Advertisement

The Family Methylococcaceae

  • John P. BowmanEmail author
Reference work entry

Abstract

The family Methylococcaceae includes the type I methanotrophs, bacterial taxa belonging to class Gammaproteobacteria able to use methane and methanol as sole carbon and energy sources but are unable to use substrates containing carbon-carbon bonds. Phylogenetically the family is polyphyletic and includes three distinct clades. Nevertheless, all three clades have characteristics typical of type I methanotrophs including intracellular membranes arranged in lamellar stacks, possession of the particulate version but not usually the soluble version of methane monooxygenase, and utilization of the ribulose monophoshate pathway to assimilate C1 carbon units. Members of the Methylococcaceae are found in any environment where methane and oxygen coexist including cold to thermal environments in both terrestrial and marine locations. Type I methanotrophs are efficient oxidizers of methane and have been applied as biofilters in industrial and remediation applications. Ecologically type I methanotrophs intercept much of the methane generated either biotically or abiotically and thus have a critical role in Earth’s carbon cycles and natural homeostatic processes.

Keywords

Methane Oxidation Soda Lake Main Fatty Acid pmoA Gene Methane Monooxygenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author would like to thank Dr Raul Munoz for supplying the phylogenetic tree information for this review.

References

  1. Andreev LV, Galchenko VF (1978) Fatty acid composition and identification of methanotrophic bacteria. Dokl Akad Nauk SSSR 269:1461–1468 (in Russian)Google Scholar
  2. Andreev LV, Galchenko VF (1983) Phospholipid composition and differentiation of methanotrophic bacteria. J Liq Chromatogr 6:2699–2707Google Scholar
  3. Anthony C (1982) The biochemistry of methylotrophs. Academic, LondonGoogle Scholar
  4. Antony CP, Kumaresan D, Ferrando L, Boden R, Moussard H, Scavino AF, Shouche YS, Murrell JC (2010) Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact. ISME J 4:1470–1480PubMedGoogle Scholar
  5. Auman AJ, Stolyar S, Costello AM, Lidstrom ME (2000) Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266PubMedPubMedCentralGoogle Scholar
  6. Auman AJ, Lidstrom ME (2002) Analysis of sMMO-containing type I methanotrophs in Lake Washington sediment. Environ Microbiol 4:517–524PubMedGoogle Scholar
  7. Baskar S, Baskar R, Thorseth IH, Ovreås L, Pedersen RB (2012) Microbially induced iron precipitation associated with a neutrophilic spring at Borra Caves, Visakhapatnam, India. Astrobiology 12:327–346PubMedGoogle Scholar
  8. Baxter NJ, Hirt RP, Bodrossy L, Kovacs KL, Embley TM, Prosser JI, Murrell JC (2002) The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath). Arch Microbiol 177:279–289PubMedGoogle Scholar
  9. Bender M, Conrad R (1992) Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios. FEMS Microbiol Ecol 101:261–270Google Scholar
  10. Berestovskaya YY, Vasileva LV, Chestnykh OV, Zavarzin GA (2002) Methanotrophs of the psychrophilic microbial community of the Russian Arctic tundra. Mikrobiologiya 71:538–544Google Scholar
  11. Best DJ, Higgins IJ (1981) Methane-oxidizing activity and membrane morphology in a methanol grown obligate methanotroph, Methylosinus trichosporium OB3b. J Gen Microbiol 125:73–84Google Scholar
  12. Bezrukova LV, Nikolenklo YI, Nesterov AI, Galchenko VF, Ivanov MV (1983) Comparative serological analysis of methanotrophic bacteria. Mikrobiologiya 52:800–805Google Scholar
  13. Binet F, Fayolle L, Pussard M, Crawford JJ, Traina SJ, Tuovinen OH (1998) Significance of earthworms in stimulating soil microbial activity. Biol Fertil Soils 27:79–84Google Scholar
  14. Bodelier PL, Bär-Gilissen MJ, Meima-Franke M, Hordijk K (2012) Structural and functional response of methane-consuming microbial communities to different flooding regimes in riparian soils. Ecol Evol 2:106–127PubMedPubMedCentralGoogle Scholar
  15. Boden R, Cunliffe M, Scanlan J, Moussard H, Kits KD, Klotz MG, Jetten MS, Vuilleumier S, Han J, Peters L, Mikhailova N, Teshima H, Tapia R, Kyrpides N, Ivanova N, Pagani I, Cheng JF, Goodwin L, Han C, Hauser L, Land ML, Lapidus A, Lucas S, Pitluck S, Woyke T, Stein L, Murrell JC (2011) Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09. J Bacteriol 193:7001–7002PubMedPubMedCentralGoogle Scholar
  16. Bodrossy L, Holmes EM, Holmes AJ, Kovács KL, Murrell JC (1997) Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch Microbiol 168:493–503PubMedGoogle Scholar
  17. Bodrossy L, Kovacs KL, McDonald IR, Murrell JC (1999) A novel thermophilic methane-oxidising gamma-Proteobacterium. FEMS Microbiol Lett 170:335–341Google Scholar
  18. Bodrossy L, Stralis-Pavese N, Konrad-Köszler M, Weilharter A, Reichenauer TG, Schöfer D, Sessitsch A (2006) mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Appl Environ Microbiol 72:1672–1676PubMedPubMedCentralGoogle Scholar
  19. Bourne DG, McDonald IR, Murrell JC (2001) Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 67:3802–3809PubMedPubMedCentralGoogle Scholar
  20. Bouvier P, Rohmer M, Benveniste P, Ourisson, G. (1976). Delta8(14)-steroids in the bacterium Methylococcus capsulatus. Biochem J. 159:267–271PubMedPubMedCentralGoogle Scholar
  21. Bowman JP (2006) The methanotrophs — the families Methylococcaceae and Methylocystaceae, chapter 3.1.1.4. In: Falkow S, Rosenberg E, Schleifer KH (eds) The prokaryotes, vol 5, 3rd edn. Springer, New York, pp 266–289Google Scholar
  22. Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology (UK) 143:1451–1459Google Scholar
  23. Bowman JP, Sly LI, Cox JM, Hayward AC (1990) Methylomonas fodinarum sp. nov. and Methylomonas aurantiaca sp. nov.: two closely related type I obligate methanogens. Syst Appl Microbiol 13:279–286Google Scholar
  24. Bowman JP, Skerratt JH, Nichols PD, Sly LI (1991a) Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilising bacteria. FEMS Microbiol Ecol 85:15–22Google Scholar
  25. Bowman JP, Sly LI, Hayward AC (1991b) Contribution of genome characteristics to the assessment of taxonomy of obligate methanotrophs. Int J Syst Bacteriol 41:301–305Google Scholar
  26. Bowman JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753Google Scholar
  27. Bowman JP, Sly LI, Stackebrandt E (1995) The phylogenetic position of the family Methylococcaceae. Int J Syst Bacteriol 45:182–185PubMedGoogle Scholar
  28. Bratina BJ, Brusseau GA, Hanson RS (1992) Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. Int J Syst Bacteriol 42:645–648PubMedGoogle Scholar
  29. Brown LR, Strawinski RJ (1958) Intermediates in the oxidation of methane. Bacteriol Proc 58:96–132Google Scholar
  30. Brusseau GA, Bulygina E, Hanson RS (1994) Phylogenetic analysis and development of probes differentiating methylotrophic bacteria. Appl Environ Microbiol 60:626–636PubMedPubMedCentralGoogle Scholar
  31. Brusseau GA, Tsien HC, Hanson RS, Wackett LP (1990) Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase. Biodegradation 1:19–29PubMedGoogle Scholar
  32. Bussmann I, Pester M, Brune A, Schink B (2004) Preferential cultivation of type II methanotrophic bacteria from littoral sediments (Lake Constance). FEMS Microbiol Ecol 47:179–189PubMedGoogle Scholar
  33. Campbell MA, Nyerges G, Kozlowski JA, Poret-Peterson AT, Stein LY, Klotz MG (2011) Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. FEMS Microbiol Lett 322:82–89PubMedGoogle Scholar
  34. Carini S, Bano N, LeCleir G, Joye SB (2005) Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environ Microbiol 7:1127–1138PubMedGoogle Scholar
  35. Cébron A, Bodrossy L, Stralis-Pavese N, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity. Appl Environ Microbiol 73:798–807PubMedPubMedCentralGoogle Scholar
  36. Chen Y, Dumont MG, Cébron A, Murrell JC (2007) Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ Microbiol 9:2855–2869PubMedGoogle Scholar
  37. Chi Z, Lu W, Mou Z, Wang H, Long Y, Duan Z (2012) Effect of biocover equipped with a novel passive air diffusion system on microbial methane oxidation and community of methanotrophs. J Air Waste Manag Assoc 62:278–286PubMedGoogle Scholar
  38. Choi DW, Semrau JD, Antholine WE, Hartsel SC, Anderson RC, Carey JN, Dreis AM, Kenseth EM, Renstrom JM, Scardino LL, Van Gorden GS, Volkert AA, Wingad AD, Yanzer PJ, McEllistrem MT, de la Mora AM, DiSpirito AA (2008) Oxidase, superoxide dismutase, and hydrogen peroxide reductase activities of methanobactin from types I and II methanotrophs. J Inorg Biochem 102:1571–1580PubMedGoogle Scholar
  39. Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2:299–327Google Scholar
  40. Cohn F (1870) Über den Brunnenfaden (Crenothrix polyspora) mit Bemerkungen fiber die mikroskopische Analyse des Brunnenwassers. Beitr Biol Pfanz 1:108–131Google Scholar
  41. Collins MD, Green PN (1985) Isolation and characterization of a novel coenzyme Q from some methane-oxidizing bacteria. Biochem Biophys Res Commun 133:1125–1131PubMedGoogle Scholar
  42. Coolen MJL, Hopmans EC, Rijpstra WIC, Muyzer G, Schouten S, Volkman JK, Damsté JSS (2004) Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Org Geochem 35:1151–1167Google Scholar
  43. Coolen MJ, Talbot HM, Abbas BA, Ward C, Schouten S, Volkman JK, Damsté JS (2008) Sources for sedimentary bacteriohopanepolyols as revealed by 16S rDNA stratigraphy. Environ Microbiol 10:1783–1803PubMedGoogle Scholar
  44. Costello AM, Auman AJ, Macalady JL, Scow KM, Lidstrom ME (2002) Estimation of methanotroph abundance in a freshwater lake sediment. Environ Microbiol 4:443–450PubMedGoogle Scholar
  45. Cvejic JH, Bodrossy L, Kovács KL, Rohmer M (2000) Bacterial triterpenoids of the hopane series from the methanotrophic bacteria Methylocaldum spp.: phylogenetic implications and first evidence for an unsaturated aminobacteriohopanepolyol. FEMS Microbiol Lett 182:361–365PubMedGoogle Scholar
  46. Danilova OV, Kulichevskaya IS, Rozova ON, Detkova EN, Bodelier PL, Trotsenko YA, Dedysh SN (2013) Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland. Int J Syst Evol Microbiol 63:2282–2289Google Scholar
  47. Das A, Yoon SH, Lee SH, Kim JY, Oh DK, Kim SW (2007) An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol 77:505–512PubMedGoogle Scholar
  48. Davis JB, Coty VG, Stanley JP (1964) Atmospheric nitrogen fixation by methane-oxidizing bacteria. J Bacteriol 88:468–472PubMedPubMedCentralGoogle Scholar
  49. DeAngelis MA, Reysenbach AL, Baross JA (1991) Surfaces of hydrothermal vent invertebrates: sites of elevated microbial CH4 oxidation activity. Limnol Oceanogr 36:570–577Google Scholar
  50. DeJournett TD, Arnold WA, LaPara TM (2007) The characterization and quantification of methanotrophic bacterial populations in constructed wetland sediments using PCR targeting 16S rRNA gene fragments. Appl Soil Ecol 35:648–659Google Scholar
  51. Deng H, Guo GX, Zhu YG (2011) Pyrene effects on methanotroph community and methane oxidation rate, tested by dose-response experiment and resistance and resilience experiment. J Soils Sediments 11:312–321Google Scholar
  52. Dianou D, Ueno C, Ogiso T, Kimura M, Asakawa S (2012) Diversity of cultivable methane-oxidizing bacteria in microsites of a rice paddy field: investigation by cultivation method and fluorescence in situ hybridization (FISH). Microbes Environ 27:278–287PubMedPubMedCentralGoogle Scholar
  53. Dubey SK, Padmanabhan P, Purohit HJ, Upadhyay SN (2003) Tracking of methanotrophs and their diversity in paddy soil: a molecular approach. Curr Sci 85:92–95Google Scholar
  54. Dumont MG, Pommerenke B, Casper P, Conrad R (2011) DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environ Microbiol 13:1153–1167PubMedGoogle Scholar
  55. Dunfield PF, Conrad R (2000) Starvation alters the apparent half saturation constant for methane in the type II methanotroph Methylocystis strain LR1. Appl Environ Microbiol 66:4136–4138PubMedPubMedCentralGoogle Scholar
  56. Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad R (1999) High affinity methane oxidation by a soil enrichment culture containing a Type II methanotroph. Appl Environ Microbiol 65:1009–1014PubMedPubMedCentralGoogle Scholar
  57. Duperron S, Bergin C, Zielinski F, Blazejak A, Pernthaler A, McKiness ZP, DeChaine E, Cavanaugh CM, Dubilier N (2006) A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol 8:1441–1447PubMedGoogle Scholar
  58. Dworkin M, Foster JW (1956) Studies on Pseudomonas methanica (Sohngen) nov. comb. J Bacteriol 72:646–659PubMedPubMedCentralGoogle Scholar
  59. Eller G, Stubner S, Frenzel P (2001) Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol Lett 198:91–97PubMedGoogle Scholar
  60. Elsaied HE, Hayashi T, Naganuma T (2004) Molecular analysis of deep-sea hydrothermal vent aerobic methanotrophs by targeting genes of 16S rRNA and particulate methane monooxygenase. Mar Biotechnol 6:503–509PubMedGoogle Scholar
  61. Escoffier S, Lemer J, Roger PA (1997) Enumeration of methanotrophic bacteria in ricefield soils by plating and MPN techniques – a critical approach. Eur J Soil Biol 33:41–51Google Scholar
  62. Eshinimaev BT, Medvedkova KA, Khmelenina VN, Suzina NE, Osipov GA, Lysenko A, Trotsenko YA (2004) New thermophilic methanotrophs of the genus Methylocaldum. Mikrobiologiya 73:530–539Google Scholar
  63. Eshinimaev BT, Tsyrenzhapova IS, Khmelenina VN, Trotsenko YA (2007) Detection of osmoprotector ectoine content in methylotrophic bacteria using of normal-phase high performance liquid chromatography. Prikl Biokhim Mikrobiol 43:215–218 (in Russian)PubMedGoogle Scholar
  64. Fang J, Barcelona MJ, Semrau JD (2000) Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles. FEMS Microbiol Lett 189:67–72PubMedGoogle Scholar
  65. Faust U, Prave P, Sukatsch DA (1977) Continuous biomass production from methanol by Methylomonas clara. J Ferment Technol 55:609–614Google Scholar
  66. Foster JW, Davis RH (1966) A methane-dependent coccus, with notes on classification of obligate, methane-utilizing bacteria. J Bacteriol 91:1924–1931PubMedPubMedCentralGoogle Scholar
  67. Fru EC (2009) Iron oxides influence bacterial community structure and the spatial distribution of the aerobic methanotrophs and sulphate reducers in granitic aquifers. Geomicrobiol J 26:415–429Google Scholar
  68. Fru EC (2011) Copper biogeochemistry: a cornerstone in aerobic methanotrophic bacterial ecology and activity? Geomicrobiol J 28:601–614Google Scholar
  69. Fuse H, Ohta M, Takimura O, Murakami K, Inoue H, Yamaoka Y, Oclarit JM, Omori T (1998) Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem 62:1925–1931PubMedGoogle Scholar
  70. Galchenko VF, Nesterov AI (1981) Numerical analysis of protein electrophoretograms of obligate methane-utilizing bacteria. Mikrobiologiya 50:725–730Google Scholar
  71. Galchenko VF, Shishkina VN, Tyurin VS, Trotsenko YA (1975) Isolation of pure cultures of methanotrophs and their properties. Mikrobiologiya 44:844–850Google Scholar
  72. Galchenko VF, Shishkina VN, Suzina NE, Trotsenko YA (1977) Isolation and properties of new strains of obligate methanotrophs. Mikrobiologiya 46:890–897Google Scholar
  73. Geymonat E, Ferrando L, Tarlera SE (2011) Methylogaea oryzae gen. nov., sp. nov., a mesophilic methanotroph isolated from a rice paddy field. Int J Syst Evol Microbiol 61:2568–2572PubMedGoogle Scholar
  74. Graham DW, Korich DG, LeBlanc RP, Sinclair NA, Arnold RG (1992) Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58:2231–2236PubMedPubMedCentralGoogle Scholar
  75. Graham DW, Kim HJ (2011) Production, isolation, purification, and functional characterization of methanobactins. Methods Enzymol 495:227–245PubMedGoogle Scholar
  76. Gulledge J, Ahmad A, Steudler PA, Pomerantz WJ, Cavanaugh CM (2001) Family- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria. Appl Environ Microbiol 67:4726–4733PubMedPubMedCentralGoogle Scholar
  77. Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241PubMedGoogle Scholar
  78. Hatamoto M, Miyauchi T, Kindaichi T, Ozaki N, Ohashi A (2011) Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment. Bioresour Technol 102:10299–10304PubMedGoogle Scholar
  79. Han B, Chen Y, Abell G, Jiang H, Bodrossy L, Zhao J, Murrell JC, Xing XH (2009) Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. FEMS Microbiol Ecol 70:40–51PubMedGoogle Scholar
  80. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedPubMedCentralGoogle Scholar
  81. Hayashi T, Obata H, Toshitaka G, Sano Y, Naganuma T (2007) Distribution and phylogenetic characteristics of the genes encoding enzymes relevant to methane oxidation in oxygen minimum zones of the eastern Pacific Ocean. Res J Environ Sci 6:275–284Google Scholar
  82. Hazeu W, Batenburg-van der Vegte WH, de Bruyn JC (1980) Some characteristics of Methylococcus mobilis sp. nov. Arch Microbiol 124:211–220Google Scholar
  83. He R, Wooller MJ, Pohlman JW, Quensen J, Tiedje JM, Leigh MB (2012a) Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes. Appl Environ Microbiol 78:4715–4723PubMedPubMedCentralGoogle Scholar
  84. He R, Wooller MJ, Pohlman JW, Quensen J, Tiedje JM, Leigh MB (2012b) Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments. ISME J 6:1937–1948PubMedPubMedCentralGoogle Scholar
  85. Henneberger R, Lüke C, Mosberger L, Schroth MH (2012) Structure and function of methanotrophic communities in a landfill-cover soil. FEMS Microbiol Ecol 81:52–65PubMedGoogle Scholar
  86. Héry M, Singer AC, Kumaresan D, Bodrossy L, Stralis-Pavese N, Prosser JI, Thompson IP, Murrell JC (2008) Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. ISME J 2:92–104PubMedGoogle Scholar
  87. Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826PubMedGoogle Scholar
  88. Higgins IJ, Best DJ, Hammond RC, Scott D (1981) Methane-oxidizing microorganisms. Microbiol Rev 45:556–590PubMedPubMedCentralGoogle Scholar
  89. Hirayama H, Fuse H, Abe M, Miyazaki M, Nakamura T, Nunoura T, Furushima Y, Yamamoto H, Takai K (2012) Methylomarinum vadi gen. nov., sp. nov., a marine methanotroph isolated from two distinct marine environments in Japan. Int J Syst Evol Microbiol 56:109–113Google Scholar
  90. Hirayama H, Sunamura M, Takai K, Nunoura T, Noguchi T, Oida H, Furushima Y, Yamamoto H, Oomori T, Horikoshi K (2007) Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island. Jpn Appl Environ Microbiol 73:7642–7656Google Scholar
  91. Hirayama H, Suzuki Y, Abe M, Miyazaki M, Makita H, Inagaki F, Uematsu K, Takai K (2011) Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int J Syst Evol Microbiol 61:2646–2653PubMedGoogle Scholar
  92. Hoffmann T, Horz HP, Kemnitz D, Conrad R (2002) Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and the Philippines. Syst Appl Microbiol 25:267–274PubMedGoogle Scholar
  93. Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208PubMedGoogle Scholar
  94. Hou CT (1984) Methylotrophs: microbiology, biochemistry and genetics. CRC Press, Boca RatonGoogle Scholar
  95. Howsam P (1988) Biofouling in wells and aquifers. J Inst Water Environ Manag 2:209–215Google Scholar
  96. Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6:111–120PubMedGoogle Scholar
  97. Iguchi H, Sato I, Sakakibara M, Yurimoto H, Sakai Y (2012) Distribution of methanotrophs in the phyllosphere. Biosci Biotechnol Biochem 76:1580–1583PubMedGoogle Scholar
  98. Iguchi H, Yurimoto H, Sakai Y (2010) Soluble and particulate methane monooxygenase gene clusters of the type I methanotroph Methylovulum miyakonense HT12. FEMS Microbiol Lett 312:71–76PubMedGoogle Scholar
  99. Iguchi H, Yurimoto H, Sakai Y (2011a) Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int J Syst Evol Microbiol 61:810–815PubMedGoogle Scholar
  100. Iguchi H, Yurimoto H, Sakai Y (2011b) Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl Environ Microbiol 77:8509–8515PubMedPubMedCentralGoogle Scholar
  101. Inagaki F, Tsunogai U, Suzuki M, Kosaka A, Machiyama H, Takai K, Nunoura T, Nealson KH, Horikoshi K (2004) Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol 70:7445–7455PubMedPubMedCentralGoogle Scholar
  102. Jäckel U, Thummes K, Kämpfer P (2005) Thermophilic methane production and oxidation in compost. FEMS Microbiol Ecol 52:175–184PubMedGoogle Scholar
  103. Jenkins O, Byrom D, Jones D (1987) Methylophilus: a new genus of methanol-utilizing bacteria Int. J Syst Bacteriol 37:446–458Google Scholar
  104. Jensen S, Neufeld JD, Birkeland NK, Hovland M, Murrell JC (2008) Methane assimilation and trophic interactions with marine Methylomicrobium in deep-water coral reef sediment off the coast of Norway. FEMS Microbiol Ecol 66:320–330PubMedGoogle Scholar
  105. Kallistova AY, Kevbrina MV, Nekrasova VK, Shnyrev NA, Einola JK, Kulomaa MS, Rintala JA, Nozhevnikova AN (2007) Enumeration of methanotrophic bacteria in the cover soil of an aged municipal landfill. Microb Ecol 54:637–645PubMedGoogle Scholar
  106. Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Sorokin D, Fuse H, Lidstrom M, Trotsenko Y (2008) Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. Int J Syst Evol Microbiol 58:591–596PubMedGoogle Scholar
  107. Kalyuzhnaya MG, Khmelenina VN, Kotelnikova S, Holmquist L, Pedersen K, Trotsenko YA (1999) Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst Appl Microbiol 22:565–572PubMedGoogle Scholar
  108. Kalyuzhnaya M, Khmelenina V, Eshinimaev B, Suzina N, Nikitin D, Solonin A, Lin JL, McDonald I, Murrell C, Trotsenko Y (2001) Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp.nov. Syst Appl Microbiol 24:166–176Google Scholar
  109. Kalyuzhnaya MG, Makutina VA, Rusakova TG, Nikitin DV, Khmelenina VN, Dmitriev VV, Trotsenko YA (2002) Methanotrophic communities in the soils of the Russian northern taiga and subarctic tundra. Mikrobiologiya 71:227–233Google Scholar
  110. Kalyuzhnaya MG, Stolyar SM, Auman AJ, Lara JC, Lidstrom ME, Chistoserdova L (2005) Methylosarcina lacus sp. nov., a methanotroph from Lake Washington, Seattle, USA, and emended description of the genus Methylosarcina. Int J Syst Evol Microbiol 55:2345–2350PubMedGoogle Scholar
  111. Kalyuzhnaya MG, Zabinsky R, Bowerman S, Baker DR, Lidstrom ME, Chistoserdova L (2006) Fluorescence in situ hybridization-flow cytometry-cell sorting-based method for separation and enrichment of type I and type II methanotroph populations. Appl Environ Microbiol 72:4293–4301PubMedPubMedCentralGoogle Scholar
  112. Khmelenina VN, Kalyuzhnaya MG, Starostina NG, Suzina NE, Trotsenko YA (1997) Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr Microbiol 35:1–5Google Scholar
  113. Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PM (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305:1612–1615PubMedGoogle Scholar
  114. Kim HG, Han GH, Eom CY, Kim SW (2008) Isolation and taxonomic characterization of a novel type I methanotrophic bacterium. J Microbiol 46:45–50PubMedGoogle Scholar
  115. Kim TG, Lee EH, Cho KS (2012a) Microbial community analysis of a methane-oxidizing biofilm using ribosomal tag pyrosequencing. J Microbiol Biotechnol 22:360–370PubMedGoogle Scholar
  116. Kim TG, Lee EH, Cho KS (2012b) Effects of nonmethane volatile organic compounds on microbial community of methanotrophic biofilter. Appl Microbiol Biotechnol 95:6949–6559Google Scholar
  117. Kip N, Ouyang W, van Winden J, Raghoebarsing A, van Niftrik L, Pol A, Pan Y, Bodrossy L, van Donselaar EG, Reichart GJ, Jetten MS, Damsté JS, Op den Camp HJ (2011) Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl Environ Microbiol 77:5643–5654PubMedPubMedCentralGoogle Scholar
  118. Kizilova AK, Dvoryanchikova EN, Sukhacheva MV, Kravchenko IK, Galchenko VF (2012) Investigation of the methanotrophic communities of the hot springs of the Uzon caldera, Kamchatka, by molecular ecological techniques. Mikrobiologiya 81:606–613Google Scholar
  119. Kleiveland CR, Hult LT, Kuczkowska K, Jacobsen M, Lea T, Pope PB (2012) Draft genome sequence of the methane-oxidizing bacterium Methylococcus capsulatus (Texas). J Bacteriol 194:6626PubMedPubMedCentralGoogle Scholar
  120. Knief C, Dunfield PF (2005) Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ Microbiol 7:1307–1317PubMedGoogle Scholar
  121. Knief C, Kolb S, Bodelier PL, Lipski A, Dunfield PF (2006) The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Environ Microbiol 8:321–333PubMedGoogle Scholar
  122. Knief C, Lipski A, Dunfield PF (2003) Diversity and activity of methanotrophic bacteria in different upland soils. Appl Environ Microbiol 69:6703–6714PubMedPubMedCentralGoogle Scholar
  123. Koh SC, Bowman JP, Sayler GS (1993) Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol 59:960–967PubMedPubMedCentralGoogle Scholar
  124. Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69:2423–2429PubMedPubMedCentralGoogle Scholar
  125. Kotelnikova S (2002) Microbial production and oxidation of methane in deep subsurface. Earth Sci Rev 58:367–395Google Scholar
  126. Kumaresan D, Héry M, Bodrossy L, Singer AC, Stralis-Pavese N, Thompson IP, Murrell JC (2011) Earthworm activity in a simulated landfill cover soil shifts the community composition of active methanotrophs. Res Microbiol 162:1027–1032PubMedGoogle Scholar
  127. Kuono K, Oki T, Komura H, Ozaki A (1973) Isolation of new methanol-utilizing bacteria and its thiamine requirement for growth. J Gen Appl Microbiol 19:11–21Google Scholar
  128. Lamb DC, Jackson CJ, Warrilow AG, Manning NJ, Kelly DE, Kelly SL (2007) Lanosterol biosynthesis in the prokaryote Methylococcus capsulatus: insight into the evolution of sterol biosynthesis. Mol Biol Evol 24:1714–1721PubMedGoogle Scholar
  129. Lesniewski RA, Jain S, Anantharaman K, Schloss PD, Dick GJ (2012) The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J 6:2257–2268PubMedPubMedCentralGoogle Scholar
  130. Lidstrom ME (1988). Isolation and characterization of marine methanotrophs. Ant. v. Leeuw. J. Microbiol. 54:189–199Google Scholar
  131. Lieberman RL, Rosenzweig AC (2004) Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 39:147–164PubMedGoogle Scholar
  132. Lieberman RL, Shrestha DB, Doan PE, Hoffman BM, Stemmler TL, Rosenzweig AC (2003) Purified particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a dimer with both mononuclear copper and a copper-containing cluster. Proc Natl Acad Sci USA 100:3820–3825PubMedPubMedCentralGoogle Scholar
  133. Liebner S, Rublack K, Stuehrmann T, Wagner D (2009) Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microb Ecol 57:25–35PubMedGoogle Scholar
  134. Lin JL, Joye SB, Scholten JC, Schäfer H, McDonald IR, Murrell JC (2005) Analysis of methane monooxygenase genes in mono lake suggests that increased methane oxidation activity may correlate with a change in methanotroph community structure. Appl Environ Microbiol 71:6458–6462PubMedPubMedCentralGoogle Scholar
  135. Lin JL, Radajewski S, Eshinimaev BT, Trotsenko YA, McDonald IR, Murrell JC (2004) Molecular diversity of methanotrophs in Transbaikal soda lake sediments and identification of potentially active populations by stable isotope probing. Environ Microbiol 6:1049–1060PubMedGoogle Scholar
  136. Losekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362PubMedPubMedCentralGoogle Scholar
  137. Ma K, Lu Y (2011) Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil. FEMS Microbiol Ecol 2011(75):446–456Google Scholar
  138. Madoni P, Davoli D, Cavagnoli G, Cucchi A, Rossi F (2000) Microfauna and filamentous microflora in biological filters for tap water production. Water Res 34:3561–3572Google Scholar
  139. Malashenko YR, Romanovskaya VA, Kvashnikov EI (1972) Taxonomy of bacteria utilizing gaseous hydrocarbons. Microbiologiya 41:777–783Google Scholar
  140. Malashenko YR, Romanovskaya VA, Bogachenko VN (1975a) Thermophilic and thermtolerant methane-assimilating bacteria. Mikrobiologiya 44:638–643Google Scholar
  141. Malashenko YR, Romanovskaya VA, Bogachenko VN, Shved AD (1975b) Thermophilic and thermotolerant methane-assimilating bacteria. Mikrobiologiya 44:855–862Google Scholar
  142. Martin H, Murrell JC (1995) Methane monooxygenase mutants of Methylosinus trichosporium constructed by marker-exchange mutagenesis. FEMS Microbiol Lett 127:243–248Google Scholar
  143. Martineau C, Whyte LG, Greer CW (2010) Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high Arctic. Appl Environ Microbiol 76:5773–5784PubMedPubMedCentralGoogle Scholar
  144. Mayumi D, Yoshimoto T, Uchiyama H, Nomura N, Nakajima-Kambe T (2010) Seasonal change in methanotrophic diversity and populations in a rice field soil assessed by DNA-stable isotope probing and quantitative real-time PCR. Microbes Environ 25:156–163PubMedGoogle Scholar
  145. McDonald IR, Smith K, Lidstrom ME (2005) Methanotrophic populations in estuarine sediment from Newport Bay, California. FEMS Microbiol Lett 250:287–293PubMedGoogle Scholar
  146. Meyer J, Haubold R, Heyer J, Bockel W (1986) Contribution to the taxonomy of methanotrophic bacteria: correlation between membrane type and GC-value. Z Allg Mikrobiol 26:155–160Google Scholar
  147. Mohanty SR, Bodelier PL, Conrad R (2007) Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 62:24–31PubMedGoogle Scholar
  148. Moon KE, Lee SY, Lee SH, Ryu HW, Cho KS (2010) Earthworm cast as a promising filter bed material and its methanotrophic contribution to methane removal. J Hazard Mater 76:131–138Google Scholar
  149. Morinaga Y, Yamanaka S, Otsuka S, Hirose Y (1976) Characteristics of a newly isolated methane-utilizing bacterium, Methylomonas flagellata sp. nov. Agric Biol Chem 40:1539–1545Google Scholar
  150. Morris SA, Radajewski S, Willison TW, Murrell JC (2002) Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Appl Environ Microbiol 68:1446–1453PubMedPubMedCentralGoogle Scholar
  151. Murase J, Frenzel P (2007) A methane-driven microbial food web in a wetland rice soil. Environ Microbiol 9:3025–3034PubMedGoogle Scholar
  152. Murrell JC, Dalton H (1983a) Ammonia assimilation in Methylococcus capsulatus (Bath) and other obligate methanotrophs. J Gen Microbiol 120:1197–1206Google Scholar
  153. Murrell JC, Dalton H (1983b) Nitrogen fixation in obligate methanotrophs. J Gen Microbiol 129:3481–3486Google Scholar
  154. Murrell JC, McDonald IR, Bourne DG (1998) Molecular methods for the study of methanotroph ecology. FEMS Microbiol Ecol 27:103–114Google Scholar
  155. Nakamura T, Hoaki T, Hanada S, Maruyama A, Kamagata Y, Fuse H (2007) Soluble and particulate methane monooxygenase gene clusters in the marine methanotroph Methylomicrobium sp. strain NI. FEMS Microbiol Lett 277:157–164PubMedGoogle Scholar
  156. Nielsen AK, Gerdes K, Murrell JC (1997) Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Mol Microbiol 25:399–409PubMedGoogle Scholar
  157. Nercessian O, Bienvenu N, Moreira D, Prieur D, Jeanthon C (2005a) Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environ Microbiol 7:118–132PubMedGoogle Scholar
  158. Nercessian O, Noyes E, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2005b) Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol 71:6885–6899PubMedPubMedCentralGoogle Scholar
  159. Newby DT, Reed DW, Petzke LM, Igoe AL, Delwiche ME, Roberto FF, McKinley JP, Whiticar MJ, Colwell FS (2004) Diversity of methanotroph communities in a basalt aquifer. FEMS Microbiol Ecol 48:333–344PubMedGoogle Scholar
  160. Noll M, Frenzel P, Conrad R (2008) Selective stimulation of type I methanotrophs in a rice paddy soil by urea fertilization revealed by RNA-based stable isotope probing. FEMS Microbiol Ecol 65:125–132PubMedGoogle Scholar
  161. Oakley CJ, Murrell JC (1988) nifH genes in the obligate methane oxidizing bacteria. FEMS Microbiol Lett 49:53–57Google Scholar
  162. Ochman H, Elwyn S, Moran NA (1999) Calibrating bacterial evolution. Proc Natl Acad Sci USA 96:12638–12643PubMedPubMedCentralGoogle Scholar
  163. Ogiso T, Ueno C, Dianou D, Huy TV, Katayama A, Kimura M, Asakawa S (2012) Methylomonas koyamae sp. nov., a type I methane-oxidizing bacterium from floodwater of a rice paddy field. Int J Syst Evol Microbiol 62:1832–1837PubMedGoogle Scholar
  164. Ojala DS, Beck DA, Kalyuzhnaya MG (2011) Genetic systems for moderately halo(alkali)philic bacteria of the genus Methylomicrobium. Methods Enzymol 495:99–118PubMedGoogle Scholar
  165. Omelchenko MV, Vasileva LV, Zavarzin GA, Saveleva ND, Lysenko AM, Mityushina II, Khmelenina VN, Trotsenko YA (1996) A novel psychrophilic methanotroph of the genus Methylobacter. Mikrobiologiya 65:384–389Google Scholar
  166. Op den Camp HJM, Islam T, Stott MB, Harhangi RH, Hynes A, Schouten S, Jetten MSM, Birkeland N-P, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306Google Scholar
  167. Orla-Jensen S (1909) Die Hauptlinen des naturlichen Bacteriensystems. Z Bakteriol Parasitenk Abt II 22:305–346Google Scholar
  168. Ourisson G, Rohmer M, Poralla K (1987) Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Ann Rev Microbiol 41:301–333Google Scholar
  169. Pimenov NV, Kalyuzhnaya MG, Khmelenina VN, Mityushina LL, Trotsenko YA (2002) Utilization of methane and carbon dioxide by symbiotrophic bacteria in gills of mytilidae (Bathymodiolus) from the rainbow and Logachev hydrothermal fields on the mid-Atlantic ridge. Mikrobiogiya 71:587–594Google Scholar
  170. Prior SD, Dalton H (1985a) The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J Gen Microbiol 131:155–163Google Scholar
  171. Prior SD, Dalton H (1985b) Acetylene as a suicide substrate and active-site probe for methane monooxygenase from Methylococcus capsulatus (Bath). FEMS Microbiol Lett 29:105–109Google Scholar
  172. Rahalkar M, Bussmann I, Schink B (2007) Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int J Syst Evol Microbiol 57:1073–1080PubMedGoogle Scholar
  173. Rahalkar M, Deutzmann J, Schink B, Bussmann I (2009) Abundance and activity of methanotrophic bacteria in littoral and profundal sediments of Lake Constance (Germany). Appl Environ Microbiol 75:119–126PubMedPubMedCentralGoogle Scholar
  174. Rahman MT, Crombie A, Chen Y, Stralis-Pavese N, Bodrossy L, Meir P, McNamara NP, Murrell JC (2011) Environmental distribution and abundance of the facultative methanotroph Methylocella. ISME J 5:1061–1066PubMedPubMedCentralGoogle Scholar
  175. Reay DS, Radajewski S, Murrell JC, McNamara N, Nedwell DB (2001) Effects of land use on the activity and diversity of methane oxidizing bacteria in forest soils. Soil Biol Biochem 33:1613–1623Google Scholar
  176. Redmond MC, Valentine DL, Sessions AL (2010) Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. Appl Environ Microbiol 76:6412–6422PubMedPubMedCentralGoogle Scholar
  177. Reim A, Lüke C, Krause S, Pratscher J, Frenzel P (2012) One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil. ISME J 6:2128–2139PubMedPubMedCentralGoogle Scholar
  178. Ren T, Amaral JA, Knowles R (1997) The response of methane consumption by pure cultures of methanotrophic bacteria to oxygen. Can J Microbiol 43:925–928Google Scholar
  179. Reshetnikov AS, Khmelenina VN, Mustakhimov II, Kalyuzhnaya M, Lidstrom M, Trotsenko YA (2011) Diversity and phylogeny of the ectoine biosynthesis genes in aerobic, moderately halophilic methylotrophic bacteria. Extremophiles 15:653–663PubMedGoogle Scholar
  180. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547PubMedGoogle Scholar
  181. Romanovskaya VA, Malashenko YR, Bogachenko VN (1978) Corrected diagnoses of the genera and species of methane-utilizing bacteria. Mikrobiologiya 47:96–103Google Scholar
  182. Roslev P, King GM (1994) Survival and recovery of methanotrophic bacteria starved under oxic and anoxic conditions. Appl Environ Microbiol 60:2602–2608PubMedPubMedCentralGoogle Scholar
  183. Roslev P, King GM (1995) Aerobic and anaerobic starvation metabolism in methanotrophic bacteria. Appl Environ Microbiol 61:1563–1570PubMedPubMedCentralGoogle Scholar
  184. Roze E (1896) Le Clonothrix, un nouveau type generique de Cyanophycees. J Bot 10:325–330Google Scholar
  185. Sauter LM, Latypova E, Smalley NE, Lidstrom ME, Hallam S, Kalyuzhnaya MG (2012) Methanotrophic communities of Saanich Inlet: a microcosm perspective. Syst Appl Microbiol 35:198–203PubMedGoogle Scholar
  186. Schouten S, Bowman JP, Rijpstra WI, Sinninghe Damsté JS (2000) Sterols in a psychrophilic methanotroph, Methylosphaera hansonii. FEMS Microbiol Lett 186:193–195PubMedGoogle Scholar
  187. Schouten S, Rijpstra WIC, Kok M, Hopmans EC, Summons RE, Volkman JK, Damsté JSS (2001) Molecular organic tracers of biogeochemical processes in a saline meromictic lake (Ace Lake). Geochim Cosmochim Acta 65:1629–1640Google Scholar
  188. Scott D, Brannan J, Higgins IJ (1981) The effect of growth conditions on intracytoplasmic membranes and methane monooxygenase activities in Methylosinus trichosporium OB3b. J Gen Microbiol 125:63–72Google Scholar
  189. Semrau JD, Chistoserdov A, Lebron J, Costello A, Davagnino J, Kenna E, Holmes AJ, Finch R, Murrell JC, Lidstrom ME (1995) Particulate methane monooxygenase genes in methanotrophs. J Bacteriol 177:3071–3079PubMedPubMedCentralGoogle Scholar
  190. Sharpe PL, Dicosimo D, Bosak MD, Knoke K, Tao L, Cheng Q, Ye RW (2007) Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C40 carotenoid synthesis. Appl Environ Microbiol 73:1721–1728PubMedPubMedCentralGoogle Scholar
  191. Sieburth JM, Johnson PW, Eberhardt MA, Sieracki ME, Lidstrom M, Laux D (1987) The first methane-oxidizing bacterium from the upper mixed layer of the deep ocean, Methylomonas pelagica sp. nov. Curr Microbiol 14:285–293Google Scholar
  192. Siljanen HM, Saari A, Bodrossy L, Martikainen PJ (2012) Seasonal variation in the function and diversity of methanotrophs in the littoral wetland of a boreal eutrophic lake. FEMS Microbiol Ecol 80:548–555PubMedGoogle Scholar
  193. Söhngen NL (1906) Uber Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen. Z Bakteriol Parasitenk Abt II 15:513–517Google Scholar
  194. Sorokin DY, Jones BE, Kuenen JG (2000) A novel obligately methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extermophiles 4:145–155Google Scholar
  195. Stainthorpe AC, Lees V, Salmond GP, Dalton H, Murrell JC (1991) Screening of obligate methanotrophs for soluble methane monooxygenase genes. FEMS Microbiol Lett 70:211–216Google Scholar
  196. Stewart FJ, Newton ILG, Cavanaugh CM (2005) Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces. Trends Microbiol 13:439–448PubMedGoogle Scholar
  197. Stoecker K, Bendinger B, Schöning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci USA 103:2363–2367PubMedPubMedCentralGoogle Scholar
  198. Stralis-Pavese N, Abell GC, Sessitsch A, Bodrossy L (2011) Analysis of methanotroph community composition using a pmoA-based microbial diagnostic microarray. Nat Protoc 6:609–624PubMedGoogle Scholar
  199. Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell JC, Bodrossy L (2004) Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ Microbiol 6:347–363PubMedGoogle Scholar
  200. Sundh I, Bastviken D, Tranvik LJ (2006) Abundance, activity, and community structure of pelagic methane-oxidizing bacteria in temperate lakes. Appl Environ Microbiol 71:6746–6752Google Scholar
  201. Sutherland IW, Kennedy AFD (1986) Comparison of bacterial lipopolysaccharides by high performance liquid chromatography. Appl Environ Microbiol 52:948–950PubMedPubMedCentralGoogle Scholar
  202. Sutherland IW, MacKenzie CL (1977) Glucan common to the microcyst walls of cyst-forming bacteria. J Bacteriol 129:599–605PubMedPubMedCentralGoogle Scholar
  203. Svenning MM, Hestnes AG, Wartiainen I, Stein LY, Klotz MG, Kalyuzhnaya MG, Spang A, Bringel F, Vuilleumier S, Lajus A, Médigue C, Bruce DC, Cheng JF, Goodwin L, Ivanova N, Han J, Han CS, Hauser L, Held B, Land ML, Lapidus A, Lucas S, Nolan M, Pitluck S, Woyke T (2011) Genome sequence of the Arctic methanotroph Methylobacter tundripaludum SV96. J Bacteriol 193:6418–6419PubMedPubMedCentralGoogle Scholar
  204. Takeda K (1988) Characteristics of a nitrogen-fixing methanotroph, Methylocystis T-1. Antonie Van Leeuwenhoek 54:521–534PubMedGoogle Scholar
  205. Takeda K, Motomatsu S, Hachiya Y, Fukuoka S, Takahara Y (1974) Characterization and culture conditions for a methane-oxidizing bacteria. J Ferm Technol 52:793–798Google Scholar
  206. Talbot HM, Farrimond P (2007) Bacterial populations recorded in diverse sedimentary biohopanoids distributions. Org Geochem 38:1212–1225Google Scholar
  207. Tao L, Schenzle A, Odom JM, Cheng Q (2005) Novel carotenoid oxidase involved in biosynthesis of 4,4′-diapolycopene dialdehyde. Appl Environ Microbiol 71:3294–3301PubMedPubMedCentralGoogle Scholar
  208. Tavormina PL, Ussler W, Joye SB, Harrison BK, Orphan VJ (2010) Distributions of putative aerobic methanotrophs in diverse pelagic marine environments. ISME J 4:700–710PubMedGoogle Scholar
  209. Tavormina PL, Ussler W, Orphan VJ (2008) Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin. Appl Environ Microbiol 74:3985–3995PubMedPubMedCentralGoogle Scholar
  210. Taylor SW, Lange CR, Lesold EA (1997) Biofouling of contaminated ground-water recovery wells: characterization of microorganisms. Ground Water 35:973–980Google Scholar
  211. Toukdarian AE, Lidstrom ME (1984a) DNA hybridization analysis of the nif region of two methylotrophs and molecular cloning of nif-specific DNA. J Bacteriol 157:925–930PubMedPubMedCentralGoogle Scholar
  212. Toukdarian AE, Lidstrom ME (1984b) Nitrogen metabolism in a new obligate methanotroph, “Methylosinus” strain 6. J Gen Microbiol 130:1827–1837PubMedGoogle Scholar
  213. Trotsenko YA, Medvedkova KA, Khmelenina VN, Eshinimaev BT (2009) Thermophilic and thermotolerant aerobic methanotrophs. Mikrobiologiya 78:435–450Google Scholar
  214. Tsubota J, Eshinimaev BT, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 61:2646–2653Google Scholar
  215. Tsutsumi M, Iwata T, Kojima H, Fukui M (2011) Spatiotemporal variations in an assemblage of closely related planktonic aerobic methanotrophs. Freshwater Biol 56:342–351Google Scholar
  216. Urakami T, Komagata K (1986a) Cellular fatty acid composition and coenzyme Q system in Gram-negative methanol-utilizing bacteria. J Gen Appl Microbiol 25:343–360Google Scholar
  217. Urakami T, Komagata K (1986b) Emendation of Methylobacillus Yordy and Weaver 1977, a genus for methanol-utilizing bacteria. Int J Syst Bacteriol 36:502–511Google Scholar
  218. Urmann K, Schroth MH, Noll M, Gonzalez-Gil G, Zeyer J (2008) Assessment of microbial methane oxidation above a petroleum-contaminated aquifer using a combination of in situ techniques. J Geophys Res Biogeosci 113: article no G02006Google Scholar
  219. van Winden JF, Reichart GJ, McNamara NP, Benthien A, Damsté JS (2012a) Temperature-induced increase in methane release from peat bogs: a mesocosm experiment. PLoS One 7:e39614PubMedPubMedCentralGoogle Scholar
  220. van Winden JF, Talbot HM, Kip N, Reichart G-J, Pol A, McNamara NP, Jetten MSM, Op den Camp HJM, Sinninghe Damsté JS (2012b) Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss. Geochim Cosmochim Acta 77:52–61Google Scholar
  221. Vela GR, Wyss O (1964) Improved stain for the visualization of Azotobacter encystment. J Bacteriol 87:476–477PubMedPubMedCentralGoogle Scholar
  222. Vigliotta G, Nutricati E, Carata E, Tredici SM, De Stefano M, Pontieri P, Massardo DR, Prati MV, De Bellis L, Alifano P (2007a) Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic gamma-proteobacterium. Appl Environ Microbiol 73:3556–3565PubMedPubMedCentralGoogle Scholar
  223. Vigliotta G, Tala A, Giudetti A, De Stefano M, Del Giudice L, Alifano P (2007b) The impact of environmental perturbation on microbial community structure and dynamics: factors affecting growth of Clonothrix fusca in groundwater. J Plant Interact 2:159–167Google Scholar
  224. Vishwakarma P, Dumont MG, Bodrossy L, Stralis-Pavese N, Murrell JC, Dubey SK (2009) Ecological and molecular analyses of the rhizospheric methanotroph community in tropical rice soil: effect of crop phenology and land-use history. Curr Sci 96:1082–1089Google Scholar
  225. Völker H, Schweisfurth R, Hirsch P (1977) Morphology and ultrastructure of Crenothrix polyspora Cohn. J Bacteriol 131:306–313PubMedPubMedCentralGoogle Scholar
  226. Volkman JK (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506PubMedGoogle Scholar
  227. Vuilleumier S, Khmelenina VN, Bringel F, Reshetnikov AS, Lajus A, Mangenot S, Rouy Z, Op den Camp HJ, Jetten MS, Dispirito AA, Dunfield P, Klotz MG, Semrau JD, Stein LY, Barbe V, Médigue C, Trotsenko YA, Kalyuzhnaya MG (2012) Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. J Bacteriol 194:551–552PubMedPubMedCentralGoogle Scholar
  228. Wang YL, Wu WX, Ding Y, Liu W, Perera A, Chen YX, Devare M (2009) Methane oxidation activity and bacterial community composition in a simulated landfill cover soil is influenced by the growth of Chenopodium album L. Soil Biol Biochem 40:2452–2459Google Scholar
  229. Ward N, Larsen Ø, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methé B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2:e303PubMedPubMedCentralGoogle Scholar
  230. Wartiainen I, Hestnes AG, McDonald IR, Svenning MM (2006) Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78 degrees N). Int J Syst Evol Microbiol 56:109–113PubMedGoogle Scholar
  231. Wasmund K, Kurtböke DI, Burns KA, Bourne DG (2009) Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity. FEMS Microbiol Ecol 68:142–151PubMedGoogle Scholar
  232. Wendlandt KD, Jechorek M, Helm J, Stottmeister U (1998) Production of PHB with a high molecular mass from methane. Polym Degrad Stab 59:191–194Google Scholar
  233. Whalen SC, Reeburgh WS (1990) Consumption of atmospheric methane by tundra soils. Nature 346:160–162Google Scholar
  234. Whittenbury R, Dalton H (1981) The methylotrophic bacteria. In: Starr P, Stolph H, Truper HG, Blaows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 894–902Google Scholar
  235. Whittenbury R, Krieg NR (1984) Family Methylococcaceae. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1, 1st edn. The Williams & Wilkins, Baltimore, pp 256–261Google Scholar
  236. Whittenbury R, Davies SL, Davey JF (1970a) Exospores and cysts formed by methane-utilizing bacteria. J Gen Microbiol 61:219–226PubMedGoogle Scholar
  237. Whittenbury R, Phillips KC, Wilkinson JF (1970b) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218PubMedGoogle Scholar
  238. Wise MG, McArthur JV, Shimkets LJ (1999) Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microbiol 65:4887–4897PubMedPubMedCentralGoogle Scholar
  239. Wise MG, McArthur JV, Shimkets LJ (2001) Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp. nov., novel type I methanotrophs. Int J Syst Evol Microbiol 51:611–621PubMedGoogle Scholar
  240. Wu L, Ma K, Lu Y (2009) Rice roots select for type I methanotrophs in rice field soil. Syst Appl Microbiol 32:421–428PubMedGoogle Scholar
  241. Yan TF, Zhou JZ, Zhang CLL (2006) Diversity of functional genes for methanotrophs in sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico. FEMS Microbiol Ecol 57:251–259PubMedGoogle Scholar
  242. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol. 33:291–299PubMedGoogle Scholar
  243. Yoon S, Kraemer SM, DiSpirito AA, Semrau JD (2011) An assay for screening microbial cultures for chalkophore production. Environ Microbiol Rep 2:295–303Google Scholar
  244. Zelenkina TS, Eshinimaev BT, Dagurova OP, Suzina NE, Namrasaev BB, Trotsenko YA (2009) Aerobic methanotrophic bacteria from shore thermal spring of Lake Baikal. Mikrobiologiya 78:545–551Google Scholar
  245. Zhivotchenko AG, Nikonova ES, Jorgensen MH (1995) Effect of fermentation conditions on N2 fixation by Methylococcus capsulatus. Bioprocess Eng 14:9–15Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Food Safety Centre, Tasmanian Institute of AgricultureUniversity of TasmaniaHobartAustralia

Personalised recommendations