Advertisement

The Family Chromatiaceae

  • Johannes F. ImhoffEmail author
Reference work entry

Abstract

The Chromatiaceae is a family of the Chromatiales within the Gammaproteobacteria and closely related to the Ectothiorhodospiraceae. Representatives of both families are referred to as phototrophic purple sulfur bacteria and typically grow under anoxic conditions in the light using sulfide as photosynthetic electron donor, which is oxidized to sulfate via intermediate accumulation of globules of elemental sulfur. In Chromatiaceae species, the sulfur globules appear inside the cells; in Ectothiorhodospiraceae, they are formed outside the cells and appear in the medium. Characteristic properties of these bacteria are the synthesis of photosynthetic pigments, bacteriochlorophyll a or b, and various types of carotenoids and the formation of a photosynthetic apparatus with reaction center and antenna complexes localized within internal membrane systems. Phototrophic growth, photosynthetic pigment synthesis, and formation of the photosynthetic apparatus and internal membranes are strictly regulated by oxygen and light and become derepressed at low oxygen tensions. Typically, Chromatiaceae are enabled to the photolithoautotrophic mode of growth. A number of species also can grow photoheterotrophically using a limited number of simple organic molecules. Some species also can grow under chemotrophic conditions in the dark, either autotrophically or heterotrophically using oxygen as terminal electron acceptor in respiratory processes.

Keywords

Green Sulfur Bacterium Phototrophic Bacterium Purple Sulfur Bacterium Reduce Sulfur Compound Anoxygenic Phototrophic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anagnostides K, Overbeck J (1966) Methanoxydierer und hypolimnische Schwefelbakterien. Studien zur ökologischen Biocönotik der Gewässermikroorganismen. Berichte der Deutschen Botanischen Gesellschaft 79:163–174Google Scholar
  2. Arunasri K, Sasikala C, Ramana CV, Süling J, Imhoff JF (2005) Marichromatium indicum sp. nov., a novel purple sulfur gammaproteobacterium from mangrove soil of Goa, India. Int J Syst Evol Microbiol 55:673–679PubMedGoogle Scholar
  3. Asao M, Takaichi S, Madigan MT (2007) Thiocapsa imhoffii, sp. nov., an alkaliphilic purple sulfur bacterium of the family Chromatiaceae from Soap Lake, Washington (USA). Arch Microbiol 188:665–675PubMedGoogle Scholar
  4. Bavendamm W (1924) Die farblosen und roten Schwefelbakterien des Süß- und Salzwassers. G.Fischer, Jena, GermanyGoogle Scholar
  5. Biebl H, Drews G (1969) Das in-vivo Spektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung von Athiorhodaceae. Zentralbl Bakteriol Parasitenkde Infektionskr Hyg Abt II Orig 123:425–452Google Scholar
  6. Biebl H, Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117:9–16Google Scholar
  7. Biebl H, Pfennig N (1979) CO2-fixation by anaerobic phototrophic bacteria in lakes, a review. Arch Hydrobiol 12:18–58Google Scholar
  8. Blankenship RE, Madigan MT, Bauer CE (eds) (1995) Anoxygenic photosynthetic bacteria. Kluwer, NetherlandsGoogle Scholar
  9. Bolliger R, Zürrer H, Bachofen R (1985) Photoproduction of molecular hydrogen from waste of a sugar refinery by photosynthetic bacteria. Appl Microbiol Biotechnol 23:147–151Google Scholar
  10. Bosshard PP, Santini Y, Grüter D, Stettler R, Bachofen R (2000) Bacterial diversity and community composition in the chemocline of the meromictic alpine lake cadagno as revealed by 16S rDNA analysis. FEMS Microbiol Ecol 31:173–182PubMedGoogle Scholar
  11. Breuker E (1964) Die Verwertung von intrazellulärem Schwefel durch Chromatium vinosum im aeroben und anaeroben Licht- und Dunkelstoffwechsel. Zentralbl Bakteriol Parasitenkd Hyg Abt 118:561–568, 2Google Scholar
  12. Brown CM, Herbert RA (1977) Ammonia assimilation in purple and green sulfur bacteria. FEMS Microbiol Lett 1:39–42Google Scholar
  13. Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975:189–221PubMedGoogle Scholar
  14. Brune DC (1995a) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 847–870Google Scholar
  15. Brune DC (1995b) Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. Arch Microbiol 163:391–399PubMedGoogle Scholar
  16. Bryantseva IA, Gorlenko VM, Kompantseva EI, Imhoff JF, Süling J, Mityushina L (1999) Thiorhodospira sibirica gen.nov., sp nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol 49:697–703PubMedGoogle Scholar
  17. Bryantseva IA, Gorlenko VM, Kompantseva EI, Imhoff JF (2000) Thioalkalicoccus limnaeus gen nov., sp. nov., a new alkaliphilic purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Bacteriol 50:2157–2163Google Scholar
  18. Buder J (1915) Chloronium mirabile. Ber Dtsch Bot Ges 31:80–97Google Scholar
  19. Caldwell DE, Tiedje JM (1975) A morphological study of anaerobic bacteria from the hypolimnia of two Michigan lakes. Can J Microbiol 21:362–376PubMedGoogle Scholar
  20. Caumette P (1984) Distribution and characterization of phototrophic bacteria isolated from the water of Bietri Bay (Ebrie Lagoon Ivory coast). Can J Microbiol 30:273–284Google Scholar
  21. Caumette P (1986) Phototrophic sulfur bacteria and sulfate reducing bacteria causing red waters in a shallow brackish coastal lagoon (Prévost Lagoon, France). FEMS Microbiol Ecol 38:113–124Google Scholar
  22. Caumette P (1993) Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia 49:473–481Google Scholar
  23. Caumette P, Baulaigue R, Matheron R (1988) Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean Salinas. Syst Appl Microbiol 10:284–292Google Scholar
  24. Caumette P, Baulaigue R, Matheron R (1991) Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch Microbiol 155:170–176Google Scholar
  25. Caumette P, Matheron R, Raymond N, Relexans JC (1994) Microbial mats in the hypersaline ponds of Mediterranean salterns (salins-de-Giraud France). FEMS Microbiol Ecol 13:273–286Google Scholar
  26. Caumette P, Imhoff JF, Süling J, Matheron R (1997) Chromatium glycolicum sp. nov., a moderately halophilic purple sulfur bacterium that uses glycolate as substrate. Arch Microbiol 167:11–18PubMedGoogle Scholar
  27. Caumette P, Guyoneaud R, Imhoff JF, Süling J, Gorlenko VM (2004) Thiocapsa marina sp. nov., a novel, okenone-containing, purple sulfur bacterium isolated from brackish coastal and marine environments. Int J Syst Evol Microbiol 54:1031–1036PubMedGoogle Scholar
  28. Cerruti A (1938) Le condizioni oceanografiche e biologiche del Mar Piccolo di Taranto durante l’agosto del 1938. Bollettino di Pesca Piscicoltura ed Idrobiologia 14:711–751Google Scholar
  29. Clayton RK, Sistrom WR (eds) (1978) The photosynthetic bacteria. Plenum, New YorkGoogle Scholar
  30. Cohen Y, Krumbein WE, Shilo M (1977) Solar lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol Oceanogr 22:609–620Google Scholar
  31. Cohn F (1875) Untersuchungen über Bakterien. II. Beitr Biol Pflanz 1:141–207Google Scholar
  32. Cooper RC (1963) Photosynthetic bacteria in waste treatment. Dev Ind Microbiol 4:95–103Google Scholar
  33. Cooper RC, Oswald WJ, Bronson JC (1965) Treatment of organic industrial wastes by lagooning. In: Proceedings of the 20th industrial waste conference, Engineering Bulletin Purdue University. Engineering Extension, Ser. No. 118, pp 351–363Google Scholar
  34. Cooper DE, Rands MB, Woo C-P (1975) Sulfide reduction in fellmongery effluent by red sulfur bacteria. J Water Pollut C 47:2088–2100Google Scholar
  35. Cviic V (1955) Red water in the lake “Malo Jezero” (island of mljet). Acta Adriatica 6:1–15Google Scholar
  36. Cviic V (1960) Apparition d’eau rouge dans le Veliko Jezero (Ile de Mljet). Rapports et Procès-Verbeaux des Reunions de la Commission Internationale de l’Exloration Scientifique de la Mer Mediterranée 15:79–81Google Scholar
  37. Czeczuga B (1968) Primary production of the purple sulfuric bacteria thiopedia rosea winogr. (Thiorhodaceae). Photosynthetica 2:161–166Google Scholar
  38. Dahl C, Rákhely G, Pott-Sperling AS, Fodor B, Takáks M, Tóth AS, Kraeling M, Gyórfi K, Kovács A, Tusz J, Kovács KL (1999) Genes involved in hydrogen and sulfur metabolism in phototrophic sulfur bacteria. FEMS Microbiol Lett 180:317–324PubMedGoogle Scholar
  39. Davidson MW, Gray GO, Knaff DB (1985) Interaction of Chromatium vinosum flavocytochrome c −552 with cytochromes c studied by affinity chromatography. FEMS Microbiol Lett 187:155–159Google Scholar
  40. De Wit R, Van Gemerden H (1990a) Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens. Arch Microbiol 154:459–464Google Scholar
  41. De Wit R, Van Gemerden H (1990b) Growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73:69–76Google Scholar
  42. Dolata MM, van Beeumen JJ, Ambler RP, Meyer TE, Cusanovich MA (1993) Nucleotide sequence of the heme subunit of flavocytochrome c from the purple phototrophic bacterium, chromatium vinosum. A 2.6-kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein and a homolog of human ankyrin. J Biol Chem 268:14426–14431PubMedGoogle Scholar
  43. Drews G (1989) Energy transduction in phototrophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech. Publ/Springer-Verlag, Madison, WI/New York, pp 461–480Google Scholar
  44. Drews G, Imhoff JF (1991) Phototrophic purple bacteria. In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic, London, pp 51–97Google Scholar
  45. Düggeli M (1924) Hydrobiologische Untersuchungen im Pioragebiet. Bakteriologische Untersuchungen am Ritomsee. Schweizerische Zeitschrift für Hydrobiologie 2:65–205Google Scholar
  46. Ehrenberg CG (1838) Die Infusionsthierchen als vollkommene Organismen: ein Blick in das tiefere organische Leben der Natur. L. Voss, Leipzig, pp 1–17; 1–547Google Scholar
  47. Ehrenreich A, Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60:4517–4526PubMedPubMedCentralGoogle Scholar
  48. Eichler B, Pfennig N (1986) Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioformis sp. nov. Arch Microbiol 146:295–300Google Scholar
  49. Eichler B, Pfennig N (1988) A new green sulfur bacterium from a freshwater pond. In: Olson JM, Stackebrandt E, Trüper H (eds) Green photosynthetic bacteria. Plenum, New York, pp 233–235Google Scholar
  50. Eimhjellen KE (1970) Thiocapsa pfennigii sp. nov. a new species of the phototrophic sulfur bacteria. Arch Microbiol 73:193–194Google Scholar
  51. Eimhjellen KE, Steensland H, Traetteberg J (1967) A Thiococcus sp. nov. gen., its pigments and internal membrane system. Arch Microbiol 59:82–92Google Scholar
  52. Filippi GM, Vennes JW (1971) Biotin production and utilization in a sewage treatment lagoon. Appl Microbiol 22:49–54Google Scholar
  53. Folt CL, Wevers MJ, Yoder-Williams MP, Howmiller RP (1989) Field studies comparing growth and viability of a population of phototrophic bacteria. Appl Environ Microbiol 55:78–85PubMedPubMedCentralGoogle Scholar
  54. Fowler VJ, Pfennig N, Schubert W, Stackebrandt E (1984) Towards a phylogeny of phototrophic purple sulfur bacteria - 16S rRNA oligonucleotide cataloguing of 11 species of Chromatiaceae. Arch Microbiol 139:382–387Google Scholar
  55. Frigaard N-U, Dahl C (2008) Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol 54:103–200Google Scholar
  56. Fuller RC, Smillie RM, Sisler EC, Kornberg HL (1961) Carbon metabolism in chromatium. J Biol Chem 236:2140–2149PubMedGoogle Scholar
  57. Gaffron H (1935) Über die Kohlensäureassimilation der roten Schwefelbakterien II. Biochem Z 279:1–33Google Scholar
  58. Gasol JM, Guerrero R, Pedros-Alio C (1991) Seasonal variations in size structure and prokaryotic dominance in sulfurous Lake Ciso. Limnol Oceanogr 36:860–872Google Scholar
  59. Genovese S (1963) The distribution of the H2S in the lake of faro (Messina) with particular regard to the presence of “red water”. In: Oppenheimer CH (ed) Symposium on marine microorganisms. Charles C. Thomas, Springfield, pp 194–204Google Scholar
  60. Giesberger G (1947) Some observations on the culture, physiology and morphology of some brown-red Rhodospirillum-species. Antonie van Leeuwenhoek J Microbiol Serol 13:135–148Google Scholar
  61. Glaeser J, Overmann J (1999) Selective enrichment and characterisation of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch Microbiol 171:405–416PubMedGoogle Scholar
  62. Gloyna EF (1971) Waste stabilization ponds. World Health Organization monograph series No. 60. World Health Organization, GenevaGoogle Scholar
  63. Gogotov IN (1978) Relationships in hydrogen metabolism between hydrogenase and nitrogenase in phototrophic bacteria. Biochimie 60:267–275PubMedGoogle Scholar
  64. Gogotov IN (1984) Hydrogenase of purple bacteria: properties and regulation of synthesis. Arch Microbiol 140:86–90Google Scholar
  65. Gogotov IN (1986) Hydrogenases of phototrophic microorganisms. Biochimie 68:181–187PubMedGoogle Scholar
  66. Gorlenko VM (1974) Oxidation of thiosulfate by Amoebobacter roseus in the darkness under microaerobic conditions. Microbiologiya 43:729–731Google Scholar
  67. Gorlenko VM, Vainstein MB, Kachalkin VI (1978) Microbiological characteristic of Lake Mogilnoye. Arch Hydrobiol 81:475Google Scholar
  68. Gorlenko VM, Dubinina GA, Kusnetsov SI (1983) The ecology of aquatic microorganisms. In: Ohle W (ed) Binnengewässer. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, p 254, MonographGoogle Scholar
  69. Guerrero R, Pedros-Alío C, Esteve I, Mas J (1987) Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region. Acta Academiae Abonensis 47:125–151Google Scholar
  70. Guyoneaud R, Süling J, Petri R, Matheron R, Caumette P, Pfennig N, Imhoff JF (1998) Taxonomic rearrangements of the genera Thiocapsa and Amoebobacter on the basis of 16S rDNA sequence analyses and description of Thiolamprovum gen. nov. Int J Syst Bacteriol 48:957–964PubMedGoogle Scholar
  71. Hallenbeck PC (1987) Molecular aspects of nitrogen fixation by photosynthetic prokaryotes. Crit Rev Microbiol 14:1–48PubMedGoogle Scholar
  72. Haselkorn R (1986) Organization of the genes for nitrogen fixation in photosynthetic bacteria and cyanobacteria. Ann Rev Microbiol 40:525–547Google Scholar
  73. Hashwa FA, Trüper HG (1978) Viable phototrophic sulfur bacteria from the Black-Sea bottom. Helgol Dander Wiss Meeresunters 31:249–253Google Scholar
  74. Hatzikakidis AD (1952) Periodike erythrotes ton ydaton tes limnothalasses tou Aitolikou. Anatypon praktikon Ellenikou Ydrobiolog Inst Akad Athen 6:21–52Google Scholar
  75. Hatzikakidis AD (1953) Epochiakai ydrologikai ereynai eis tas limnothalassas Mesologgiou kai Aitolikou. Anatypon praktikon Ellenikou Ydrobiol Inst Akad Athen 6:85–143Google Scholar
  76. Hauser B, Michaelis H (1975) Die Makrofauna der Watten. Strände, Riffe und Wracks um den Hohen Knechtsand in der Wesermündung, Jahresbericht Forschungsstelle für Insel- und Küstenschutz 1974. Norderney 26:85–119Google Scholar
  77. Heldt HJ (1952) Eaux rouges. Bull Soc Sci Nat Tunisie 5:103–106Google Scholar
  78. Hendley DD (1955) Endogenous fermentation in Thiorhodaceae. J Bacteriol 70:625–634PubMedPubMedCentralGoogle Scholar
  79. Hiraishi A, Hoshino Y, Kitamura H (1984) Isoprenoid quinone composition in the classification of Rhodospirillaceae. J Gen Appl Microbiol 30:197–210Google Scholar
  80. Hoffmann C (1942) Beiträge zur Vegetation des Farbstreifen-Sandwattes. Kieler Meeresforschungen 4:85–108Google Scholar
  81. Hoffmann C (1949) Über die Durchlässigkeit dünner Sandschichten für Licht. Planta 37:48–56Google Scholar
  82. Holm HW, Vennes JW (1970) Occurrence of purple sulfur bacteria in a sewage treatment lagoon. Appl Microbiol 19:988–996PubMedPubMedCentralGoogle Scholar
  83. Holm HW, Vennes JW (1971) Occurrence of purple sulfur bacteria in a sewage treatment lagoon. Appl Microbiol 19:988–996Google Scholar
  84. Imhoff JF (1983) Rhodopseudomonas marina sp. nov., a new marine phototrophic purple bacterium. Syst Appl Microbiol 4:512–521PubMedGoogle Scholar
  85. Imhoff JF (1984a) Reassignment of the genus Ectothiorhodospira pelsh 1936 to a new family, Ectothiorhodospiraceae fem. nov., and emended description of the Chromatiaceae Bavendamm 1924. Int J Syst Bacteriol 134:338–339Google Scholar
  86. Imhoff JF (1984b) Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 25:85–89Google Scholar
  87. Imhoff JF (1988a) Halophilic phototrophic bacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria. CRC Press, Boca Raton, pp 85–108Google Scholar
  88. Imhoff JF (1988b) Anoxygenic phototrophic bacteria. In: Austin B (ed) Methods in aquatic bacteriology. Wiley, Chichester, UK, pp 207–240Google Scholar
  89. Imhoff JF (1992) Taxonomy, phylogeny and general ecology of anoxygenic phototrophic bacteria. In: Carr NG, Mann NH (eds) Biotechnology handbook photosynthetic prokaryotes. Plenum, London/New York, pp 53–92Google Scholar
  90. Imhoff JF (2001) True marine and halophilic anoxygenic phototrophic bacteria. Arch Microbiol 176:243–254PubMedGoogle Scholar
  91. Imhoff JF (2005) Family Chromatiaceae. In: Brenner DJ, Krieg NR, Staley JR (eds) Bergey’s manual of systematic bacteriology, vol 2 Part B, 2nd edn. Springer, New York, pp 3–9 and following chaptersGoogle Scholar
  92. Imhoff JF (2011) Functional gene studies of pure cultures are the basis of systematic studies of environmental communities of phototrophic bacteria and their species specific analyses. BISMiS Bulletin 2:107–115Google Scholar
  93. Imhoff JF, Bias-Imhoff U (1995) Lipids, Quinones and fatty acids of anoxygenic phototrophic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 179–205Google Scholar
  94. Imhoff JF, Pfennig N (2001) Thioflavicoccus mobilis gen. nov., sp. nov., a novel purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Evol Microbiol 51:105–110PubMedGoogle Scholar
  95. Imhoff JF, Süling J (1996) The phylogenetic relationship among ectothiorhodospiraceae. A reevaluation of their taxonomy on the basis of rDNA analyses. Arch Microbiol 165:106–113PubMedGoogle Scholar
  96. Imhoff JF, Trüper HG (1976) Marine sponges as habitats of anaerobic phototrophic bacteria. Microbial Ecol 3:1–9Google Scholar
  97. Imhoff JF, Trüper HG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121Google Scholar
  98. Imhoff JF, Trüper HG (1980) Chromatium purpuratum sp. nov., a new species of the Chromatiaceae. Zbl Bakt I Abt Orig 1:61–69Google Scholar
  99. Imhoff JF, Trüper HG (1981) Ectothiorhodospira abdelmalekii sp. nov., a new halophilic and alkaliphilic phototrophic bacterium. Zbl Bakt I Abt Orig C 2:228–234Google Scholar
  100. Imhoff JF, Sahl HG, Soliman GSH, Trüper HG (1979) The wadi natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J1:219–234Google Scholar
  101. Imhoff JF, Kushner DJ, Kushawa SC, Kates M (1982) Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families. J Bacteriol 150:1192–1201PubMedPubMedCentralGoogle Scholar
  102. Imhoff JF, Süling J, Petri R (1998) Phylogenetic relationships among the chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa, and Thermochromatium. Int J Syst Bacteriol 48:1129–1143PubMedGoogle Scholar
  103. Irgens RL (1983) Thioacetamide as a source of hydrogen sulfide for colony growth of purple sulfur bacteria. Curr Microbiol 8:183–186Google Scholar
  104. Isachenko BL (1914). Studies of bacteria of the Arctic Ocean. Cited in: Gorlenko, Vainstein and Kachalkin, 1978Google Scholar
  105. Jannasch HW (1957) Die bakterielle Rotfärbung der Salzseen des Wadi Natrun. Arch Hydrobiol 53:425–433Google Scholar
  106. Jørgensen BB, Fossing H, Wirsen CO, Jannasch HW (1991) Sulfide oxidation in the anoxic Black Sea chemocline. Deep-Sea Res 38(suppl 2):1083–1103Google Scholar
  107. Kämpf C, Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127:125–135Google Scholar
  108. Kämpf C, Pfennig N (1986) Isolation and characterization of some chemoautotrophic Chromatiaceae. J Basic Microbiol 9:507–515Google Scholar
  109. Kobayashi M (1977) Utilization and disposal of wastes by photosynthetic bacteria. In: Schlegel HG, Barnea J (eds) Microbial energy conversion. Pergamon, Oxford, pp 443–453Google Scholar
  110. Kobayashi M, Kobayashi M (1995) Waste remediation and treatment using anoxygenic phototrophic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 1269–1282Google Scholar
  111. Kobayashi M, Tchan YT (1973) Treatment of industrial waste solutions and production of useful byproducts using photosynthetic bacterial method. Water Res 7:1219–1224Google Scholar
  112. Kobayashi M, Tchan YT (1978) Formation of dimethylnitrosamine in polluted environment and the role of photosynthetic bacteria. Water Res 12:199–201Google Scholar
  113. Kobayashi M, Kobayashi M, Nakanishi H (1971) Construction of a purification plant for polluted water using photosynthetic bacteria. J Ferment Technol 49:817–825Google Scholar
  114. Kondratieva EN (1965) Photosynthetic bacteria. Program for Scientific Translations, JerusalemGoogle Scholar
  115. Kondratieva EN (1979) Interrelation between modes of carbon assimilation and energy production in phototrophic purple and green bacteria. In: Quale JR (ed) Microbial biochemistry. International review of biochemistry, vol 21. University Park Press, Baltimore, pp 117–175Google Scholar
  116. Kondratieva EN, Gogotov IN (1983) Production of molecular hydrogen in microorganism. Adv Biochem Eng Biotechnol 28:139–191Google Scholar
  117. Kondratieva EN, Petushkova YUP, Zhukov VG (1975) Growth and oxidation of sulfur compounds by Thiocapsa roseopersicina in the darkness. Mikrobiologiya 44:389–394 (In Russian, with English summary)Google Scholar
  118. Kondratieva EN, Zhukov VG, Ivanowsky RN, Petruskova YP, Monosov EZ (1976) The capacity of the phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108:287–292PubMedGoogle Scholar
  119. Koppenhagen V (1981) Metal-free corrinoids and metal-insertion. In: Dolphin D (ed) Vitamin B12, vol 2. Wiley, New York, pp 105–149Google Scholar
  120. Koppenhagen V, Schlingmann G, Scher W, Dresow B (1981) Extracellular metabolites from phototrophic bacteria as possible intermediates in the biosynthesis of vitamin B12. In: Moo-Young M (ed) Advances in biotechnology. Pergamon, New York, pp 247–252Google Scholar
  121. Krasilnikova EN (1976) Anaerobic metabolism of Thiocapsa roseopersicina. Mikrobiologiya 45:372–376 (In Russian, with English summary)Google Scholar
  122. Krasilnikova EN, Petushkova YP, Kondratieva EN (1975) Growth of purple sulfur bacterium Thiocapsa roseopersicina under anaerobic conditions in the darkness. Mikrobiologiya 44:700–703 (In Russian, with English summary)Google Scholar
  123. Krasilnikova EN, Ivanovskii RN, Kondratieva EN (1983) Growth of purple bacteria utilizing acetate under anaerobic conditions in darkness. Mikrobiologiya 52:189–194 (English translation edition)Google Scholar
  124. Kriss AE, Rukina EA (1953) Purple sulfur bacteria in deep sulfurous water of the Black Sea. Dokl Akad Nauk SSSR 93:1107–1110 (In Russian)PubMedGoogle Scholar
  125. Kumar PA, Srinivas TNR, Sasikala C, Ramana CV (2007a) Halochromatium roseum sp. nov., a non-motile phototrophic gammaproteobacterium with gas vesicles, and emended description of the genus Halochromatium. Int J Syst Evol Microbiol 57:2110–2113PubMedGoogle Scholar
  126. Kumar PA, Sasi Jyothsna TS, Srinivas TNR, Sasikala C, Ramana CV, Imhoff JF (2007b) Marichromatium bheemlicum sp. nov., a non-diazotrophic photosynthetic gammaproteobacterium from a marine aquaculture pond. Int J Syst Evol Microbiol 57:1261–1265PubMedGoogle Scholar
  127. Kumar PA, Sasi Jyothsna TS, Srinivas TNR, Sasikala C, Ramana CV, Imhoff JF (2007c) Two novel species of marine phototrophic gammaproteobacteria: Thiorhodococcus Bheemlicus sp. nov. and Thiorhodococcus kakinadensis sp. nov. Int J Syst Evol Microbiol 57:2458–2461Google Scholar
  128. Kumar PA, Srinivas TNR, Sasikala C, Ramana CV (2008a) Allochromatium renukae sp. nov. Int J Syst Evol Microbiol 58:404–407Google Scholar
  129. Kumar PA, Srinivas TNR, Sasikala C, Ramana CV, Imhoff JF (2008b) Thiophaeococcus mangrovi gen. nov., sp. nov., a photosynthetic marine gammaproteobacterium isolated from Bhitarkanika mangrove forest India. Int J Syst Evol Microbiol 58:2660–2664Google Scholar
  130. Kumar PA, Srinivas TNR, Thiel V, Tank M, Sasikala C, Ramana CV, Imhoff JF (2009) A new species of Thiohalocapsa, Thiohalocapsa marina sp. nov., from an Indian marine aquaculture pond. Int J Syst Evol Microbiol 59:2333–2338Google Scholar
  131. Kumazawa S, Mitsui A (1982) Hydrogen metabolism of photosynthetic bacteria and algae. In: Mitsui A, Black CC (eds) Handbook of biosolar resources, vol 1. CRC Press, Boca Raton, pp 299–316Google Scholar
  132. Kusnetzov SI (1970) The microflora of lakes and its geochemical activity. University of Texas Press, Austin/LondonGoogle Scholar
  133. Kützing FT (1883) Beiträge zur Kenntnis über die Entstehung und Metamorphose er niederen vegetabilischen Organismen, nebst einer systematische Zusammenstellung der hierher gehörigen niederen Algenformen. Linnaea 8:335–384Google Scholar
  134. Lankester R (1873) On a peach-colored bacterium – bacterium Rubescens n.s. Q J Micros Sci 13:408–425Google Scholar
  135. Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA (eds) (1992) International code of nomenclature of bacteria (1990 revision). bacteriological code. American Society for Microbiology, Washington, DCGoogle Scholar
  136. Larsen H (1952) On the culture and general physiology of the green sulfur bacteria. J Bacteriol 64:187–196PubMedPubMedCentralGoogle Scholar
  137. Liebergesell M, Hustede E, Timm A, Steinbüchel A, Fuller RC, Lenz RW, Schlegel HG (1991) Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch Microbiol 155:415–421Google Scholar
  138. Liebergesell M, Schmidt B, Steinbüchel A (1992) Isolation and identification of granule-associated proteins relevant for poly(3-hydroxyalkanoic acid) biosynthesis in Chromatium vinosum D. FEMS Microbiol Lett 99:227–232Google Scholar
  139. Lindholm T (1987) Ecology of photosynthetic prokaryotes with special reference to meromictic lakes and coastal lagoons. ABO Academy Press, AboGoogle Scholar
  140. Ludden PW, Roberts GP (1995) The biochemistry and genetics of nitrogen fixation by photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 929–947Google Scholar
  141. Madigan MT (1986) Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. Int J Syst Bacteriol 36:222–227Google Scholar
  142. Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 39–111Google Scholar
  143. Madigan MT (1995) Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 915–928Google Scholar
  144. May DS, Stahl JB (1967) The ecology of chromatium in sewage ponds. Bulletin No. 303, Sanitary Engineering Section Report No. 36, Coll. Engin. Res. Div., Washington State University, PullmanGoogle Scholar
  145. Mitsui A (1975) The utilization of solar energy for hydrogen production by cell free system of photosynthetic organisms. In: Veziroglu TN (ed) Hydrogen energy. Plenum, New York, pp 309–316Google Scholar
  146. Mitsui A (1979) Biosaline research. In: Hollaender A, Aller JC, Epstein E, San Pietro A, Zaborsky O (eds) The use of photosynthetic marine organisms in food and feed production. Plenum, New York, pp 177–215Google Scholar
  147. Miyoshi M (1897) Studien über die Schwefelrasenbildung und die Schwefelbakterien der Thermen von Yumoto bei Nikko. Zentral Bakteriol Parasitenkund Infekt 3:526–527, Abt. 2Google Scholar
  148. Molisch H (1907) Die Purpurbakterien nach neueren Untersuchungen. G. Fischer, Jena, pp 1–95Google Scholar
  149. Nicholson JAM, Stolz JF, Pierson BK (1987) Structure of a microbial mat at great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45:343–364Google Scholar
  150. Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37:150–155Google Scholar
  151. Pattaragulwanit K, Brune DC, Trüper HG, Dahl C (1998) Molecular evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum. Arch Microbiol 169:434–444PubMedGoogle Scholar
  152. Pedros-Alio C, Guerrero R (1993) Microbial ecology in Lake Ciso. Adv Microbiol Ecol 13:155–209Google Scholar
  153. Peduzzi S, Welsh A, Demarta A, Decristophoris P, Peduzzi R, Hahn D, Tonolla M (2011) Thiocystis chemoclinalis sp. nov. and Thiocystis cadagnonensis sp. nov., motile purple sulfur bacteria isolated from the chemocline of a meromictic lake. Int J Syst Evol Microbiol 61:1682–1687PubMedGoogle Scholar
  154. Petri R, Imhoff JF (2001) Genetic analysis of sea-ice bacterial communities of the western Baltic Sea using an improved double gradient method. Polar Biol 24:252–257Google Scholar
  155. Pfennig N (1962) Beobachtungen über das Schwärmen von Chromatium okenii. Arch Microbiol 42:90–95Google Scholar
  156. Pfennig N (1965) Anreicherungskulturen für rote und grüne Schwefelbakterien. Zentralbl Bakteriol Parasitenkd Infektionskrankh. Hyg. Abt. 1, Orig. Suppl. (1):179–189, pp 503–505Google Scholar
  157. Pfennig N (1967) Photosynthetic bacteria. Annu Rev Microbiol 21:285–324PubMedGoogle Scholar
  158. Pfennig N (1989a) Genus Chromatium. In: Staley JT, Bryant MP, Pfennig BN, Holt JC (eds) Bergeys manual of systematic bacteriology, vol 3, 1st edn. The Williams & Wilkins, Baltimore, pp 1639–1643Google Scholar
  159. Pfennig N (1989b) Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer-Verlag, Berlin, Heidelberg, New York, pp 97–116Google Scholar
  160. Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256Google Scholar
  161. Pfennig N, Trüper HG (1971) Higher taxa of the phototrophic bacteria. Int J Syst Bacteriol 21:17–18Google Scholar
  162. Pfennig N, Trüper HG (1974) The phototrophic bacteria. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. The Williams & Wilkins, Baltimore, pp 24–75Google Scholar
  163. Pfennig N, Trüper HG (1981) Isolation of members of the families Chromatiaceae and Chlorobiaceae In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes a handbook on habitats, isolation and identification of bacteria. Springer, Berlin, pp 279–289Google Scholar
  164. Pfennig N, Trüper HG (1992) The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria. Ecophysiology, isolation, identification, applications, 2nd edn. Springer, New York, pp 3200–3221Google Scholar
  165. Pfennig N, Lünsdorf H, Süling J, Imhoff JF (1997) Rhodospira trueperi, gen. nov. and spec. nov., a new phototrophic proteobacterium of the alpha-group. Arch Microbiol 168:39–45PubMedGoogle Scholar
  166. Podgorsek L, Imhoff JF (1999) Tetrathionate production by sulfur-oxidizing bacteria and the role of tetrathionate in the sulfur cycle in sediments of the Baltic Sea. Aquat Microbial Ecol 17:255–265Google Scholar
  167. Proctor LM (1997) Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods. Aquat Microb Ecol 12:105–113Google Scholar
  168. Puchkova NN, Imhoff JF, Gorlenko VM (2000) Thiocapsa litoralis sp. nov., a new purple sulfur bacterium from microbial mats from the White Sea. Int J Syst Evol Microbiol 50:1441–1447PubMedGoogle Scholar
  169. Rabold S, Gorlenko VM, Imhoff JF (2006) Thiorhodococcus mannitoliphagus sp. nov., a new purple sulfur bacterium from the White Sea. Int J Syst Evol Microbiol 56:1945–1951PubMedGoogle Scholar
  170. Rees GN, Harfoot CG, Janssen PH, Schoenborn L, Kuever J, Lünsdorf H (2002) Thiobaca trueperi gen. nov., sp. nov., a phototrophic bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol 52:671–678PubMedGoogle Scholar
  171. Repeta DJ, Simpson DJ, Jørgensen BB, Jannasch HW (1989) Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the black Sea. Nature 342:69–72PubMedGoogle Scholar
  172. Roelofson PA (1935) On the metabolism of the purple sulfur bacteria. Proc K Ned Akad Wet 37:660–669Google Scholar
  173. Ruttner F (1962) Grundriss der limnologie, 3rd edn. De Gruyter, Berlin, pp 171–172Google Scholar
  174. Sahl HG, Trüper HG (1977) Enzymes of CO2 fixation in Chromatiaceae. FEMS Microbiol Lett 2:129–132Google Scholar
  175. Sasikala K, Ramana CV, Rao PR, Kovacs KL (1993) Anoxygenic phototrophic bacteria: physiology and advances in hydrogen production technology. Adv Appl Microbiol 38:211–295Google Scholar
  176. Schaub BEM, Van Gemerden H (1994) Simultaneous phototrophic and chemotrophic growth in the purple sulfur bacterium Thiocapsa roseopersicina M1. FEMS Microbial Ecol 13:185–196Google Scholar
  177. Schedel M, Vanselow M, Trüper HG (1979) Siroheme sulfite reductase isolated from Chromatiuni vinosum. Arch Microbiol 121:29–36Google Scholar
  178. Schegg E (1971) Produktion und Destruktion in der trophogenen Schicht. Schweiz Z Hydrol 33:427–532Google Scholar
  179. Schlegel HG, Pfennig N (1961) Die Anreicherungskultur einiger Schwefelpurpurbakterien. Arch Mikrobiol 38:1–39PubMedGoogle Scholar
  180. Schrammeck J (1934) Untersuchungen über die Phototaxis der Purpurbacterien. Beiträge zur Biologie der Pflanzen 22:315–380Google Scholar
  181. Schulz E (1937) Das Farbstreifensandwatt und seine Fauna, eine ökologisch biozönotische Untersuchung an der Nordsee. Kieler Meeresforschungen 1:359–378Google Scholar
  182. Schulz E, Meyer H (1939) Weitere Untersuchungen über das Farbstreifensandwatt. Kieler Meeresforschungen 3:321–336Google Scholar
  183. Shivali K, Ramana VV, Ramaprasad EVV, Sasikala C, Ramana CV (2011) Marichromatium litoris sp. nov. and marichromatium chrysaorae sp. nov. Isolated from beach sand and from a jelly fish (Chrysaora colorata). Syst Appl Microbiol 34:600–605PubMedGoogle Scholar
  184. Siefert E, Pfennig N (1984) Convenient method to prepare neutral sulfide solution for cultivation of phototrophic sulfur bacteria. Arch Microbiol 139:100–101Google Scholar
  185. Siefert E, Irgens RL, Pfennig N (1978) Phototrophic purple and green bacteria in a sewage treatment plant. Appl Environ Microbiol 35:38–44PubMedPubMedCentralGoogle Scholar
  186. Sletten O, Singer RH (1971) Sulfur bacteria in red lagoons. J Water Pollut C 43:2118–2122Google Scholar
  187. Smith AJ (1965) The discriminative oxidation of the sulfur atoms of thiosulphate by a photosynthetic sulfur bacterium – chromatium strain D. Biochem J 94:27Google Scholar
  188. Smith AJ (1966) The role of tetrathionate in the oxidation of thiosulfate by Chromatium sp. Strain D. J Gen Microbiol 42:371–380PubMedGoogle Scholar
  189. Sorokin YI (1970) Interrelations between sulfur and carbon turnover in a meromictic lake. Arch Hydrobiol 66:391–446Google Scholar
  190. Srinivas TNR, Kumar PA, Sucharita K, Sasikala C, Ramana CV (2009) Allochromatium phaeobacterium sp. nov. Int J Syst Evol Microbiol 59:750–753PubMedGoogle Scholar
  191. Steenbergen CLM, Korthals HJ (1982) Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands): pigment analysis and role in primary production. Limnol Oceanogr 27:883–895Google Scholar
  192. Steudel R (1989) On the nature of the “elemental sulfur”(S°) produced by sulfur-oxidizing bacteria – a model for S° globules. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech. Publ/Springer, Madison/New York, pp 289–304Google Scholar
  193. Steudel R, Holdt G, Visscher PT, van Gemerden H (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153:432–437Google Scholar
  194. Stirn J (1971) Ecological consequences of marine pollution. Rev Internat Oceanogr Med 24:13–46Google Scholar
  195. Strzeszewski B (1913) Beiträge zur Kenntnis der Schwefelflora in der Umgebung von Krakau. Bull Int Acad Sci Cracovie Ser B Sci Nat I:309–334Google Scholar
  196. Sucharita K, Sasikala C, Ramana CV (2010a) Thiorhodococcus modestalkaliphilus sp. nov. a phototrophic gammaproteobacterium from chilika salt water lagoon India. J Gen Appl Microbiol 56:93–99PubMedGoogle Scholar
  197. Sucharita K, Kumar ES, Sasikala CH, Panda BB, Takaichi S, Ramana CV (2010b) Marichromatium fluminis sp. nov., a slightly alkaliphilic, phototrophic gammaproteobacterium isolated from river sediment. Int J Syst Evol Microbiol 60:1103–1107PubMedGoogle Scholar
  198. Suckow R (1966) Schwefelmikrobengesellschaften der See- und Boddengewässer von Hiddensee. Z Allgem Mikrobiol 6:309–315Google Scholar
  199. Szafer W (1910) Zur Kenntnis der Schwefelflora in der Umgebung von Lemberg. Bull Int Acad Sci Ser V. Cracovie, pp 160–167Google Scholar
  200. Tabita FR (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 885–914Google Scholar
  201. Taga N (1967) Microbial coloring of sea water in tidal pool, with special reference of massive development of phototrophic bacteria. Information Bulletin on Planktology in Japan. Commemorative number of Y. Matsue’s sixtieth birthday, pp 219–229Google Scholar
  202. Takahashi M, Ichimura S (1968) Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol Oceanogr 13:644–655Google Scholar
  203. Tank M, Thiel V, Imhoff JF (2009) Phylogenetic relationship of phototrophic purple sulfur bacteria according to pufL and pufM genes. Int Microbiol 12:175–185PubMedGoogle Scholar
  204. Tank M, Blümel M, Imhoff JF (2011) Communities of purple sulfur bacteria in a Baltic Sea coastal lagoon analyzed by pufLM gene libraries and the impact of temperature and NaCl concentration in experimental enrichment cultures. FEMS Microbiol Ecol 78:428–438PubMedGoogle Scholar
  205. Taylor WR (1964) Light and photosynthesis in intertidal benthic diatoms. Helgol Wiss Meeresunters 10:29–37Google Scholar
  206. Thiel V, Tank M, Neulinger SC, Gehrmann L, Dorador C, Imhoff JF (2010) Unique communities of anoxygenic phototrophic bacteria in saline lakes of salar de Atacama (Chile). Evidence for a new phylogenetic lineage of phototrophic gammaproteobacteria from pufLM gene analyses. FEMS Microbiol Ecol 74:510–522PubMedGoogle Scholar
  207. Toohey JI (1971) Purification of descobalt corrins from photosynthetic bacteria. In: McCormick DB, Wright LD (eds) Methods in enzymology, vol 18. Academic, New York, pp 71–75Google Scholar
  208. Tourova TP, Keppen OI, Kovaleva OL, Slobodova NV, Berg IA, Ivanovsky RN (2009) Phylogenetic characterization of the purple sulfur bacterium thiocapsa sp. BBS by analysis of the 16S rRNA, cbbL, and nifH genes and its description as Thiocapsa bogorovii sp. nov., a new species. Microbiology 78:339–349Google Scholar
  209. Trüper HG (1964) CO2-Fixierung und intermediärstoffwechsel bei Chromatium okenii perty. Arch Mikrobiol 49:23–50Google Scholar
  210. Trüper HG (1970) Culture and isolation of phototrophic sulfur bacteria from the marine environment. Helgol Wiss Meeresunters 20:6–16Google Scholar
  211. Trüper HG (1980) Distribution and activity of phiototrophic bacteria at the marine water-sediment interface. Coloques Int CNRS Biogéochem matière organ interface eau-sédiment marin 293:275–285Google Scholar
  212. Trüper HG (1981a) Photolithotrophic sulfur oxidation. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin, pp 199–211Google Scholar
  213. Trüper HG (1981b) Versatility of carbon metabolism in the phototrophic bacteria. In: Dalton H (ed) Microbial growth on C1 compounds. Heyden, London, pp 116–121Google Scholar
  214. Trüper HG (1984) Phototrophic bacteria and their sulfur metabolism. In: Müller A, Krebs B (eds) Sulfur, its significance for chemistry, for the geo-, bio- and cosmophere and technology. Elsevier, Amsterdam, pp 367–382Google Scholar
  215. Trüper HG (1989) Physiology and biochemistry of phototrophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech Publ/Springer, Madison/New York, pp 267–282Google Scholar
  216. Trüper HG, Fischer U (1982) Anaerobic oxidation of sulfur compounds as electron donors for bacterial photosynthesis. Phil Trans R Soc Lond B B 298:529–542Google Scholar
  217. Trüper HG, Genovese S (1968) Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina Sicily). Limnol Oceanogr 13:225–232Google Scholar
  218. Trüper HG, Imhoff JF (1981) The genus Ectothiorhodospira. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. A handbook on habitats, isolation and identification of bacteria. Springer, New York, pp 274–278Google Scholar
  219. Trüper HG, Pfennig N (1966) sulfur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulphate sulfur in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek. J Microbiol Serol 32:261–276Google Scholar
  220. Utermöhl H (1925) Limnologische phytoplanktonstudien. Arch Hydrobiol Supp 5:251–277Google Scholar
  221. Van Gemerden H (1968a) Utilization of reducing power in growing cultures of Chromatium. Arch Microbiol 65:111–117Google Scholar
  222. Van Gemerden H (1968b) On the ATP generation by Chromatium in darkness. Arch Mikrobiol 64:118–124PubMedGoogle Scholar
  223. Van Gemerden H (1974) Coexistence of organisms competing for the same substrate: an example among the purple sulfur bacteria. Microb Ecol 1:19–23Google Scholar
  224. Van Gemerden H, Beeftink HH (1983) Ecology of phototrophic bacteria. In: Ormerod JG (ed) The phototrophic bacteria: anaerobic life in the light. Blackwell, Oxford, pp 146–185Google Scholar
  225. Van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 49–85Google Scholar
  226. Van Gemerden H, Montesinos E, Mas J, Guerrero R (1985) Diel cycle of metabolism of phototrophic purple sulfur bacteria in Lake Cisó (Spain). Limnol Oceanogr 30:932–943Google Scholar
  227. Van Niel CB (1931) On the morphology and physiology of the purple and green sulfur bacteria. Arch Microbiol 3:1–112Google Scholar
  228. Van Niel CB (1971) Techniques for the enrichment, isolation, and maintenance of photosynthetic bacteria. In: Collowick SP, Kaplan NV (eds) Methods in enzymology, vol 23, part A. Academic, New York, pp 3–28Google Scholar
  229. Vignais PM, Colbeau A, Willison JC, Jouanneau Y (1985) Hydrogenase, nitrogenase, and hydrogen metabolism in photosynthetic bacteria. Adv Microb Physiol 26:155–234PubMedGoogle Scholar
  230. Vignais PM, Toussaint B, Colbeau A (1995) Regulation of hydrogenase gene expression. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 1175–1190Google Scholar
  231. Vrati S (1984) Single cell protein production by photosynthetic bacteria grown on the clarified effluents of a biogas plant. Appl Microbiol Biotechnol 19:199–202Google Scholar
  232. Warming E (1875) Om nogle ved Danmarks Kyster levende Bakterier. Videnskabelige Meddelelser Dansk naturhistorisk Foreninge 20:307–420Google Scholar
  233. Weckesser J, Drews G, Mayer H (1979) Lipopolysaccharides of photosynthetic prokaryotes. Annu Rev Microbiol 33:215–239PubMedGoogle Scholar
  234. Weckesser J, Mayer H, Schulz G (1995) Anoxygenic phototrophic bacteria: model organisms for studies on cell wall macromolecules. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Netherlands, pp 207–230Google Scholar
  235. Wenke TL, Vogt JC (1981) Temporal changes in a pink feedlot lagoon. Appl Environ Microbiol 41:381–385PubMedPubMedCentralGoogle Scholar
  236. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836Google Scholar
  237. Winogradsky S (1888) Beiträge zur Morphologie und Physiologie der Bakterien. Heft 1. Zur Morphol Physiol Schwefelbakterien. Arthur Felix, Leipzig, pp 1–120Google Scholar
  238. Yarapolov AI, Malovik V, Isumrudov VA, Zorin NA, Bachurin SO, Gogotov IN, Varfolomeev SD (1982) Immobilization of hydrogenase in semiconductor gels and its use in the electrooxidation of hydrogen at the anode of a biofuel cell. Appl Biochem Microbiol 18:401–406. (English translation from Russian)Google Scholar
  239. Zaar A, Fuchs G, Golecki JR, Overmann J (2003) A new purple sulfur bacterium isolated from a littoral microbial mat, Thiorhodococcus drewsii sp. nov. Arch Microbiol 179:174–183PubMedGoogle Scholar
  240. Zahr M, Fobel B, Mayer H, Imhoff JF, Campos V, Weckesser J (1992) Chemical composition of the lipopolysaccharides of Ectothiorhodospira shaposhnikovii, Ectothiorhodospira mobilis, and Ectothiorhodospira halophila. Arch Microbiol 157:499–504Google Scholar
  241. Zeng YH, Jiao NZ (2007) Source environment feature related phylogenetic distribution pattern of anoxygenic photosynthetic bacteria as revealed by pufM analysis. J Microbiol 45:205–212PubMedGoogle Scholar
  242. Zhukov VG (1976) Formation of ribulose-1,5-diphosphate carboxylase by Thiocapsa roseopersicina in different growth conditions. Mikrobiologiya 45:915–917Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Marine MikrobiologieHelmholtz Centre for Ocean ResearchKielGermany

Personalised recommendations