The Genus Piscirickettsia

  • Sergio H. MarshallEmail author
  • Fernando A. Gómez
  • Karl E. Klose
Reference work entry


The genus Piscirickettsia is part of the Piscirickettsiaceae family, belonging to the Gammaproteobacteria class within the Thiotrichales order. The family contains seven phylogenetically related genera (Cycloclasticus, Hydrogenovibrio, Sulfurivirga, Thioalkalimicrobium, Methylophaga, Thiomicrospira, and Piscirickettsia), with highly diverse characteristics, making them very different from one another. The genus Piscirickettsia comprises a single species called Piscirickettsia salmonis, a Gram-negative facultative intracellular fish pathogen that significantly affects the salmon industry. Since its first isolation in Chile in 1989, the bacterium has been reported in Norway, Scotland, Greece, Canada, and the USA, among others. To date, the complete genome sequence of P. salmonis has not been reported, and relevant aspects of its metabolism, virulence, and life cycle are still poorly understood.


Internal Transcribe Spacer Atlantic Salmon Coho Salmon Soda Lake Infected Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almendras FF, Jones SRM, Fuentealva C, Wrigth GM (1997) In vitro infection of a cell line from Ictalurus nebulosus with Piscirickettsia salmonis. Can J Vet Res 61:66–68PubMedPubMedCentralGoogle Scholar
  2. Arkush KD, McBride AM, Mendonca HL, Okihiro M, Andree KB, Marshall SH, Henríquez V, Hedrick RP (2005) Genetic characterization and experimental pathogenesis of Piscirickettsia salmonis isolated from white seabass Atractoscion nobilis. Dis Aquat Organ 63:139–149PubMedCrossRefGoogle Scholar
  3. Athanassopoulou F, Groman D, Prapas T, Sabatakou O (2004) Pathological and epidemiological observations on rickettsiosis in cultured sea bass (Dicentrarchus labrax L.) from Greece. J Appl Ichthyol 20:525–529CrossRefGoogle Scholar
  4. Birkbeck TH, Griffen AA, Reid HI, Laidler LA, Wadsworth S (2004) Growth of Piscirickettsia salmonis to high titters in insect tissue culture cells. Infect Immun 72:3693–3694PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bowman JP (2005) Methylophaga. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology. Springer, New York, pp 190–192Google Scholar
  6. Bravo S, Campos M (1989) Síndrome del salmón. Coho Chile Pesquero 54:47–48Google Scholar
  7. Bravo S, Midtlyng PJ (2007) The use of fish vaccines in the Chilean salmon industry 1999–2003. Aquaculture 270:36–42CrossRefGoogle Scholar
  8. Brinkhoff T, Santegoeds CM, Sahm K, Kuever J, Muyzer G (1998) A polyphasic approach to study the diversity and vertical distribution of sulfur-oxidizing Thiomicrospira species in coastal sediments of the German Wadden Sea. Appl Environ Microbiol 64:4650–4657PubMedPubMedCentralGoogle Scholar
  9. Brinkhoff T, Kauver J, Muyzer G, Jannasch HW (2005) Thiomicrospira. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology. Springer, New York, pp 193–199Google Scholar
  10. Brocklebank JR, Speare DJ, Armstrong RD, Evelyn T (1992) British Columbia. Septicemia suspected to be caused by a ricksettia-like agent in farmed Atlantic salmon. Can Vet J 33:407–408PubMedPubMedCentralGoogle Scholar
  11. Casanova A, Obreque J, Sandino AM, Jashés M (2001) tRNA genes were found in Piscirickettsia salmonis 16S-23S rDNA spacer region (ITS). FEMS Microbiol Lett 197:19–22PubMedGoogle Scholar
  12. Casanova A, Obreque CJR, Gaggero A, Landskron E, Sandino AM, Jashés MM (2003) Electrophoretic analysis of ITS from Piscirickettsia salmonis Chilean isolates. FEMS Microbiol Lett 225:173–176PubMedCrossRefGoogle Scholar
  13. Cvitanich JD, Garate NO, Smith CE (1991) Isolation of a rickettsial-like organism causing diseases and mortality in Chilean salmonids and its confirmation by Koch’s postulate. J Fish Dis 14:121–145CrossRefGoogle Scholar
  14. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123PubMedCrossRefGoogle Scholar
  15. Eppinger M, McNair K, Zogaj X, Dinsdale EA, Edwards RA, Klose KE (2013) Draft genome sequence of the fish pathogen Piscirickettsia salmonis. Genome Announc 1(6). pii: e00926–13PubMedCrossRefPubMedCentralGoogle Scholar
  16. Fryer JL, Lannan CN (2005) Family II Piscirickettsiaceae fam. Nov. In: Garrity GM (ed) Bergey´s manual of systematic bacteriology. Springer, New York, pp 180–184Google Scholar
  17. Fryer JL, Lannan CN, Garcés HL, Larenas JL, Smith PA (1990) Isolation of rickettsiales-like organism from diseased Coho salmon (Oncorhynchus kisutch) in Chile. Fish Pathol 25:107–114CrossRefGoogle Scholar
  18. Fryer JL, Lannan CN, Giovannoni S, Wood N (1992) Piscirickettsia salmonis gen. nov., sp. Nov., the causative agent of epizootic disease in salmonid fishes. Int J Syst Evol Microbiol 42:120–126Google Scholar
  19. Gaggero A, Castro H, Sandino AM (1995) First isolation of Piscirickettsia salmonis from Coho salmon, Oncorhynchus kisutch (Walbaum), and rainbow trout, Oncorhynchus mykiss (Walbaum), during the freshwater stage of their life cycle. J Fish Dis 18:277–279CrossRefGoogle Scholar
  20. Ganassin RC, Bols NC (1998) Development of a monocyte/macrophage-like cell line, RTS11, from rainbow trout spleen. Fish Shellfish Immunol 8:457–476CrossRefGoogle Scholar
  21. Geiselbrecht AD (2005) Cycloclasticus. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology. Springer, New York, pp 184–188Google Scholar
  22. Gómez F, Henríquez V, Marshall SH (2009) Additional evidence of the facultative intracellular nature of the fish bacterial pathogen Piscirickettsia salmonis. Arch Med Vet 41:261–267CrossRefGoogle Scholar
  23. Gómez FA, Cárdenas C, Henríquez V, Marshall SH (2011) Characterization of a functional toxin/anti-toxin module in the genome of the fish pathogen Piscirickettsia salmonis. FEMS Microbiol Lett 317:83–92PubMedCrossRefGoogle Scholar
  24. Gómez FA, Tobar JA, Henríquez V, Sola M, Altamirano C, Marshall SH (2013) Evidence of the presence of a functional Dot/Icm type IV-B secretion system in the fish bacterial pathogen Piscirickettsia salmonis. PLoS One 8(1):e54934PubMedCrossRefPubMedCentralGoogle Scholar
  25. Han GH, Kim W, Chun J, Kim SW (2011) Draft genome sequence of Methylophaga aminisulfidivorans MP T. J Bacteriol 193:4265PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kuzyk MA, Thorton JC, Kay WW (1996) Antigenic characterization of the salmonid pathogen Piscirickettsia salmonis. Infect Immun 64:5205–5210PubMedPubMedCentralGoogle Scholar
  27. Kuzyk MA, Burian J, Machander D, Dolhaine D, Cameron S, Thornton JC, Kay WW (2001) An efficacious recombinant subunit vaccine against the salmonid rickettsial pathogen Piscirickettsia salmonis. Vaccine 19:2337–2344PubMedCrossRefGoogle Scholar
  28. Lannan CN, Bartholomew JL, Fryer JL (1999) Rickettsial and chlamydial infections in fish; fish diseases and disorders, viral, bacterial and fungal infections, 245–267. CAB International, WallingfordGoogle Scholar
  29. Larenas JJ, Bartholomew J, Troncoso O, Fernández S, Ledezma H, Sandoval N, Vera P, Contreras J, Smith P (2003) Experimental vertical transmission of Piscirickettsia salmonis and in vitro study of attachment and mode of entrance into the fish ovum. Dis Aquat Organ 56(1):25–30PubMedCrossRefGoogle Scholar
  30. Marshall SH, Conejeros P, Zahr M, Olivares J, Gómez F, Cataldo P, Henriquez V (2007) Immunological characterization of a bacterial protein isolated from salmonid fish naturally infected with Piscirickettsia salmonis. Vaccine 25(11):2095–2102PubMedCrossRefGoogle Scholar
  31. Marshall SH, Henríquez V, Gómez FA, Cárdenas C (2011) ISPsa2, the first mobile genetic element to be described and characterized in the bacterial facultative intracellular pathogen Piscirickettsia salmonis. FEMS Microbiol Lett 314:18–24PubMedCrossRefGoogle Scholar
  32. Marshall SH, Gómez FA, Ramírez R, Nilo L, Henríquez V (2012) Biofilm generation by Piscirickettsia salmonis under growth stress conditions: a putative in vivo survival/persistence strategy in marine environments. Res Microbiol 163(8):557–566PubMedCrossRefGoogle Scholar
  33. Mauel MJ, Giovannoni SJ, Fryer JL (1999) Phylogenetic analysis of Piscirickettsia salmonis by 16S, internal transcribed spacer (ITS) and 23S ribosomal DNA sequencing. Dis Aquat Organ 35(2):115–123PubMedCrossRefGoogle Scholar
  34. Mauel MJ, Miller DL, Frazier K, Liggett AD, Styer L, Montgomery-Brock D, Brock J (2003) Characterization of a piscirickettsiosis-like disease in Hawaiian tilapia. Dis Aquat Organ 53:249–255PubMedCrossRefGoogle Scholar
  35. Mauel MJ, Ware C, Smith PA (2008) Culture of Piscirickettsia salmonis on enriched blood agar. J Vet Diagn Invest 20:213–214PubMedCrossRefGoogle Scholar
  36. Mikalsen J, Skjaervik O, Wiik-Nielsen J, Wasmuth MA, Colquhoun DJ (2008) Agar culture of Piscirickettsia salmonis, a serious pathogen of farmed salmonid and marine fish. FEMS Microbiol Lett 278:43–47PubMedCrossRefGoogle Scholar
  37. Niepceron M, Portet-Koltalo F, Merlin C, Motelay-Massei A, Barray S, Bodilis J (2010) Both Cycloclasticus spp. and Pseudomonas spp. as PAH-degrading bacteria in the Seine estuary (France). FEMS Microbiol Ecol 71:137–147PubMedCrossRefGoogle Scholar
  38. Nishihara H (2005) Hydrogenovibrio. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology. Springer, New York, pp 188–189Google Scholar
  39. Nishihara H, Yaguchi T, Chung SY, Suzuki K, Yanagi M, Yamasato K, Kodama T, Igarashi Y (1998) Phylogenetic position of an obligately chemoautotrophic, marine hydrogen-oxidizing bacterium, Hydrogenovibrio marinus, on the basis of 16S rRNA gene sequences and two form I RuBisCO gene sequences. Arch Microbiol 169:364–368PubMedCrossRefGoogle Scholar
  40. OIE (2006) Piscirickettsiosis. In: Manual of diagnostic tests for aquatic animals chapter 2.1.13, 5th edn. Office International des Epizooties, ParisGoogle Scholar
  41. Rojas MV, Olivares J, del Río R, Marshall SH (2008) Characterization of a novel and genetically different small infective variant of Piscirickettsia salmonis. Microb Pathog 44:370–378CrossRefGoogle Scholar
  42. Rojas V, Galanti N, Bols NC, Marshall SH (2009) Productive infection of Piscirickettsia salmonis in macrophages and monocyte-like cells from rainbow trout, a possible survival strategy. J Cell Biochem 108:631–637PubMedCrossRefGoogle Scholar
  43. Rojas V, Galanti N, Bols NC, Jiménez V, Paredes R, Marshall SH (2010) Piscirickettsia salmonis induces apoptosis in macrophages and monocyte-like cells from rainbow trout. J Cell Biochem 110:468–476PubMedGoogle Scholar
  44. Schafer JW, Alvarado V, Enriquez R, Monras M (1990) The ‘coho salmon syndrome’ (CSS): a new disease in Chilean salmon, reared in sea water. Bull Eur Assoc Fish Pathol 10:130Google Scholar
  45. Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen GJ (2001) Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580PubMedGoogle Scholar
  46. Sorokin DY, Gorlenko VM, Tourova TP, Tsapin AI, Nealson KH, Kuenen GJ (2002) Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline mono lake (California). Int J Syst Evol Microbiol 52:913–920PubMedCrossRefGoogle Scholar
  47. Takai K, Miyazaki M, Nunoura T, Hirayama H, Oida H, Furushima Y, Yamamoto H, Horikoshi K (2006) Sulfurivirga caldicuralii gen. nov., sp. nov., a novel microaerobic, thermophilic, thiosulfate-oxidizing chemolithoautotroph, isolated from a shallow marine hydrothermal system occurring in a coral reef, Japa. Int J Syst Evol Microbiol 56:1921–1929PubMedCrossRefGoogle Scholar
  48. Teramoto M, Suzuki M, Hatmanti A, Harayama S (2010) The potential of Cycloclasticus and Altererythrobacter strains for use in bioremediation of petroleum-aromatic-contaminated tropical marine environments. J Biosci Bioeng 110:48–52PubMedCrossRefGoogle Scholar
  49. Tobar JA, Jerez S, Caruffo M, Bravo C, Contreras F, Bucarey SA, Harel M (2011) Oral vaccination of Atlantic salmon (Salmo salar) against salmonid rickettsial septicaemia. Vaccine 29:2336–2340PubMedCrossRefGoogle Scholar
  50. Vadovic P, Fodorová M, Toman R (2007) Structural features of lipid a of Piscirickettsia salmonis, the etiological agent of the salmonid rickettsial septicemia. Acta Virol 51:249–259PubMedGoogle Scholar
  51. Villeneuve C, Martineau C, Mauffrey F, Villemur R (2012) Complete genome sequences of Methylophaga sp. strain JAM1 and Methylophaga sp. strain JAM7. J Bacteriol 194:4126–4127PubMedCrossRefPubMedCentralGoogle Scholar
  52. Wilhelm V, Huaracan B, Martinez R, Rosemblatt M, Burzio LO, Valenzuela PDT (2003) Cloning and expression of the coding regions of the heat shock proteins HSP10 and HSP16 from Piscirickettsia salmonis. Biol Res 36:421–428PubMedGoogle Scholar
  53. Wilhelm V, Soza C, Martíınez R, Rosemblatt M, Burzio LO, Valenzuela PDT (2005) Production and immune response of recombinant Hsp60 and Hsp70 from the salmon pathogen Piscirickettsia salmonis. Biol Res 38:69–82PubMedCrossRefGoogle Scholar
  54. Yañez AJ, Valenzuela K, Silva H, Retamales J, Romero A, Enriquez R, Figueroa J, Claude A, Gonzalez J, Avendaño-Herrera R, Carcamo JG (2012) Broth medium for the successful culture of the fish pathogen Piscirickettsia salmonis. Dis Aquat Organ 97:197–205PubMedCrossRefGoogle Scholar
  55. Yuksel SA, Thompson KD, Ellis AE, Adams A (2001) Purification of Piscirickettsia salmonis and associated phage particles. Dis Aquat Organ 44(3):231–235PubMedCrossRefGoogle Scholar
  56. Zusman T, Yerushalmi G, Segal G (2003) Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect Immun 71: 3714–3723PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sergio H. Marshall
    • 1
    • 2
    • 3
    Email author
  • Fernando A. Gómez
    • 1
  • Karl E. Klose
    • 4
  1. 1.Laboratório de Genética e Inmunología MolecularInstituto de Biologia, Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.NBC: Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de ValparaísoValparaísoChile
  3. 3.Fraunhofer Chile Research Foundation, Center For Systems BiotechnologyLas CondesChile
  4. 4.South Texas Center for Emerging Infectious Diseases, Department of BiologyUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations