The Family Flavobacteriaceae

Reference work entry


The family Flavobacteriaceae is the largest family in the phylum Bacteroidetes. It contains at least 90 genera and hundreds of species. Members of the family are found in a wide variety of marine, freshwater, and soil habitats, and some are also associated with animals or plants. In spite of this diversity, some generalities regarding members of the family can be identified. Most, but not all, are aerobic, with primarily respiratory metabolism. Menaquinones of type 6 (MK6) are the major respiratory quinones and help to distinguish members of the family Flavobacteriaceae from many other families within the phylum Bacteroidetes. Most species have rod-shaped cells, with some of them exhibiting long filamentous cells. Utilization of macromolecules such as polysaccharides and proteins is a common feature of many members of the family. Polysaccharide utilization appears to involve novel cell-surface machinery common to members of the phylum Bacteroidetes to bind polysaccharides and transport oligomers across the outer membrane. Many, but not all, genera and species move over surfaces by a form of gliding motility that appears to be confined to members of the phylum Bacteroidetes. Genome analyses suggest that most members of the family also use a novel protein secretion system referred to as the Por secretion system to secrete proteins beyond the outer membrane. There are no known photosynthetic flavobacteria, but some marine members of the Flavobacteriaceae use proteorhodopsin to harvest light energy and supplement their energy needs. The family Flavobacteriaceae includes important fish pathogens such as Flavobacterium psychrophilum, Flavobacterium columnare, and Tenacibaculum maritimum; bird pathogens such as Riemerella anatipestifer, Ornithobacterium rhinotracheale, and Coenonia anatina; human pathogens such as Capnocytophaga canimorsus and Elizabethkingia meningoseptica; and numerous bacteria of environmental and biotechnological significance.


Fish Pathogen Protein Secretion System Algal Polysaccharide Genus Flavobacterium Attenuate Vaccine Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Movie 51.1

MOV file: 5946 kB

Movie 51.2

MOV file: 5863 kB


  1. Abbanat DR, Leadbetter ER, Godchaux W III, Escher A (1986) Sulphonolipids are molecular determinants of gliding motility. Nature 324:367–369Google Scholar
  2. Abell GC, Bowman JP (2005) Ecological and biogeographic relationships of class Flavobacteria in the southern ocean. FEMS Microbiol Ecol 51:265–277PubMedGoogle Scholar
  3. Abt B, Lu M, Misra M, Han C, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Ovchinikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Detter JC, Brambilla E, Rohde M, Tindall BJ, Goker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2011) Complete genome sequence of Cellulophaga algicola type strain (IC166). Stand Genomic Sci 4:72–80PubMedCentralPubMedGoogle Scholar
  4. Achenbach H, Kohl W, Wachter W, Reichenbach H (1978) Investigations of the pigments from Cytophaga johnsonae Cy jl. New flexirubin-type pigments. Arch Microbiol 117:253–257PubMedGoogle Scholar
  5. Agarwal S, Hunnicutt DW, McBride MJ (1997) Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc Natl Acad Sci USA 94:12139–12144PubMedCentralPubMedGoogle Scholar
  6. Alexander BJR, Stewart A (2001) Glasshouse screening for biological control agents of Phytophthora cactorum on apple (Malus domestica). New Zeal J Crop Hort 29:159–169Google Scholar
  7. Allouch J, Jam M, Helbert W, Barbeyron T, Kloareg B, Henrissat B, Czjzek M (2003) The three-dimensional structures of two beta-agarases. J Biol Chem 278:47171–47180PubMedGoogle Scholar
  8. Allouch J, Helbert W, Henrissat B, Czjzek M (2004) Parallel substrate binding sites in a beta-agarase suggest a novel mode of action on double-helical agarose. Structure 12:623–632PubMedGoogle Scholar
  9. Alvarez B, Guijarro JA (2007) Recovery of Flavobacterium psychrophilum viable cells using a charcoal-based solid medium. Lett Appl Microbiol 44:569–572PubMedGoogle Scholar
  10. Alvarez B, Secades P, McBride MJ, Guijarro JA (2004) Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 70:581–587PubMedCentralPubMedGoogle Scholar
  11. Alvarez B, Secades P, Prieto M, McBride MJ, Guijarro JA (2006) A mutation in Flavobacterium psychrophilum tlpB inhibits gliding motility and induces biofilm formation. Appl Environ Microbiol 72:4044–4053PubMedCentralPubMedGoogle Scholar
  12. Alvarez B, Alvarez J, Menendez A, Guijarro JA (2008) A mutant in one of two exbD loci of a TonB system in Flavobacterium psychrophilum shows attenuated virulence and confers protection against cold water disease. Microbiology 154:1144–1151PubMedGoogle Scholar
  13. Amita K, Hoshino M, Honma T, Wakabayashi H (2000) An investigation on the distribution of Flavobacterium psychrophilum in the Umikawa river. Fish Pathol 35:193–197Google Scholar
  14. Anacker RL, Ordal EJ (1955) Study of a bacteriophage infecting the myxobacterium Chondrococcus columnaris. J Bacteriol 70:738–741PubMedCentralPubMedGoogle Scholar
  15. Anderson KL, Salyers AA (1989) Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 171:3199–3204PubMedCentralPubMedGoogle Scholar
  16. Araujo LS, Kagohara E, Garcia TP, Pellizari VH, Andrade LH (2011) Screening of microorganisms producing cold-active oxidoreductases to be applied in enantioselective alcohol oxidation. An Antarctic survey. Mar Drugs 9:889–905PubMedCentralPubMedGoogle Scholar
  17. Austin B, Austin DA (2007) Bacterial fish pathogens: diseases of farmed and wild fish. Springer, ChichesterGoogle Scholar
  18. Avendano-Herrera R, Magarinos B, Toranzo AE, Beaz R, Romalde JL (2004) Species-specific polymerase chain reaction primer sets for the diagnosis of Tenacibaculum maritimum infection. Dis Aquat Organ 62:75–83PubMedGoogle Scholar
  19. Avendano-Herrera R, Toranzo AE, Magarinos B (2006a) A challenge model for Tenacibaculum maritimum infection in turbot, Scophthalmus maximus (L.). J Fish Dis 29:371–374PubMedGoogle Scholar
  20. Avendano-Herrera R, Toranzo AE, Magarinos B (2006b) Tenacibaculosis infection in marine fish caused by Tenacibaculum maritimum: a review. Dis Aquat Organ 71:255–266PubMedGoogle Scholar
  21. Bae SS, Kwon KK, Yang SH, Lee HS, Kim SJ, Lee JH (2007) Flagellimonas eckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome. Int J Syst Evol Microbiol 57:1050–1054PubMedGoogle Scholar
  22. Bakunina IY, Nedashkovskaya OI, Kim SB, Zvyagintseva TN, Mikhailov VV (2012) Distribution of alpha-N-acetylgalactosaminidases among marine bacteria of the phylum Bacteroidetes, epiphytes of marine algae of the Seas of Okhotsk and Japan. Microbiology 81:373–378Google Scholar
  23. Baliarda A, Faure D, Urdaci MC (2002) Development and application of a nested PCR to monitor brood stock salmonid ovarian fluid and spleen for detection of the fish pathogen Flavobacterium psychrophilum. J Appl Microbiol 92:510–516PubMedGoogle Scholar
  24. Barbeyron T, Michel G, Potin P, Henrissat B, Kloareg B (2000) Iota-carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J Biol Chem 275:35499–35505PubMedGoogle Scholar
  25. Barbeyron T, L’Haridon S, Corre E, Kloareg B, Potin P (2001) Zobellia galactanivorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol Microbiol 51:985–997PubMedGoogle Scholar
  26. Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147PubMedCentralPubMedGoogle Scholar
  27. Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, Würdemann CA, Quast C, Kuhl H, Knaust F, Woebken D, Bischof K, Mussmann M, Choudhuri JV, Meyer F, Reinhardt R, Amann RI, Glöckner FO (2006) Whole genome analysis of the marine Bacteroidetes ‘Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 8:2201–2213PubMedGoogle Scholar
  28. Beck BH, Farmer BD, Straus DL, Li C, Peatman E (2012) Putative roles for a rhamnose binding lectin in Flavobacterium columnare pathogenesis in channel catfish Ictalurus punctatus. Fish Shellfish Immunol 33:1008–1015PubMedGoogle Scholar
  29. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906PubMedGoogle Scholar
  30. Bernardet JF (1989) Flexibacter-Columnaris—1st description in France and comparison with bacterial strains from other origins. Dis Aquat Organ 6:37–44Google Scholar
  31. Bernardet J-F (1997) Immunization with bacterial antigens: Flavobacterium and Flexibacter infections. Dev Biol Stand 90:179–188PubMedGoogle Scholar
  32. Bernardet JF (2006) The genus Flavobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 481–531Google Scholar
  33. Bernardet J-F (2011) Family I: Flavobacteriaceae. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 106–314Google Scholar
  34. Bernardet J-F, Bowman JP (2011) Genus I. Flavobacterium. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s Manual of systematic bacteriology, vol 4. Springer, New York, pp 112–154Google Scholar
  35. Bernardet J-F, Bruun B (2011) Genus XVII. Elizabethkingia. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s Manual of systematic bacteriology, vol 4. Springer, New York, pp 202–210Google Scholar
  36. Bernardet J-F, Grimont PAD (1989) Deoxyribonucleic acid relatedness and phenotypic characterization of Flexibacter columnaris sp. nov., nom. rev., Flexibacter psychrophilus sp. nov., nom. rev., and Flexibacter maritimus Wakabayashi, Hikida, and Masumura 1986. Int J Syst Bacteriol 39:346–354Google Scholar
  37. Bernardet J-F, Nakagawa Y (2006) An introduction to the family Flavobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 455–480Google Scholar
  38. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a gordian knot: emended classification and description of the genus Flavobacterium, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148Google Scholar
  39. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070PubMedGoogle Scholar
  40. Bernardet J-F, Hugo C, Bruun B (2006) The genera Chryseobacterium and Elizabethkingia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 638–676Google Scholar
  41. Bernardet J-F, Hugo CJ, Bruun B (2011) Genus X. Chryseobacterium. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 180–196Google Scholar
  42. Bertolini JM, Rohovec JS (1992) Electrophoretic detection of proteases from different Flexibacter columnaris strains and assessment of their variability. Dis Aquat Organ 12:121–128Google Scholar
  43. Bitter W, Houben EN, Luirink J, Appelmelk BJ (2009) Type VII secretion in mycobacteria: classification in line with cell envelope structure. Trends Microbiol 17:337–338PubMedGoogle Scholar
  44. Bocklisch H, Huhn F, Herold W, Tomaso H, Diller R, Hotzel H (2012) Ostrich—a new avian host of riemerella columbina. Vet Microbiol 154:429–431PubMedGoogle Scholar
  45. Borg AF (1948) Studies on myxobacteria associated diseases in salmonid fishes. University of Washington, SeattleGoogle Scholar
  46. Bowman JP (2006) The marine clade of the family Flavobacteriaceae: The genera Aequorivita, Arenibacter, Cellulophaga, Croceibacter, Formosa, Gelidibacter, Gillisia, Maribacter, Mesonia, Muricauda, Polaribacter, Psychroflexus, Psychroserpens, Robiginitalea, Salegentibacter, Tenacibaculum, Ulvibacter, Vitellibacter and Zobellia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 677–694Google Scholar
  47. Braun TF, McBride MJ (2005) Flavobacterium johnsoniae GldJ is a lipoprotein that is required for gliding motility. J Bacteriol 187:2628–2637PubMedCentralPubMedGoogle Scholar
  48. Braun TF, Khubbar MK, Saffarini DA, McBride MJ (2005) Flavobacterium johnsoniae gliding motility genes identified by mariner mutagenesis. J Bacteriol 187:6943–6952PubMedCentralPubMedGoogle Scholar
  49. Brenner DJ, Hollis DG, Fanning GR, Weaver RE (1989) Capnocytophaga canimorsus sp. nov. (formerly CDC Group DF-2) a cause of septicemia following dog bite and C. cynodegmi sp. nov., a cause of localized wound infection following dog bite. J Clin Microbiol 27:231–235PubMedCentralPubMedGoogle Scholar
  50. Brown LL, Cox WT, levine RP (1997) Evidence that the causal agent of bacterial coldwater disease Flavobacterium psychrophilum is transmitted within salmonid eggs. Dis Aquat Organ 29:213–218Google Scholar
  51. Bruun B, Ursing J (1987) Phenotypic characterization of Flavobacterium meningosepticum strains identified by DNA-DNA hybridization. Acta Pathol Microbiol Immunol Scand B 95:41–47PubMedGoogle Scholar
  52. Bullock GL, Hsu TC, Shotts EB (1986) Columnaris disease of fishes. Fish Disease Leaflet 72; US Fish and Wildlife Service, US Department of the InteriorGoogle Scholar
  53. Cain KD, LaFrentz BR (2007) Laboratory maintenance of Flavobacterium psychrophilum and Flavobacterium columnare. Curr Protoc Microbiol 6:13B.1.1-13B.1.12,
  54. Calmes R, Rambicure GW, Gorman W, Lillich TT (1980) Energy metabolism in Capnocytophaga ochracea. Infect Immun 29:551–560PubMedCentralPubMedGoogle Scholar
  55. Carson J, Schmidtke LM, Munday BL (1993) Cytophaga-johnsonae—a putative skin pathogen of juvenile farmed barramundi, Lates Calcarifer bloch. J Fish Dis 16:209–218Google Scholar
  56. Castillo D, Higuera G, Villa M, Middelboe M, Dalsgaard I, Madsen L, Espejo RT (2012) Diversity of Flavobacterium psychrophilum and the potential use of its phages for protection against bacterial cold water disease in salmonids. J Fish Dis 35:193–201PubMedGoogle Scholar
  57. Chang LYE, Pate JL (1981) Nutritional requirements of Cytophaga johnsonae and some of its auxotrophic mutants. Curr Microbiol 5:235–240Google Scholar
  58. Chen S, Bagdasarian M, Kaufman MG, Bates AK, Walker ED (2007a) Mutational analysis of the ompA promoter from Flavobacterium johnsoniae. J Bacteriol 189:5108–5118PubMedCentralPubMedGoogle Scholar
  59. Chen S, Bagdasarian M, Kaufman MG, Walker ED (2007b) Characterization of strong promoters from an environmental Flavobacterium hibernum strain by using a green fluorescent protein-based reporter system. Appl Environ Microbiol 73:1089–1100PubMedCentralPubMedGoogle Scholar
  60. Cipriano RC, Holt RA (2005) Flavobacterium psychrophilum, cause of bacterial cold-water disease and rainbow trout fry syndrome. U. S. G. S. U. S. Department of Interior, National Fish Health Research LaboratoryGoogle Scholar
  61. Dalsgaard I (1993) Virulence mechanisms in Cytophaga psychrophila and other Cytophaga-like bacteria pathogenic for fish. Ann Rev Fish Dis 3:127–144Google Scholar
  62. Darwish AM, Ismaiel AA, Newton JC, Tang J (2004) Identification of Flavobacterium columnare by a species-specific polymerase chain reaction and renaming of ATCC43622 strain to Flavobacterium johnsoniae. Mol Cell Probes 18:421–427PubMedGoogle Scholar
  63. Davis HS (1922) A new bacterial disease of freshwater fishes. Bull US Bur Fish 38:261–280Google Scholar
  64. Decostere A, Haesebrouck F, Devriese LA (1997) Shieh medium supplemented with tobramycin for selective isolation of Flavobacterium columnare (Flexibacter columnaris) from diseased fish. J Clin Microbiol 35:322–324PubMedCentralPubMedGoogle Scholar
  65. Decostere A, Haesebrouck F, Charlier G, Ducatelle R (1999) The association of Flavobacterium columnare strains of high and low virulence with gill tissue of black mollies (Poecilia sphenops). Vet Microbiol 67:287–298PubMedGoogle Scholar
  66. Delong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934Google Scholar
  67. Desvaux M, Hebraud M, Talon R, Henderson IR (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17:139–145PubMedGoogle Scholar
  68. Duchaud E, Boussaha M, Loux V, Bernardet JF, Michel C, Kerouault B, Mondot S, Nicolas P, Bossy R, Caron C, Bessières P, Gibrat JF, Claverol S, Dumetz F, Hénaff ML, Benmansour A (2007) Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat Biotechnol 25:763–769PubMedGoogle Scholar
  69. Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV, Pugsley AP (2006) Secretion by numbers: protein traffic in prokaryotes. Mol Microbiol 62:308–319PubMedGoogle Scholar
  70. Eilers H, Pernthaler J, Peplies J, Glockner FO, Gerdts G, Amann R (2001) Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67:5134–5142PubMedCentralPubMedGoogle Scholar
  71. Evans JR, Napier EJ, Fletton RA (1978) G1499-2, a new quinoline compound isolated from the fermentation broth of Cytophaga johnsonii. J Antibiot (Tokyo) 31:952–958Google Scholar
  72. Ferguson HW, Delannoy CM, Hay S, Nicolson J, Sutherland D, Crumlish M (2010) Jellyfish as vectors of bacterial disease for farmed salmon (Salmo salar). J Vet Diagn Invest 22:376–382PubMedGoogle Scholar
  73. Flemming L, Rawlings D, Chenia H (2007) Phenotypic and molecular characterisation of fish-borne Flavobacterium johnsoniae-like isolates from aquaculture systems in South Africa. Res Microbiol 158:18–30PubMedGoogle Scholar
  74. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131PubMedGoogle Scholar
  75. Frandsen EV, Poulsen K, Kononen E, Kilian M (2008) Diversity of Capnocytophaga species in children and description of Capnocytophaga leadbetteri sp. nov. and Capnocytophaga genospecies AHN8471. Int J Syst Evol Microbiol 58:324–336PubMedGoogle Scholar
  76. Fuhrman JA, Schwalbach MS, Stingl U (2008) Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol 6:488–494PubMedGoogle Scholar
  77. Gaastra W, Lipman LJ (2010) Capnocytophaga canimorsus. Vet Microbiol 140:339–346PubMedGoogle Scholar
  78. Garnjobst L (1945) Cytophaga columnaris (Davis) in pure culture: a myxobacterium pathogenic to fish. J Bacteriol 49:113–128PubMedCentralPubMedGoogle Scholar
  79. Glew MD, Veith PD, Peng B, Chen YY, Gorasia DG, Yang Q, Slakeski N, Chen D, Moore C, Crawford S, Reynolds E (2012) PG0026 is the C-terminal signal peptidase of a novel secretion system of Porphyromonas gingivalis. J Biol Chem 287:24605–24617PubMedCentralPubMedGoogle Scholar
  80. Godchaux W III, Leadbetter ER (1983) Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group. J Bacteriol 153:1238–1246PubMedCentralPubMedGoogle Scholar
  81. Godchaux W 3rd, Leadbetter ER (1984) Sulfonolipids of gliding bacteria. Structure of the N-acylaminosulfonates. J Biol Chem 259:2982–2990PubMedGoogle Scholar
  82. Godchaux W III, Leadbetter ER (1988) Sulfonolipids are localized in the outer membrane of the gliding bacterium Cytophaga johnsonae. Arch Microbiol 150:42–47Google Scholar
  83. Gomez E, Perez-Pascual D, Fernandez L, Mendez J, Reimundo P, Navais R, Guijarro JA (2012) Construction and validation of a GFP-based vector for promoter expression analysis in the fish pathogen Flavobacterium psychrophilum. Gene 497:263–268PubMedGoogle Scholar
  84. Gomez-Consarnau L, Gonzalez JM, Coll-Llado M, Gourdon P, Pascher T, Neutze R, Pedros-Alio C, Pinhassi J (2007) Light stimulates growth of proteorhodopsin-containing marine flavobacteria. Nature 445:210–213PubMedGoogle Scholar
  85. Gomez-Pereira PR, Fuchs BM, Alonso C, Oliver MJ, van Beusekom JE, Amann R (2010) Distinct flavobacterial communities in contrasting water masses of the North Atlantic Ocean. ISME J 4:472–487PubMedGoogle Scholar
  86. Gonzalez JM, Fernandez-Gomez B, Fernandez-Guerra A, Gomez-Consarnau L, Sanchez O, Coll-Llado M, Del Campo J, Escudero L, Rodriguez-Martinez R, Alonso-Saez L, Latasa M, Paulsen I, Nedashkovskaya O, Lekunberri I, Pinhassi J, Pedros-Alio C (2008) Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc Natl Acad Sci USA 105:8724–8729PubMedCentralPubMedGoogle Scholar
  87. Gonzalez JM, Pinhassi J, Fernandez-Gomez B, Coll-Llado M, Gonzalez-Velazquez M, Puigbo P, Jaenicke S, Gomez-Consarnau L, Fernandez-Guerra A, Goesmann A, Pedros-Alio C (2011) Genomics of the proteorhodopsin-containing marine flavobacterium Dokdonia sp. strain MED134. Appl Environ Microbiol 77:8676–8686PubMedCentralPubMedGoogle Scholar
  88. Gorski L, Godchaux W III, Leadbetter ER (1993) Structural specificity of sugars that inhibit gliding motility of Cytophaga johnsonae. Arch Microbiol 160:121–125Google Scholar
  89. Gosink JJ, Woese CR, Staley JT (1998) Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48(1):223–235PubMedGoogle Scholar
  90. Gunasinghe RN, Ikiriwatte CJ, Karunaratne AM (2004) The use of Pantoea agglomerans and Flavobacterium sp. to control banana pathogens. J Hortic Sci Biotech 79:1002–1006Google Scholar
  91. Han X, Ding C, He L, Hu Q, Yu S (2011) Development of loop-mediated isothermal amplification (LAMP) targeting the GroEL gene for rapid detection of Riemerella anatipestifer. Avian Dis 55:379–383PubMedGoogle Scholar
  92. Hansen GH, Bergh O, Michaelsen J, Knappskog D (1992) Flexibacter ovolyticus sp. nov., a pathogen of eggs and larvae of Atlantic halibut, Hippoglossus hippoglossus L. Int J Syst Bacteriol 42:451–458PubMedGoogle Scholar
  93. Hayes PR (1977) A taxonomic study of flavobacteria and related gram negative yellow pigmented rods. J Appl Bacteriol 43:345–367Google Scholar
  94. Hebbar P, Berge O, Heulin T, Singh SP (1991) Bacterial Antagonists of Sunflower (Helianthus-Annuus L) Fungal Pathogens. Plant Soil 133:131–140Google Scholar
  95. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912PubMedGoogle Scholar
  96. Higgins DA, Henry RR, Kounev ZV (2000) Duck immune responses to Riemerella anatipestifer vaccines. Dev Comp Immunol 24:153–167PubMedGoogle Scholar
  97. Hoagland KD, Rosowski JR, Gretz MR (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol 29:537–566Google Scholar
  98. Högfors-Rönnholm E, Wiklund T (2010) Hemolytic activity in Flavobacterium psychrophilum is a contact-dependent, two-step mechanism and differently expressed in smooth and rough phenotypes. Microb Pathog 49:369–375PubMedGoogle Scholar
  99. Holmes B (1992) The genera Flavobacterium, Sphingobacterium, and Weeksella. In: Ballows HGTA, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 4. Springer, Berlin, pp 3620–3630Google Scholar
  100. Holt SC (2011) Genus VIII. Capnocytophaga. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 168–176Google Scholar
  101. Hu Q, Han X, Zhou X, Ding C, Zhu Y, Yu S (2011) OmpA is a virulence factor of Riemerella anatipestifer. Vet Microbiol 150:278–283PubMedGoogle Scholar
  102. Hu Q, Zhu Y, Tu J, Yin Y, Wang X, Han X, Ding C, Zhang B, Yu S (2012) Identification of the genes involved in Riemerella anatipestifer biofilm formation by random transposon mutagenesis. PLoS One 7:e39805PubMedCentralPubMedGoogle Scholar
  103. Huang B, Kwang J, Loh H, Frey J, Tan HM, Chua KL (2002) Development of an ELISA using a recombinant 41 kDa partial protein (P45N’) for the detection of Riemerella anatipestifer infections in ducks. Vet Microbiol 88:339–349PubMedGoogle Scholar
  104. Hugo CJ, Bruun B, Jooste PJ (2006a) The genera Bergeyella and Weeksella. In: Dworkin SFM, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 532–538Google Scholar
  105. Hugo CJ, Bruun B, Jooste PJ (2006b) The genera Empedobacter and Myroides. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 630–637Google Scholar
  106. Hung AL, Alvarado A (2001) Phenotypic and molecular characterization of isolates of Ornithobacterium rhinotracheale from Peru. Avian Dis 45:999–1005PubMedGoogle Scholar
  107. Hunnicutt DW, McBride MJ (2000) Cloning and characterization of the Flavobacterium johnsoniae gliding motility genes, gldB and gldC. J Bacteriol 182:911–918PubMedCentralPubMedGoogle Scholar
  108. Hunnicutt DW, McBride MJ (2001) Cloning and characterization of the Flavobacterium johnsoniae gliding motility genes gldD and gldE. J Bacteriol 183:4167–4175PubMedCentralPubMedGoogle Scholar
  109. Hunnicutt DW, Kempf MJ, McBride MJ (2002) Mutations in Flavobacterium johnsoniae gldF and gldG disrupt gliding motility and interfere with membrane localization of GldA. J Bacteriol 184:2370–2378PubMedCentralPubMedGoogle Scholar
  110. Imai S, Fujioka K, Furihata K, Fudo R, Yamanaka S, Seto H (1993) Studies on cell-growth stimulating substances of Low-molecular-weight.3. Resorcinin, a mammalian-cell growth-stimulating substance produced by Cytophaga-Johnsonae. J Antibiot 46:1319–1322PubMedGoogle Scholar
  111. Irschik H, Reichenbach H (1978) Intracellular location of flexirubins in Flexibacter elegans (Cytophagales). Biochim Biophys Acta 510:1–10PubMedGoogle Scholar
  112. Izumi S, Fujii H, Aranishi F (2005) Detection and identification of Flavobacterium psychrophilum from gill washings and benthic diatoms by PCR-based sequencing analysis. J Fish Dis 28:559–564PubMedGoogle Scholar
  113. Jansen R, Chansiripornchai N, Gaastra W, van Putten JP (2004) Characterization of plasmid pOR1 from Ornithobacterium rhinotracheale and construction of a shuttle plasmid. Appl Environ Microbiol 70:5853–5858PubMedCentralPubMedGoogle Scholar
  114. Jarrell KF, McBride MJ (2008) The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6:466–476PubMedGoogle Scholar
  115. Johansen JE, Nielsen P, Binnerup SJ (2009) Identification and potential enzyme capacity of flavobacteria isolated from the rhizosphere of barley (Hordeum vulgare L.). Can J Microbiol 55:234–241PubMedGoogle Scholar
  116. Johnson JL, Chilton WS (1966) Galactosamine glycan of Chondrococcus columnaris. Science 152:1247–1248PubMedGoogle Scholar
  117. Jooste PJ, Hugo CJ (1999) The taxonomy, ecology and cultivation of bacterial genera belonging to the family Flavobacteriaceae. Int J Food Microbiol 53:81–94PubMedGoogle Scholar
  118. Kamiyama T, Umino T, Satoh T, Sawairi S, Shirane M, Ohshima S, Yokose K (1995) Sulfobacins A and B, novel von Willebrand factor receptor antagonists. I. Production, isolation, characterization and biological activities. J Antibiot (Tokyo) 48:924–928Google Scholar
  119. Kampfer P, Lodders N, Martin K, Avendano-Herrera R (2012) Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. Int J Syst Evol Microbiol 62:1402–1408PubMedGoogle Scholar
  120. Kato T, Hinoo H, Shoji J, Matsumoto K, Tanimoto T, Hattori T, Hirooka K, Kondo E (1987) PB-5266 A, B and C, new monobactams: I. Taxonomy, fermentation and isolation. J Antibiot 55:135–138Google Scholar
  121. Kazuoka T, Oikawa T, Muraoka I, Kuroda S, Soda K (2007) A cold-active and thermostable alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1. Extremophiles 11:257–267PubMedGoogle Scholar
  122. Kempf MJ, McBride MJ (2000) Transposon insertions in the Flavobacterium johnsoniae ftsX gene disrupt gliding motility and cell division. J Bacteriol 182:1671–1679PubMedCentralPubMedGoogle Scholar
  123. Kim JH, Gomez DK, Nakai T, Park SC (2010) Isolation and identification of bacteriophages infecting ayu Plecoglossus altivelis altivelis specific Flavobacterium psychrophilum. Vet Microbiol 140:109–115PubMedGoogle Scholar
  124. King EO (1959) Studies on a group of previously unclassified bacteria associated with meningitis in infants. Am J Clin Pathol 31:241–247PubMedGoogle Scholar
  125. Kingsbury DT, Ordal EJ (1966) Bacteriophage infecting the myxobacterium Chondrococcus columnaris. J Bacteriol 91:1327–1332PubMedCentralPubMedGoogle Scholar
  126. Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100PubMedGoogle Scholar
  127. Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Rev 26:259–315Google Scholar
  128. Kolton M, Meller Harel Y, Pasternak Z, Graber ER, Elad Y, Cytryn E (2011) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 77:4924–4930PubMedCentralPubMedGoogle Scholar
  129. Kolton M, Green SJ, Harel YM, Sela N, Elad Y, Cytryn E (2012) Draft genome sequence of Flavobacterium sp. strain F52, Isolated from the rhizosphere of bell pepper (Capsicum annuum L. cv. Maccabi). J Bacteriol 194:5462–5463PubMedCentralPubMedGoogle Scholar
  130. Kondo M, Kawai K, Kurohara K, Oshima S (2002) Adherence of Flavobacterium psychrophilum on the body surface of the ayu Plecoglossus altivelis. Microbes Infect 4:279–283PubMedGoogle Scholar
  131. Kondo M, Kawai K, Okabe M, Nakano N, Oshima S (2003) Efficacy of oral vaccine against bacterial coldwater disease in ayu Plecoglossus altivelis. Dis Aquat Organ 55:261–264PubMedGoogle Scholar
  132. Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) (2011) Bergey’s manual of systematic bacteriology. Springer, New YorkGoogle Scholar
  133. Kumagai A, Takahashi K, Yamaoka S, Wakabayashi H (1998) Ineffectiveness of iodophore treatment in disinfecting salmonid [Oncorhynchus] eggs carrying Cytophaga psychrophila. Fish Pathol 33:123–128Google Scholar
  134. Kumagai A, Yamaoka S, Takahashi K, Fukuda H, Wakabayashi H (2000) Waterborne transmission of Flavobacterium psychrophilum in coho salmon eggs. Fish Pathol 35:25–28Google Scholar
  135. Kunttu HM, Suomalainen LR, Jokinen EI, Valtonen ET (2009a) Flavobacterium columnare colony types: connection to adhesion and virulence? Microb Pathog 46:21–27PubMedGoogle Scholar
  136. Kunttu HMT, Valtonen ET, Jokinen EI, Suomalainen LR (2009b) Saprophytism of a fish pathogen as a transmission strategy. Epidemics 1:96–100PubMedGoogle Scholar
  137. Kunttu HM, Jokinen EI, Valtonen ET, Sundberg LR (2011) Virulent and nonvirulent Flavobacterium columnare colony morphologies: characterization of chondroitin AC lyase activity and adhesion to polystyrene. J Appl Microbiol 111:1319–1326PubMedGoogle Scholar
  138. Laanto E, Sundberg LR, Bamford JK (2011) Phage specificity of the freshwater fish pathogen Flavobacterium columnare. Appl Environ Microbiol 77:7868–7872PubMedCentralPubMedGoogle Scholar
  139. LaFrentz BR, Klesius PH (2009) Development of a culture independent method to characterize the chemotactic response of Flavobacterium columnare to fish mucus. J Microbiol Methods 77:37–40PubMedGoogle Scholar
  140. LaFrentz BR, LaPatra SE, Call DR, Cain KD (2008) Isolation of rifampicin resistant Flavobacterium psychrophilum strains and their potential as live attenuated vaccine candidates. Vaccine 26:5582–5589PubMedGoogle Scholar
  141. Lami R, Cottrell MT, Campbell BJ, Kirchman DL (2009) Light-dependent growth and proteorhodopsin expression by Flavobacteria and SAR11 in experiments with Delaware coastal waters. Environ Microbiol 11:3201–3209PubMedGoogle Scholar
  142. Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688PubMedGoogle Scholar
  143. Leadbetter ER (1974) Order II. Cytophagales nomen novum. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology. Williams and Wilkins, BaltimoreGoogle Scholar
  144. Leadbetter ER (2006) The genus Capnocytophaga. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 709–711Google Scholar
  145. Lee CC, Smith M, Kibblewhite-Accinelli R, Williams TG, Wagschal K, Robertson GH, Wong DWS (2006) Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr Microbiol 52:112–116PubMedGoogle Scholar
  146. Lillich TT, Calmes R (1979) Cytochromes and dehydrogenases in membranes of a new human periodontal bacterial pathogen, Capnocytophaga ochracea. Arch Oral Biol 24:699–702PubMedGoogle Scholar
  147. Lindstrom NM, Call DR, House ML, Moffitt CM, Cain KD (2009) A quantitative enzyme-linked immunosorbent assay and filtration-based fluorescent antibody test as potential tools to screen broodstock for infection with Flavobacterium psychrophilum. J Aquat Anim Health 21:43–56PubMedGoogle Scholar
  148. Liu M, Li YH, Liu Y, Zhu JN, Liu QF, Gu JG, Zhang XX, Li CL (2011) Flavobacterium phragmitis sp. nov., an endophyte of reed (Phragmites australis). Int J Syst Evol Microbiol 61:2717–2721PubMedGoogle Scholar
  149. Liu ZX, Liu GY, Li N, Xiao FS, Xie HX, Nie P (2012) Identification of immunogenic proteins of Flavobacterium columnare by two-dimensional electrophoresis immunoblotting with antibacterial sera from grass carp, Ctenopharyngodon idella (Valenciennes). J Fish Dis 35:255–263Google Scholar
  150. Lorenzen E, Karas N (1992) Detection of Flexibacter psychrophilus by immunofluorescence in fish suffering from fry mortality syndrome: a rapid diagnostic method. Dis Aquat Organ 13:231–234Google Scholar
  151. Lorenzen E, Brudeseth BE, Wiklund T, Lorenzen N (2010) Immersion exposure of rainbow trout (Oncorhynchus mykiss) fry to wildtype Flavobacterium psychrophilum induces no mortality, but protects against later intraperitoneal challenge. Fish Shellfish Immunol 28:440–444PubMedGoogle Scholar
  152. Lumsden JS, Ostland VE, MacPhee DD, Derksen J, Ferguson HW (1994) Protection of rainbow trout from experimentally induced bacterial gill disease caused by Flavobacterium branchiophilum. J Aquat Anim Health 6:292–302Google Scholar
  153. Madetoja J, Wiklund T (2002) Detection of the fish pathogen Flavobacterium psychrophilum in water from fish farms. Syst Appl Microbiol 25:259–266PubMedGoogle Scholar
  154. Madetoja J, Nyman P, Wiklund T (2000) Flavobacterium psychrophilum, invasion into and shedding by rainbow trout Oncorhynchus mykiss. Dis Aquat Organ 43:27–38PubMedGoogle Scholar
  155. Madetoja J, Dalsgaard I, Wiklund T (2002) Occurrence of Flavobacterium psychrophilum in fish-farming environments. Dis Aquat Organ 52:109–118Google Scholar
  156. Madetoja J, Nystedt S, Wiklund T (2003) Survival and virulence of Flavobacterium psychrophilum in water microcosms. FEMS Microbiol Ecol 43:217–223PubMedGoogle Scholar
  157. Mally M, Cornelis GR (2008) Genetic tools for studying Capnocytophaga canimorsus. Appl Environ Microbiol 74:6369–6377PubMedCentralPubMedGoogle Scholar
  158. Mally M, Shin H, Paroz C, Landmann R, Cornelis GR (2008) Capnocytophaga canimorsus: a human pathogen feeding at the surface of epithelial cells and phagocytes. PLoS Pathog 4:e1000164PubMedCentralPubMedGoogle Scholar
  159. Manfredi P, Pagni M, Cornelis GR (2011a) Complete genome sequence of the dog commensal and human pathogen Capnocytophaga canimorsus strain 5. J Bacteriol 193:5558–5559PubMedCentralPubMedGoogle Scholar
  160. Manfredi P, Renzi F, Mally M, Sauteur L, Schmaler M, Moes S, Jeno P, Cornelis GR (2011b) The genome and surface proteome of Capnocytophaga canimorsus reveal a key role of glycan foraging systems in host glycoproteins deglycosylation. Mol Microbiol 81:1050–1060PubMedGoogle Scholar
  161. Manh HD, Matsuo Y, Katsuta A, Matsuda S, Shizuri Y, Kasai H (2008) Robiginitalea myxolifaciens sp. nov., a novel myxol-producing bacterium isolated from marine sediment, and emended description of the genus Robiginitalea. Int J Syst Evol Microbiol 58:1660–1664PubMedGoogle Scholar
  162. Mannisto MK, Tiirola MA, Salkinoja-Salonen MS, Kulomaa MS, Puhakka JA (1999) Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch Microbiol 171:189–197PubMedGoogle Scholar
  163. Martens EC, Koropatkin NM, Smith TJ, Gordon JI (2009) Complex glycan catabolism by the human gut microbiota: the bacteroidetes sus-like paradigm. J Biol Chem 284:24673–24677PubMedCentralPubMedGoogle Scholar
  164. Matsuo Y, Suzuki M, Kasai H, Shizuri Y, Harayama S (2003) Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum. Environ Microbiol 5:25–35PubMedGoogle Scholar
  165. Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314PubMedGoogle Scholar
  166. Mavrommatis K, Gronow S, Saunders E, Land M, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Lucas S, Chen F, Tice H, Cheng JF, Bruce D, Goodwin L, Pitluck S, Pati A, Ivanova N, Chen A, Palaniappan K, Chain P, Hauser L, Chang YJ, Jeffries CD, Brettin T, Detter JC, Han C, Bristow J, Goker M, Rohde M, Eisen JA, Markowitz V, Kyrpides NC, Klenk HP, Hugenholtz P (2009) Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845). Stand Genomic Sci 1:101–109PubMedCentralPubMedGoogle Scholar
  167. McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55:49–75PubMedGoogle Scholar
  168. McBride MJ (2004) Cytophaga-Flavobacterium gliding motility. J Mol Microbiol Biotechnol 7:63–71PubMedGoogle Scholar
  169. McBride MJ, Baker SA (1996) Development of techniques to genetically manipulate members of the genera Cytophaga, Flavobacterium, Flexibacter, and Sporocytophaga. Appl Environ Microbiol 62:3017–3022PubMedCentralPubMedGoogle Scholar
  170. McBride MJ, Braun TF (2004) GldI is a lipoprotein that is required for Flavobacterium johnsoniae gliding motility and chitin utilization. J Bacteriol 186:2295–2302PubMedCentralPubMedGoogle Scholar
  171. McBride MJ, Kempf MJ (1996) Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. J Bacteriol 178:583–590PubMedCentralPubMedGoogle Scholar
  172. McBride MJ, Zhu Y (2013) Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J Bacteriol 195:270–278PubMedCentralPubMedGoogle Scholar
  173. McBride MJ, Braun TF, Brust JL (2003) Flavobacterium johnsoniae GldH is a lipoprotein that is required for gliding motility and chitin utilization. J Bacteriol 185:6648–6657PubMedCentralPubMedGoogle Scholar
  174. McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B, Rhodes RG, Goltsman E, Wang W, Xu J, Hunnicutt DW, Staroscik AM, Hoover TR, Cheng YQ, Stein JL (2009) Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 75:6864–6875PubMedCentralPubMedGoogle Scholar
  175. Meyer S, Shin H, Cornelis GR (2008) Capnocytophaga canimorsus resists phagocytosis by macrophages and blocks the ability of macrophages to kill other bacteria. Immunobiology 213:805–814PubMedGoogle Scholar
  176. Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W (2006) Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol 71:23–33PubMedGoogle Scholar
  177. Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in eukaryotes. New Phytol 188:82–97PubMedGoogle Scholar
  178. Mignot T (2007) The elusive engine in Myxococcus xanthus gliding motility. Cell Mol Life Sci 64:2733–2745PubMedGoogle Scholar
  179. Miyashita M, Fujimura S, Nakagawa Y, Nishizawa M, Tomizuka N, Nakagawa T, Nakagawa J (2010) Flavobacterium algicola sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 60:344–348PubMedGoogle Scholar
  180. Miyata M (2010) Unique centipede mechanism of Mycoplasma gliding. Annu Rev Microbiol 64:519–537PubMedGoogle Scholar
  181. Moore AA, Eimers ME, Cardella MA (1990) Attempts to control Flexibacter columnaris epizootics in pond-reared channel catfish by vaccination. J Aquat Anim Health 2:109–111Google Scholar
  182. Morita Y, Hasan Q, Sakaguchi T, Murakami Y, Yokoyama K, Tamiya E (1998) Properties of a cold-active protease from psychrotrophic: Flavobacterium balustinum P104. Appl Microbiol Biotechnol 50:669–675PubMedGoogle Scholar
  183. Murthy TR, Dorairajan N, Balasubramaniam GA, Dinakaran AM, Kalaimathi R (2007) The effect of vaccination of pullets against Ornithobacterium rhinotracheale infection. Avian Pathol 36:481–485PubMedGoogle Scholar
  184. Nelson SS, Glocka PP, Agarwal S, Grimm DP, McBride MJ (2007) Flavobacterium johnsoniae SprA is a cell-surface protein involved in gliding motility. J Bacteriol 189:7145–7150PubMedCentralPubMedGoogle Scholar
  185. Nelson SS, Bollampalli S, McBride MJ (2008) SprB is a cell surface component of the Flavobacterium johnsoniae gliding motility machinery. J Bacteriol 190:2851–2857PubMedCentralPubMedGoogle Scholar
  186. Nematollahi A, Decostere A, Pasmans F, Haesebrouck F (2003) Flavobacterium psychrophilum infections in salmonid fish. J Fish Dis 26:563–574PubMedGoogle Scholar
  187. Nett M, Konig GM (2007) The chemistry of gliding bacteria. Nat Prod Rep 24:1245–1261PubMedGoogle Scholar
  188. Newton JC, Wood TM, Hartley MM (1997) Isolation and partial characterization of extracellular proteases produced by isolates of Flavobacterium columnare derived from catfish. J Aquat Anim Health 9:75–85Google Scholar
  189. Nguyen KA, Travis J, Potempa J (2007) Does the importance of the C-terminal residues in the maturation of RgpB from Porphyromonas gingivalis reveal a novel mechanism for protein export in a subgroup of Gram-Negative bacteria? J Bacteriol 189:833–843PubMedCentralPubMedGoogle Scholar
  190. Oh HM, Giovannoni SJ, Lee K, Ferriera S, Johnson JT, Cho JC (2009) Complete genome sequence of Robiginitalea biformata HTCC2501. J Bacteriol 191:7144–7145PubMedCentralPubMedGoogle Scholar
  191. Oh HM, Kang I, Ferriera S, Giovannoni SJ, Cho JC (2010) Complete genome sequence of Croceibacter atlanticus HTCC2559T. J Bacteriol 192:4796–4797PubMedCentralPubMedGoogle Scholar
  192. Oh HM, Kang I, Yang SJ, Jang Y, Vergin KL, Giovannoni SJ, Cho JC (2011) Complete genome sequence of strain HTCC2170, a novel member of the genus Maribacter in the family Flavobacteriaceae. J Bacteriol 193:303–304PubMedCentralPubMedGoogle Scholar
  193. Oikawa T, Yamamoto N, Shimoke K, Uesato S, Ikeuchi T, Fujioka T (2005) Purification, characterization, and overexpression of psychrophilic and thermolabile malate dehydrogenase of a novel antarctic psychrotolerant, Flavobacterium frigidimaris KUC-1. Biosci Biotech Biochem 69:2146–2154Google Scholar
  194. Olivares-Fuster O, Arias CR (2011) Development and characterization of rifampicin-resistant mutants from high virulent strains of Flavobacterium columnare. J Fish Dis 34:385–394PubMedGoogle Scholar
  195. Olivares-Fuster O, Baker JL, Terhune JS, Shoemaker CA, Klesius PH, Arias CR (2007) Host-specific association between Flavobacterium columnare genomovars and fish species. Syst Appl Microbiol 30:624–633PubMedGoogle Scholar
  196. Ordal EJ, Rucker RR (1944) Pathogenic myxobacteria. Proc Soc Exp Biol Med 56:15–18Google Scholar
  197. Ostland VE, Lumsden JS, MacPhee DD, Ferguson HW (1994) Characteristics of Flavobacterium branchiophilum, the cause of salmonid bacterial gill disease in Ontario. J Aquat Anim Health 6:13–26Google Scholar
  198. Ostland VE, Byrne PJ, Speare DJ, Thorburn MA, Cook A, Morrison D, Ferguson HW (1995) Comparison of formalin and chloramine-T for control of a mixed gill infection (bacterial gill disease and icthyobodiasis) in rainbow trout. J Aquat Anim Health 7:118–123Google Scholar
  199. Pate JL (1988) Gliding motility in procaryotic cells. Can J Microbiol 34:459–465Google Scholar
  200. Pate JL, Chang L-YE (1979) Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes. Curr Microbiol 2:59–64Google Scholar
  201. Pati A, Abt B, Teshima H, Nolan M, Lapidus A, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani I, Mavromatis K, Ovchinikova G, Chen A, Palaniappan K, Land M, Hauser L, Jeffries CD, Detter JC, Brambilla EM, Kannan KP, Rohde M, Spring S, Goker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Ivanova N (2011) Complete genome sequence of Cellulophaga lytica type strain (LIM-21). Stand Genomic Sci 4:221–232PubMedCentralPubMedGoogle Scholar
  202. Peng F, Liu M, Zhang L, Dai J, Luo X, An H, Fang C (2009) Planobacterium taklimakanense gen. nov., sp. nov., a member of the family Flavobacteriaceae that exhibits swimming motility, isolated from desert soil. Int J Syst Evol Microbiol 59:1672–1678PubMedGoogle Scholar
  203. Pérez-Pascual D, Gómez E, Alvarez B, Méndez J, Reimundo P, Navais R, Duchaud E, Guijarro JA (2011) Comparative analysis and mutation effects of fpp2-fpp1 tandem genes encoding proteolytic extracellular enzymes of Flavobacterium psychrophilum. Microbiology 157(4):1196–1204PubMedGoogle Scholar
  204. Perry LB (1973) Gliding motility in some non-spreading Flexibacteria. J Appl Bacteriol 36:227–232PubMedGoogle Scholar
  205. Peterson SB, Dunn AK, Klimowicz AK, Handelsman J (2006) Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga-Flavobacterium group. Appl Environ Microbiol 72:5421–5427PubMedCentralPubMedGoogle Scholar
  206. Prasad Y, Arpana DK, Sharma AK (2011) Lytic bacteriophages specific to Flavobacterium columnare rescue catfish, Clarias batrachus (Linn.) from columnaris disease. J Environ Biol 32:161–168PubMedGoogle Scholar
  207. Pulkkinen K, Suomalainen LR, Read AF, Ebert D, Rintamäki P, Valtonen ET (2010) Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proc R Soc B 277:593–600PubMedCentralPubMedGoogle Scholar
  208. Qin QL, Zhang XY, Wang XM, Liu GM, Chen XL, Xie BB, Dang HY, Zhou BC, Yu J, Zhang YZ (2010) The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation. BMC Genomics 11:247PubMedCentralPubMedGoogle Scholar
  209. Rasmussen MA, Madsen SM, Stougaard P, Johnsen MG (2008) Flavobacterium sp Strain 4221 and Pedobacter sp. Strain 4236 beta-1,3-Glucanases that are active at low temperatures. Appl Environ Microbiol 74:7070–7072PubMedCentralPubMedGoogle Scholar
  210. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7PubMedCentralPubMedGoogle Scholar
  211. Rebuffet E, Groisillier A, Thompson A, Jeudy A, Barbeyron T, Czjzek M, Michel G (2011) Discovery and structural characterization of a novel glycosidase family of marine origin. Environ Microbiol 13:1253–1270PubMedGoogle Scholar
  212. Rhodes RG, Samarasam MN, Shrivastava A, van Baaren JM, Pochiraju S, Bollampalli S, McBride MJ (2010) Flavobacterium johnsoniae gldN and gldO are partially redundant genes required for gliding motility and surface localization of SprB. J Bacteriol 192:1201–1211PubMedCentralPubMedGoogle Scholar
  213. Rhodes RG, Nelson SS, Pochiraju S, McBride MJ (2011a) Flavobacterium johnsoniae sprB is part of an operon spanning the additional gliding motility genes sprC, sprD, and sprF. J Bacteriol 193:599–610PubMedCentralPubMedGoogle Scholar
  214. Rhodes RG, Pucker HG, McBride MJ (2011b) Development and use of a gene deletion strategy for Flavobacterium johnsoniae to identify the redundant motility genes remF, remG, remH, and remI. J Bacteriol 193:2418–2428PubMedCentralPubMedGoogle Scholar
  215. Rhodes RG, Samarasam MN, Van Groll EJ, McBride MJ (2011c) Mutations in Flavobacterium johnsoniae sprE result in defects in gliding motility and protein secretion. J Bacteriol 193:5322–5327PubMedCentralPubMedGoogle Scholar
  216. Riemer O (1904) Kurze Mitteilung über eine bei Gänsen beobachtete exsudative Septikämie und deren Erreger. Zentbl Bakteriol I Abt 37:641–648Google Scholar
  217. Rodgers M, Flanigan D, Pfaller S, Jakubowski W, Kinkle B (2003) Identification of a flavobacterium strain virulent against Giardia lamblia cysts. World J Microbiol Biotechnol 19:703–709Google Scholar
  218. Romero M, Avendano-Herrera R, Magarinos B, Camara M, Otero A (2010) Acylhomoserine lactone production and degradation by the fish pathogen Tenacibaculum maritimum, a member of the Cytophaga-Flavobacterium-Bacteroides (CFB) group. FEMS Microbiol Lett 304:131–139PubMedGoogle Scholar
  219. Sack ELW, van der Wielen PW, van der Kooij D (2011) Flavobacterium johnsoniae as a model organism for characterizing biopolymer utilization in oligotrophic freshwater environments. Appl Environ Microbiol 77:6931–6938PubMedCentralPubMedGoogle Scholar
  220. Salyers AA, Shoemaker NB, Guthrie EP (1987) Recent advances in Bacteroides genetics. CRC Crit Rev Microbiol 14:49–71Google Scholar
  221. Salyers AA, Reeves A, D’Elia J (1996) Solving the problem of how to eat something as big as yourself: diverse bacterial strategies for degrading polysaccharides. J Ind Microbiol Biot 17:470–476Google Scholar
  222. Sang MK, Kim KD (2012) The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J Appl Microbiol 113:383–398PubMedGoogle Scholar
  223. Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M, McBride MJ, Rhodes RG, Nakayama K (2010) A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci USA 107:276–281PubMedCentralPubMedGoogle Scholar
  224. Secades P, Alvarez B, Guijarro JA (2001) Purification and characterization of a psychrophilic, calcium-induced, growth-phase-dependent metalloprotease from the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 67:2436–2444PubMedCentralPubMedGoogle Scholar
  225. Secades P, Alvarez B, Guijarro JA (2003) Purification and properties of a new psychrophilic metalloprotease (Fpp2) in the fish pathogen Flavobacterium psychrophilum. FEMS Microbiol Lett 226:273–279PubMedGoogle Scholar
  226. Seers CA, Slakeski N, Veith PD, Nikolof T, Chen YY, Dashper SG, Reynolds EC (2006) The RgpB C-terminal domain has a role in attachment of RgpB to the outer membrane and belongs to a novel C-terminal-domain family found in Porphyromonas gingivalis. J Bacteriol 188:6376–6386PubMedCentralPubMedGoogle Scholar
  227. Segers P, Mannheim W, Vancanneyt M, De Brandt K, Hinz KH, Kersters K, Vandamme P (1993) Riemerella anatipestifer gen. nov., comb. nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group. Int J Syst Bacteriol 43:768–776PubMedGoogle Scholar
  228. Shamsudin MN, Plumb JA (1996) Morphological, biochemical, and physiological characterization of Flexibacter columnaris isolates from four species of fish. J Aquat Anim Health 8:335–339Google Scholar
  229. Shieh HS (1980) Studies on the nutrition of a fish pathogen, Flexibacter columnaris. Microbios Lett 13:129–133Google Scholar
  230. Shin H, Mally M, Meyer S, Fiechter C, Paroz C, Zaehringer U, Cornelis GR (2009) Resistance of Capnocytophaga canimorsus to killing by human complement and polymorphonuclear leukocytes. Infect Immun 77:2262–2271PubMedCentralPubMedGoogle Scholar
  231. Shindo K, Kikuta K, Suzuki A, Katsuta A, Kasai H, Yasumoto-Hirose M, Matsuo Y, Misawa N, Takaichi S (2007) Rare carotenoids, (3R)-saproxanthin and (3R,2 ’ S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. Appl Microbiol Biotechnol 74:1350–1357PubMedGoogle Scholar
  232. Shoemaker CA, Arias CR, Klesius PH, Welker TL (2005) Technique for identifying Flavobacterium columnare using whole-cell fatty acid profiles. J Aquat Anim Health 17:267–274Google Scholar
  233. Shoemaker CA, Klesius PH, Evans JJ (2007) Immunization of eyed channel catfish, Ictalurus punctatus, eggs with monovalent Flavobacterium columnare vaccine and bivalent F. columnare and Edwardsiella ictaluri vaccine. Vaccine 25:1126–1131PubMedGoogle Scholar
  234. Shoemaker CA, Olivares-Fuster O, Arias CR, Klesius PH (2008) Flavobacterium columnare genomovar influences mortality in channel catfish (Ictalurus punctatus). Vet Microbiol 127:353–359PubMedGoogle Scholar
  235. Shoemaker CA, Klesius PH, Evans JJ, Arias CR (2009) Use of modified live vaccines in aquaculture. J World Aquacult Soc 40:573–585Google Scholar
  236. Shoemaker CA, Klesius PH, Drennan JD, Evans JJ (2011) Efficacy of a modified live Flavobacterium columnare vaccine in fish. Fish Shellfish Immunol 30:304–308PubMedGoogle Scholar
  237. Shoji M, Sato K, Yukitake H, Kondo Y, Narita Y, Kadowaki T, Naito M, Nakayama K (2011) Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35. PLoS One 6:e21372PubMedCentralPubMedGoogle Scholar
  238. Shotts EB, Starliper CE (1999) Flavobacterial diseases: columnaris disease, cold-water disease and bacterial gill disease. In: Woo PTK, Bruno DW (eds) Fish diseases and disorders, vol 3. CABI Publishing, Oxford, UK, pp 559–576Google Scholar
  239. Shrivastava A, Rhodes RG, Pochiraju S, Nakane D, McBride MJ (2012) Flavobacterium johnsoniae RemA is a mobile cell-surface lectin involved in gliding. J Bacteriol 194:3678–3688PubMedCentralPubMedGoogle Scholar
  240. Shulman BH, Johnson MS (1944) A case of meningitis in a premature infant due to a proteolytic Gram-negative bacillus. J Lab Clin Med 29:500–507Google Scholar
  241. Slakeski N, Seers CA, Ng K, Moore C, Cleal SM, Veith PD, Lo AW, Reynolds EC (2011) C-terminal domain residues important for secretion and attachment of RgpB in Porphyromonas gingivalis. J Bacteriol 193:132–142PubMedCentralPubMedGoogle Scholar
  242. Sohn JH, Lee JH, Yi H, Chun J, Bae KS, Ahn TY, Kim SJ (2004) Kordia algicida gen. nov., sp. nov., an algicidal bacterium isolated from red tide. Int J Syst Evol Microbiol 54:675–680PubMedGoogle Scholar
  243. Song YL, Fryer JL, Rohovec JS (1988) Comparison of six media for the cultivation of Flexibacter columnaris. Fish Pathol 23:91–94Google Scholar
  244. Spratt DA, Greenman J, Schaffer AG (1996) Capnocytophaga gingivalis: effects of glucose concentration on growth and hydrolytic enzyme production. Microbiology 142(Pt 8):2161–2164PubMedGoogle Scholar
  245. Staley JT (2011) Genus XLI. Polaribacter. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 255–258Google Scholar
  246. Stanier RY (1947) Studies on non-fruiting myxobacteria. I. Cytophaga johnsonae, n. sp., a chitin-decomposing myxobacterium. J Bacteriol 53:297–315PubMedCentralGoogle Scholar
  247. Starliper CE (2011) Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. J Adv Res 2:97–108Google Scholar
  248. Staroscik AM, Hunnicutt DW, Archibald KE, Nelson DR (2008) Development of methods for the genetic manipulation of Flavobacterium columnare. BMC Microbiol 8:115PubMedCentralPubMedGoogle Scholar
  249. Staufenberger T, Thiel V, Wiese J, Imhoff JF (2008) Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiol Ecol 64:65–77PubMedGoogle Scholar
  250. Stenholm AR, Dalsgaard I, Middelboe M (2008) Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 74:4070–4078PubMedCentralPubMedGoogle Scholar
  251. Stringer-Roth KM, Yunghans W, Caslake LF (2002) Differences in chondroitin AC lyase activity of Flavobacterium columnare isolates. J Fish Dis 25:687–691Google Scholar
  252. Sugahara K, Eguchi M (2012) The use of warmed water treatment to induce protective immunity against the bacterial cold-water disease pathogen Flavobacterium psychrophilum in ayu (Plecoglossus altivelis). Fish Shellfish Immunol 32:489–493PubMedGoogle Scholar
  253. Sun B, Ko K, Ramsay JA (2011) Biodegradation of 1,4-dioxane by a Flavobacterium. Biodegradation 22:651–659PubMedGoogle Scholar
  254. Suomalainen LR, Tiirola M, Valtonen ET (2006) Chondroitin AC lyase activity is related to virulence of fish pathogenic Flavobacterium columnare. J Fish Dis 29:757–763PubMedGoogle Scholar
  255. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S (2001) Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51:1639–1652PubMedGoogle Scholar
  256. Tekedar HC, Karsi A, Gillaspy AF, Dyer DW, Benton NR, Zaitshik J, Vamenta S, Banes MM, Gulsoy N, Aboko-Cole M, Waldbieser GC, Lawrence ML (2012) Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512. J Bacteriol 194:2763–2764PubMedCentralPubMedGoogle Scholar
  257. Thomas F, Barbeyron T, Tonon T, Genicot S, Czjzek M, Michel G (2012) Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ Microbiol 14:2379–2394PubMedGoogle Scholar
  258. Touchon M, Barbier P, Bernardet JF, Loux V, Vacherie B, Barbe V, Rocha EP, Duchaud E (2011) Complete genome sequence of the fish pathogen Flavobacterium branchiophilum. Appl Environ Microbiol 77:7656–7662PubMedCentralPubMedGoogle Scholar
  259. Triyanto H, Wakabayashi H (1999) Genotypic diversity of strains of Flavobacterium columnare from diseased fishes. Fish Pathol 34:65–71Google Scholar
  260. Trzesickamlynarz D, Ward OP (1995) Degradation of polycyclic aromatic-hydrocarbons (PAHS) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil. Can J Microbiol 41:470–476Google Scholar
  261. Van Empel P, Vrijenhoek M, Goovaerts D, van den Bosch H (1999) Immuno-histochemical and serological investigation of experimental Ornithobacterium rhinotracheale infection chickens. Avian Pathol 28:187–193Google Scholar
  262. Vancanneyt M, Vandamme P, Segers P, Torck U, Coopman R, Kersters K, Hinz KH (1999) Riemerella columbina sp. nov., a bacterium associated with respiratory disease in pigeons. Int J Syst Bacteriol 49:289–295Google Scholar
  263. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B (1994a) New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44:827–831Google Scholar
  264. Vandamme P, Segers P, Vancanneyt M, van Hove K, Mutters R, Hommez J, Dewhirst F, Paster B, Kersters K, Falsen E et al (1994b) Ornithobacterium rhinotracheale gen. nov., sp. nov., isolated from the avian respiratory tract. Int J Syst Bacteriol 44:24–37PubMedGoogle Scholar
  265. Vandamme P, Vancanneyt M, Segers P, Ryll M, Kohler B, Ludwig W, Hinz KH (1999) Coenonia anatina gen. nov., sp. nov., a novel bacterium associated with respiratory disease in ducks and geese. Int J Syst Bacteriol 49(2):867–874PubMedGoogle Scholar
  266. Vandamme P, Hafez HM, Hinz KH (2006) Capnophilic bird pathogens in the family Flavobacteriaceae: Riemerella, Ornithobacterium, and Coenonia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 695–708Google Scholar
  267. Vela AI, Fernandez A, Sanchez-Porro C, Sierra E, Mendez M, Arbelo M, Ventosa A, Dominguez L, Fernandez-Garayzabal JF (2007) Flavobacterium ceti sp. nov., isolated from beaked whales (Ziphius cavirostris). Int J Syst Evol Microbiol 57:2604–2608PubMedGoogle Scholar
  268. Wagner BA, Wise DJ, Khoo LH, Terhune JS (2002) The epidemiology of bacterial diseases in food-size channel catfish. J Aquat Anim Health 14:263–272Google Scholar
  269. Wakabayashi H (1971) Effect of environmental conditions on the infectivity of Flexibacter columnaris to fish. J Fish Dis 14:279–290Google Scholar
  270. Wakabayashi H (1993) Columnaris disease. In: Inglis V, Roberts RJ, Bromage NR (eds) Bacterial diseases of fish. Blackwell, Oxford, UK, pp 23–29Google Scholar
  271. Wakabayashi H, Hikida M, Masumura K (1986) Flexibacter maritimus sp. nov., a pathogen of marine fishes. Int J Syst Bacteriol 36:396–398Google Scholar
  272. Wakabayashi H, Huh GJ, Kimura N (1989) Flavobacterium branchiophila sp. nov., a causative agent of bacterial gill disease of freshwater fishes. Int J Syst Bacteriol 39:213–216Google Scholar
  273. Warren RA (1996) Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 50:183–212PubMedGoogle Scholar
  274. Weeks OB (1955) Flavobacterium aquatile (Frankland and Frankland) Bergey et al., type species of the genus Flavobacterium. J Bacteriol 69:649–658PubMedCentralPubMedGoogle Scholar
  275. Welker TL, Shoemaker CA, Arias CR, Klesius PH (2005) Transmission and detection of Flavobacterium columnare in channel catfish Ictalurus punctatus. Dis Aquat Organ 63:129–138PubMedGoogle Scholar
  276. Wiklund T, Dalsgaard I (2003) Association of Flavobacterium psychrophilum with rainbow trout (Oncorhynchus mykiss) kidney phagocytes in vitro. Fish Shellfish Immunol 15:387–395PubMedGoogle Scholar
  277. Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14:259–263PubMedGoogle Scholar
  278. Winans SC, Bassler BL (2002) Mob psychology. J Bacteriol 184:873–883PubMedCentralPubMedGoogle Scholar
  279. Wolkin RH, Pate JL (1984) Translocation of motile cells of the gliding bacterium Cytophaga johnsonae depends on a surface component that may be modified by sugars. J Gen Microbiol 130:2651–2669Google Scholar
  280. Xie HX, Nie P, Chang MX, Liu Y, Yao WJ (2005) Gene cloning and functional analysis of glycosaminoglycan-degrading enzyme chondroitin AC lyase from Flavobacterium columnare G4. Arch Microbiol 184:49–55PubMedGoogle Scholar
  281. Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73:3536–3546PubMedCentralPubMedGoogle Scholar
  282. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedGoogle Scholar
  283. Yoshizawa S, Kawanabe A, Ito H, Kandori H, Kogure K (2012) Diversity and functional analysis of proteorhodopsin in marine Flavobacteria. Environ Microbiol 14:1240–1248PubMedGoogle Scholar
  284. Yuan J, Liu W, Sun M, Song S, Cai J, Hu S (2011) Complete genome sequence of the pathogenic bacterium Riemerella anatipestifer strain RA-GD. J Bacteriol 193:2896–2897PubMedCentralPubMedGoogle Scholar
  285. Zamora L, Fernandez-Garayzabal JF, Svensson-Stadler LA, Palacios MA, Dominguez L, Moore ER, Vela AI (2012) Flavobacterium oncorhynchi sp. nov., a new species isolated from rainbow trout (Oncorhynchus mykiss). Syst Appl Microbiol 35:86–91PubMedGoogle Scholar
  286. Zhang DC, Wang HX, Liu HC, Dong XZ, Zhou PJ (2006a) Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No.1 glacier. Int J Syst Evol Microbiol 56:2921–2925PubMedGoogle Scholar
  287. Zhang Y, Arias CR, Shoemaker CA, Klesius PH (2006b) Comparison of lipopolysaccharide and protein profiles between Flavobacterium columnare strains from different genomovars. J Fish Dis 29:657–663PubMedGoogle Scholar
  288. Zhang J, Jiang RB, Zhang XX, Hang BJ, He J, Li SP (2010) Flavobacterium haoranii sp. nov., a cypermethrin-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 60:2882–2886PubMedGoogle Scholar
  289. Zhang J, Hong Z, Wang L, Huang B, Li N, Wang GR, Nie P (2012) Construction of two selectable markers for integrative/conjugative plasmids in Flavobacterium columnare. Chinese J Oceanol Limnol 30:269–278Google Scholar
  290. Zhou Z, Peng X, Xiao Y, Wang X, Guo Z, Zhu L, Liu M, Jin H, Bi D, Li Z, Sun M (2011) Genome sequence of poultry pathogen Riemerella anatipestifer strain RA-YM. J Bacteriol 193:1284–1285PubMedCentralPubMedGoogle Scholar
  291. Zhu F, Wang S, Zhou P (2003) Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 glacier. Int J Syst Evol Microbiol 53:853–857PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations