functional analysis of proteorhodopsin in marine Flavobacteria. Environ Microbiol 14:1240–1248PubMedGoogle Scholar
- Yuan J, Liu W, Sun M, Song S, Cai J, Hu S (2011) Complete genome sequence of the pathogenic bacterium Riemerella anatipestifer strain RA-GD. J Bacteriol 193:2896–2897PubMedCentralPubMedGoogle Scholar
- Zamora L, Fernandez-Garayzabal JF, Svensson-Stadler LA, Palacios MA, Dominguez L, Moore ER, Vela AI (2012) Flavobacterium oncorhynchi sp. nov., a new species isolated from rainbow trout (Oncorhynchus mykiss). Syst Appl Microbiol 35:86–91PubMedGoogle Scholar
- Zhang DC, Wang HX, Liu HC, Dong XZ, Zhou PJ (2006a) Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No.1 glacier. Int J Syst Evol Microbiol 56:2921–2925PubMedGoogle Scholar
- Zhang Y, Arias CR, Shoemaker CA, Klesius PH (2006b) Comparison of lipopolysaccharide and protein profiles between Flavobacterium columnare strains from different genomovars. J Fish Dis 29:657–663PubMedGoogle Scholar
- Zhang J, Jiang RB, Zhang XX, Hang BJ, He J, Li SP (2010) Flavobacterium haoranii sp. nov., a cypermethrin-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 60:2882–2886PubMedGoogle Scholar
- Zhang J, Hong Z, Wang L, Huang B, Li N, Wang GR, Nie P (2012) Construction of two selectable markers for integrative/conjugative plasmids in Flavobacterium columnare. Chinese J Oceanol Limnol 30:269–278Google Scholar
- Zhou Z, Peng X, Xiao Y, Wang X, Guo Z, Zhu L, Liu M, Jin H, Bi D, Li Z, Sun M (2011) Genome sequence of poultry pathogen Riemerella anatipestifer strain RA-YM. J Bacteriol 193:1284–1285PubMedCentralPubMedGoogle Scholar
- Zhu F, Wang S, Zhou P (2003) Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 glacier. Int J Syst Evol Microbiol 53:853–857PubMedGoogle Scholar