The Family Alcanivoraceae

  • Cynthia B. SilveiraEmail author
  • Fabiano Thompson
Reference work entry


The family Alcanivoracaceae comprises of species capable of degradation of petroleum-derived compounds as their main carbon source. These are Gram-negative, aerobic, rod-shaped bacteria commonly isolated in marine waters and sediments worldwide. The family includes the type genus Alcanivorax and the genus Kangiella. A. borkumensis is the type species, an almost exclusively hydrocarbonoclastic bacteria, which dominates marine environments suffering from oil contamination through its ability of nutrient scavenging, oligotrophic growth, and biofilm formation. Five species have the complete genome sequenced, revealing the molecular basis of the features that provide these microbes a competitive advantage in oil-polluted environments. The capability of this family of microbes to biodegrade oil is of great importance given the amount of petroleum and petroleum-derived compounds released in the ocean every day by means of seeping from natural oil fields and the spill from petroleum extraction, transport, and refining activities. Some aromatic compound-degrading members have considerable potential for biodegradation of organic waste material and bioremediation of polluted environments.


Hydrocarbon Degradation alkB Gene Tidal Flat Sediment Alkane Hydroxylase Alkane Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham W, Meyer H, Yakimov M (1998) Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis. Biochim Biophys Acta 1393:57–62PubMedCrossRefGoogle Scholar
  2. Ahn J, Park J-W, McConnell J, Ahn Y-B, Haggblom M (2011) Kangiella spongicola sp. nov., a halophilic marine bacterium isolated from the sponge Chondrilla nucula. Int J Syst Evol Microbiol 61:961–964PubMedCrossRefGoogle Scholar
  3. Atlas R (2007) Microbial hydrocarbon degradation-bioremediation of oil spills. J Chem Technol Biotechnol 52Google Scholar
  4. Azapagic A, Emsley A, Hamerton I (2003) Polymers: the environment and sustainable development. John Wiley & Sons, Ltd, Chichester, UKGoogle Scholar
  5. Balakirev ES, Krupnova TN, Ayala FJ (2012) Symbiotic associations in the phenotypically-diverse brown alga Saccharina japonica. PLoS One 7:e39587PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bruns A, Berthe-Corti L (1999) Fundibacter jadensis gen. nov., sp. nov., a new slightly halophilic bacterium, isolated from intertidal sediment. Int J Syst Bacteriol 49:441–448PubMedCrossRefGoogle Scholar
  7. Cappello S, Denaro R, Genovese M, Giuliano L, Yakimov M (2007) Predominant growth of Alcanivorax during experiments on “oil spill bioremediation” in mesocosms. Microbiol Res 162:185–190PubMedCrossRefGoogle Scholar
  8. Cappello S, Yakimov MM (2010) Alcanivorax. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/HeidelbergGoogle Scholar
  9. Chikere CB, Chikere BO, Okpokwasili GC (2011) Bioreactor-based bioremediation of hydrocarbon-polluted Niger Delta marine sediment, Nigeria. 3 Biotech 2:53–66PubMedCrossRefPubMedCentralGoogle Scholar
  10. Coulon F, Chronopoulou PM, Fahy A, Paisse S, Goni-Urriza M, Peperzak L, Acuna Alvarez L, McKew BA, Brussaard CPD, Underwood GJC, Timmis KN, Duran R, McGenity TJ (2012) Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol 78:3638–3648PubMedCrossRefPubMedCentralGoogle Scholar
  11. Dutta TK, Harayama S (2001) Biodegradation of n-Alkylcycloalkanes and n-Alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl Environ Microbiol 67:1970–1974PubMedCrossRefPubMedCentralGoogle Scholar
  12. Fernandez-Martinez J (2003) Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178 T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol 53:331–338PubMedCrossRefGoogle Scholar
  13. García-Martinez J, Acinas SG, Antón AI, Rodríguez-Valera F (1999) Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity. J Microbiol Methods 36:55–64PubMedCrossRefGoogle Scholar
  14. García-Martínez J, Rodríguez-Valera F (2000) Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of Group I. Mol Ecol 9:935–948PubMedCrossRefGoogle Scholar
  15. Golyshin PN, Martins Dos Santos VAP, Kaiser O, Ferrer M, Sabirova YS, Lünsdorf H, Chernikova TN, Golyshina OV, Yakimov MM, Pühler A, Timmis KN (2003) Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J Biotechnol 106:215–220PubMedCrossRefGoogle Scholar
  16. Han C, Sikorski J, Lapidus A, Nolan M, Glavina Del Rio T, Tice H, Cheng J-F, Lucas S, Chen F, Copeland A, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Bruce D, Goodwin L, Pitluck S, Chen A, Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries C, Chain P, Saunders E, Brettin T, Goker M, Tindall B, Bristow J, Eisen J, Markowitz V, Hugenholtz P, Kyrpides N, Klenk H-P, Detter J (2009) Complete genome sequence of Kangiella koreensis type strain (SW-125). Stand Genomic Sci 1:226–233PubMedCrossRefPubMedCentralGoogle Scholar
  17. Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753PubMedCrossRefGoogle Scholar
  18. Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70PubMedGoogle Scholar
  19. Jean W, Huang S-P, Chen J-S, Shieh W (2012) Kangiella taiwanensis sp. nov. and Kangiella marina sp. nov., marine bacteria isolated from shallow coastal water. Int J Syst Evol Microbiol 62:2229–2234PubMedCrossRefGoogle Scholar
  20. Kasai Y, Kishira H, Syutsubo K, Harayama S (2001) Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 3:246–255PubMedCrossRefGoogle Scholar
  21. Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4:141–147PubMedCrossRefGoogle Scholar
  22. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974PubMedCrossRefPubMedCentralGoogle Scholar
  23. Lai Q, Shao Z (2012a) Genome sequence of an alkane-degrading bacterium, Alcanivorax pacificus type strain W11-5, isolated from deep sea sediment. J Bacteriol 194:6936PubMedCrossRefPubMedCentralGoogle Scholar
  24. Lai Q, Shao Z (2012b) Genome sequence of the alkane-degrading bacterium Alcanivorax hongdengensis type strain A-11-3. J Bacteriol 194:6972PubMedCrossRefPubMedCentralGoogle Scholar
  25. Lai Q, Wang L, Liu Y, Fu Y, Zhong H, Wang B, Chen L, Wang J, Sun F, Shao Z (2011) Alcanivorax pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. Int J Syst Evol Microbiol 61:1370–1374PubMedCrossRefGoogle Scholar
  26. Lai Q, Li W, Shao Z (2012) Complete genome sequence of Alcanivorax dieselolei type strain B5. J Bacteriol 194:6674PubMedCrossRefPubMedCentralGoogle Scholar
  27. Lee S-Y, Park S, Oh T-K, Yoon J-H (2013) Kangiella sediminilitoris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 63:1001–1006PubMedCrossRefGoogle Scholar
  28. Liu C (2005) Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186PubMedCrossRefGoogle Scholar
  29. Liu C, Wang W, Wu Y, Zhou Z, Lai Q, Shao Z (2011) Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environ Microbiol 13:1168–1178PubMedCrossRefGoogle Scholar
  30. Lorenzo V (2006) Blueprint of an oil-eating bacterium. Nat Biotechnol 24:952–953PubMedCrossRefGoogle Scholar
  31. Manilla-Perez E, Lange AB, Hetzler S, Waltermann M, Kalscheuer R, Steinbuchel A (2010a) Isolation and characterization of a mutant of the marine bacterium Alcanivorax borkumensis SK2 defective in lipid biosynthesis. Appl Environ Microbiol 76:2884–2894PubMedCrossRefPubMedCentralGoogle Scholar
  32. Manilla-Perez E, Reers C, Baumgart M, Hetzler S, Reichelt R, Malkus U, Kalscheuer R, Waltermann M, Steinbuchel A (2010b) Analysis of lipid export in hydrocarbonoclastic bacteria of the genus Alcanivorax: identification of lipid export-negative mutants of Alcanivorax borkumensis SK2 and Alcanivorax jadensis T9. J Bacteriol 192:643–656PubMedCrossRefPubMedCentralGoogle Scholar
  33. Miri M, Bambai B, Tabandeh F, Sadeghizadeh M, Kamali N (2009) Production of a recombinant alkane hydroxylase (AlkB2) from Alcanivorax borkumensis. Biotechnol Lett 32:497–502PubMedCrossRefGoogle Scholar
  34. Païssé S, Goñi-Urriza M, Coulon F, Duran R (2010) How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microb Ecol 60:394–405PubMedCrossRefGoogle Scholar
  35. Pritchard PH, Charles FC (1991) EPA’s Alaska oil spill bioremediation project. Part 5. Environ Sci Technol 25:372–379CrossRefGoogle Scholar
  36. Readman J, Fowler S, Villeneuve J, Cattini C, Oregioni B, Mee L (1992) Oil and combustion-product contamination of the Gulf marine environment following the war. Nature 358:662–665CrossRefGoogle Scholar
  37. Reva ON, Hallin PF, Willenbrock H, Sicheritz-Ponten T, Tümmler B, Ussery DW (2008) Global features of the Alcanivorax borkumensis SK2 genome. Environ Microbiol 10:614–625PubMedCrossRefGoogle Scholar
  38. Rivas R, Garcia-Fraile P, Peix A, Mateos PF, Martinez-Molina E, Velazquez E (2007) Alcanivorax balearicus sp. nov., isolated from Lake Martel. Int J Syst Evol Microbiol 57:1331–1335PubMedCrossRefGoogle Scholar
  39. Roling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548PubMedCrossRefPubMedCentralGoogle Scholar
  40. Romanenko L, Tanaka N, Frolova G, Mikhailov V (2010) Kangiella japonica sp. nov., isolated from a marine environment. Int J Syst Evol Microbiol 60:2583–2586PubMedCrossRefGoogle Scholar
  41. Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN (2006) Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol 188:3763–3773PubMedCrossRefPubMedCentralGoogle Scholar
  42. Schneiker S, dos Santos VAPM, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Pühler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorhölter F-J, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004PubMedCrossRefGoogle Scholar
  43. Singh AK, Sherry A, Gray ND, Jones MD, Röling WFM, Head IM (2011) How specific microbial communities benefit the oil industry: dynamics of Alcanivorax spp. in oil-contaminated intertidal beach sediments undergoing bioremediation. In: Applied Microbiology and Molecular Biology in Oilfield Systems. Springer Netherlands.Google Scholar
  44. Syutsubo K, Kishira H, Harayama S (2001) Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains. Environ Microbiol 3:371–379PubMedCrossRefGoogle Scholar
  45. Wu Y, Lai Q, Zhou Z, Qiao N, Liu C, Shao Z (2009) Alcanivorax hongdengensis sp. nov., an alkane-degrading bacterium isolated from surface seawater of the straits of Malacca and Singapore, producing a lipopeptide as its biosurfactant. Int J Syst Evol Microbiol 59:1474–1479PubMedCrossRefGoogle Scholar
  46. Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. now, sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348PubMedCrossRefGoogle Scholar
  47. Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, Timmis KN, Golyshin PN, Giluliano L (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7:1426–1441PubMedCrossRefGoogle Scholar
  48. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, and Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  49. Yoon JH (2004) Kangiella koreensis gen. nov., sp. nov. and Kangiella aquimarina sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:1829–1835PubMedCrossRefGoogle Scholar
  50. Yoon J-H, Kang S-J, Lee S-Y, Lee J-S, Oh T-K (2012) Kangiella geojedonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 62:511–514PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Genetics, Institute of BiologyRio de Janeiro Federal UniversityRio de JaneiroBrazil
  2. 2.Instituto de BiologiaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations