Advertisement

The Family Alteromonadaceae

Reference work entry

Abstract

The family Alteromonadaceae collects a diverse set of gammaproteobacteria, mostly marine in origin and requiring sodium to grow. The type genus Alteromonas was among the first marine bacteria described. They have large cells that grow quite fast with minimal nutritional requirements, and although all are obligate aerobic heterotrophs, they display a diverse set of potential substrates and extensive degradative properties. They have large genomes that contain several degradative genes and sometimes secondary metabolites. Ecologically they are often associated to nutrient-rich environments such as particulate material, marine snow, or marine animals. They have relatively high optimal growth temperatures for marine bacteria except for those isolated from cold environments such as Glaciecola. Saccharophagus has been shown to utilize a large set of sugars and polysaccharides as carbon and energy source. Members of Marinobacter have been described as hydrocarbon degrading, although this characteristic is spread among other genera of the family. Some are agarolytic (Agarivorans, Aliagarivorans). Some strains of Alteromonas macleodii have the most oxygen-resistant hydrogenase described to date although this species cannot grow on hydrogen as energy source and does not fix CO2.

Keywords

Type Species Marine Bacterium Marine Agar Alginate Lyase Polar Flagellum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acinas SG, Antón J et al (1999) Diversity of free-living and attached bacteria in offshore Western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl Environ Microbiol 65:514–522PubMedPubMedCentralGoogle Scholar
  2. Agogué H, Casamayor EO et al (2004) Comparison of samplers for the biological characterization of the sea surface microlayer. Limnol Oceanogr Methods 2:213–225Google Scholar
  3. Aguilera M, Jiménez-Pranteda ML et al (2009) Marinobacter lacisalsi sp. nov., a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve Fuente de Piedra in southern Spain. Int J Syst Evol Microbiol 59(7):1691–1695PubMedGoogle Scholar
  4. Akagawa-Matsushita M, Matsuo M et al (1992) Alteromonas atlantica sp. nov. and Alteromonas carrageenovora sp. nov., bacteria that decompose algal polysaccharides. Int J Syst Bacteriol 42(4):621–627Google Scholar
  5. Andrykovitch G, Marx I (1988) Isolation of a new polysaccharide-digesting bacterium from a salt marsh. Appl Environ Microbiol 54(4):1061–1062PubMedPubMedCentralGoogle Scholar
  6. Antunes A, França L et al (2007) Marinobacter salsuginis sp. nov., isolated from the brine–seawater interface of the Shaban Deep, Red Sea. Int J Syst Evol Microbiol 57(5):1035–1040PubMedGoogle Scholar
  7. Baba A, Miyazaki M et al (2011) Microbulbifer chitinilyticus sp. nov. and Microbulbifer okinawensis sp. nov., chitin-degrading bacteria isolated from mangrove forests. Int J Syst Evol Microbiol 61(9):2215–2220PubMedGoogle Scholar
  8. Baik KS, Park YD et al (2006) Glaciecola nitratireducens sp. nov., isolated from seawater. Int J Syst Evol Microbiol 56(9):2185–2188PubMedGoogle Scholar
  9. Baumann L, Baumann P et al (1972) Taxonomy of aerobic marine eubacteria. J Bacteriol 110(1):402–429PubMedPubMedCentralGoogle Scholar
  10. Baumann P, Baumann L et al (1984) Taxonomy of Alteromonas: A. nigrifaciens sp. nov., nom. rev.; A. macleodii; and A. haloplanktis. Int J Syst Bacteriol 34:145–149Google Scholar
  11. Bein SJ (1954) A study of certain chromogenic bacteria isolated from red tide water with a description of a new species. Bull Marine Sci 4(2):110–119Google Scholar
  12. Bian F, Qin QL et al (2011) Complete genome sequence of seawater bacterium Glaciecola nitratireducens FR1064T. J Bacteriol 193(24):7006–7007PubMedPubMedCentralGoogle Scholar
  13. Bowman JP, McCammon SA et al (1998) Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol 48(4):1213–1222Google Scholar
  14. Bozzi L, Milas M et al (1996) Characterization and solution properties of a new exopolysaccharide excreted by the bacterium Alteromonas sp. strain 1644. Int J Biol Macromol 18(1):9–17PubMedGoogle Scholar
  15. Buck JD, Meyers SP et al (1963) Pseudomonas (Flavobacterium) piscicida bein comb. nov. J Bacteriol 86(5):1125–1126PubMedPubMedCentralGoogle Scholar
  16. Chang HW, Nam YD et al (2007) Marinobacterium halophilum sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol 57(1):77–80PubMedGoogle Scholar
  17. Chen LP, Xu HY et al (2009a) Glaciecola lipolytica sp. nov., isolated from seawater near Tianjin city, China. Int J Syst Evol Microbiol 59(1):73–76PubMedGoogle Scholar
  18. Chen YG, Xiao HD et al (2009b) Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie Van Leeuwenhoek 96(3):259–266PubMedGoogle Scholar
  19. Chiu HH, Shieh WY et al (2007) Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Syst Evol Microbiol 57(6):1209–1216PubMedGoogle Scholar
  20. Cho JY (2012) Algicidal activity of marine alteromonas sp. KNS-16 and isolation of active compounds. Biosci Biotechnol Biochem 76(8):1452–1458PubMedGoogle Scholar
  21. Coyne VE, Pillidge CJ et al (1989) Reclassification of Alteromonas colwelliana to the genus Shewanella by DNA-DNA hybridization, serology and 5S ribosomal RNA sequence data. Syst Appl Microbiol 12:275–279Google Scholar
  22. Du ZJ, Lv GQ et al (2011) Agarivorans gilvus sp. nov. isolated from seaweed. Int J Syst Evol Microbiol 61(3):493–496PubMedGoogle Scholar
  23. Duckworth M, Turvey JR (1969) The action of a bacterial agarase on agarose, porphyran and alkali-treated porphyran. Biochem J 113(4):687–692PubMedPubMedCentralGoogle Scholar
  24. Ekborg NA, Gonzalez JM et al (2005) Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 55(4):1545–1549PubMedGoogle Scholar
  25. Ekborg NA, Taylor LE et al (2006) Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2–40. Appl Environ Microbiol 72(5):3396–3405PubMedPubMedCentralGoogle Scholar
  26. Enger Ø, Nygaard H et al (1987) Characterization of Alteromonas denitrificans sp. nov. Int J Syst Bacteriol 37(4):416–421Google Scholar
  27. Euzéby JP, Tindall BJ (2004) Status of strains that contravene Rules 27(3) and 30 of the Bacteriological Code. Request for an Opinion. Int J Syst Evol Microbiol 54(1):293–301PubMedGoogle Scholar
  28. Gao X, Hall DG (2005) Catalytic asymmetric synthesis of a potent thiomarinol antibiotic. J Am Chem Soc 127(6):1628–1629PubMedGoogle Scholar
  29. Garcia-Martinez J, Acinas SG et al (2002) Prevalence and microdiversity of Alteromonas macleodii-like microorganisms in different oceanic regions. Environ Microbiol 4(1):42–50PubMedGoogle Scholar
  30. Gärdes A, Kaeppel EC et al (2010) Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand Genomic Sci 3(2):97–107PubMedPubMedCentralGoogle Scholar
  31. Gauthier G, Gauthier M et al (1995) Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Baceriol 45(4):755–761Google Scholar
  32. Gauthier MJ, Breittmayer VA (1992) The genera Alteromonas and Marinomonas. In: Balows A, Truper HG, Dworkin M, Harber H, Schleifer KH (eds) The Prokaryotes, vol 3, 2nd edn. Springer-Verlag, Berlin, Germany, pp 3064–3070Google Scholar
  33. Gauthier MJ, Lafay B et al (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42(4):568–576PubMedGoogle Scholar
  34. González JM, Mayer F et al (1997) Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47(2):369–376PubMedGoogle Scholar
  35. Gooday GW (1990) The ecology of chitin degradation. ETATS-UNIS, Plenum, New YorkGoogle Scholar
  36. Gorshkova NM, Ivanova EP et al (2003) Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53(6):2073–2078PubMedGoogle Scholar
  37. Gram L, Trolle G et al (1987) Detection of specific spoilage bacteria from fish stored at low (0 °C) and high (20 °C) temperatures. Int J Food Microbiol 4(1):65–72Google Scholar
  38. Green DH, Bowman JP et al (2006) Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 56(3):523–527PubMedGoogle Scholar
  39. Gu J, Cai H et al (2007) Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol 57(2):250–254PubMedGoogle Scholar
  40. Guezennec J, Pignet P et al (1998) Sulfation and depolymerization of a bacterial exopolysaccharide of hydrothermal origin. Carbohydr Polym 37(1):19–24Google Scholar
  41. Guo B, Gu J et al (2007) Marinobacter segnicrescens sp. nov., a moderate halophile isolated from benthic sediment of the South China Sea. Int J Syst Evol Microbiol 57(9):1970–1974PubMedGoogle Scholar
  42. Handley KM, Héry M et al (2009) Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Int J Syst Evol Microbiol 59(4):886–892PubMedGoogle Scholar
  43. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170PubMedGoogle Scholar
  44. Huo YY, Wang CS et al (2008) Marinobacter mobilis sp. nov. and Marinobacter zhejiangensis sp. nov., halophilic bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 58(12):2885–2889PubMedGoogle Scholar
  45. Huo YY, Xu XW et al (2009) Marinobacterium nitratireducens sp. nov. and Marinobacterium sediminicola sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 59(5):1173–1178PubMedGoogle Scholar
  46. Huu NB, Denner EBM et al (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49(2):367–375PubMedGoogle Scholar
  47. Ivanova EP, Chun J et al (2000) Reclassification of Alteromonas distincta Romanenko et al. 1995 as Pseudoalteromona distincta comb. nov. Int J Syst Evol Microbiol 50:141–144Google Scholar
  48. Ivanova EP, Romanenko LA et al (2001) Retrieval of the species Alteromonas tetraodonis Simidu et al. 1990 as Pseudoalteromonas tetraodonis comb. nov. and emendation of description. Int J Syst Evol Microbiol 51:1071–1078Google Scholar
  49. Ivanova EP, Mikhailov VV (2001) A new family, Alteromonadaceae fam. nov., including marine proteobacteria of the genera alteromonas, pseudoalteromonas, idiomarina, and colwellia. Microbiology 70(1):10–17Google Scholar
  50. Ivanova EP, Mikhailov VV et al (1996) Alteromonas elyakovii sp. nov., a novel bacterium isolated from marine molluscs. Biol Morya 22:231–237Google Scholar
  51. Ivanova EP, Flavier S et al (2004) Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54(5):1773–1788PubMedGoogle Scholar
  52. Ivanova EP, Bowman JP et al (2005) Alteromonas addita sp. nov. Int J Syst Evol Microbiol 55(3):1065–1068PubMedGoogle Scholar
  53. Ivars-Martinez E, D´Auria G et al. (2008a) Biogeography of the ubiquitous marine bacterium Alteromonas macleodii determined by multi-locus sequence analysis (MLSA). Mol Ecol 17(18):4092–4106PubMedGoogle Scholar
  54. Ivars-Martinez E, Martin-Cuadrado AB et al (2008b) Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J 2(12):1194–1212PubMedGoogle Scholar
  55. Iwamoto Y, Araki R et al (2001) Purification and characterization of bifunctionalalginate lyase from Alteromonas sp. strain no. 272 and its action on saturated oligomeric substrates. Biosci Biotechnol Biochem 65(1):133–142PubMedGoogle Scholar
  56. Jean WD, Chen JS et al (2006) Bowmanella denitrificans gen. nov., sp. nov., a denitrifying bacterium isolated from seawater from An-Ping Harbour, Taiwan. Int J Syst Evol Microbiol 56(10):2463–2467PubMedGoogle Scholar
  57. Jean WD, Huang SP et al (2009) Aliagarivorans marinus gen. nov., sp. nov. and Aliagarivorans taiwanensis sp. nov., facultatively anaerobic marine bacteria capable of agar degradation. Int J Syst Evol Microbiol 59(8):1880–1887PubMedGoogle Scholar
  58. Jensen M, Tebo B et al (1980) Characterization of Alteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin. Curr Microbiol 3(5):311–315Google Scholar
  59. Jeon CO, Lim J-M et al (2005) Salinimonas chungwhensis gen. nov., sp. nov., a moderately halophilic bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 55(1):239–243PubMedGoogle Scholar
  60. Jin HM, Jeong H et al (2011) Complete genome sequence of the polycyclic aromatic hydrocarbon-degrading bacterium Alteromonas sp. strain SN2. J Bacteriol 193(16):4292–4293PubMedPubMedCentralGoogle Scholar
  61. Jung J, Chun J et al (2012) Genome sequence of extracellular-protease-producing Alishewanella jeotgali isolated from traditional Korean fermented seafood. J Bacteriol 194(8):2097PubMedPubMedCentralGoogle Scholar
  62. Kim H, Choo YJ et al (2007) Marinobacterium litorale sp. nov. in the order Oceanospirillales. Int J Syst Evol Microbiol 57(7):1659–1662PubMedGoogle Scholar
  63. Kim YG, Jin YA et al (2008) Marinobacterium rhizophilum sp. nov., isolated from the rhizosphere of the coastal tidal-flat plant Suaeda japonica. Int J Syst Evol Microbiol 58(1):164–167PubMedGoogle Scholar
  64. Kim MS, Roh SW et al (2009) Alishewanella jeotgali sp. nov., isolated from traditional fermented food, and emended description of the genus Alishewanella. Int J Syst Evol Microbiol 59(9):2313–2316PubMedGoogle Scholar
  65. Kim MS, Jo SK et al (2010) Alishewanella agri sp. nov., isolated from landfill soil. Int J Syst Evol Microbiol 60(9):2199–2203PubMedGoogle Scholar
  66. Kim J, Jung J et al (2012) Genome sequence of pectin-degrading Alishewanella agri, isolated from landfill soil. J Bacteriol 194(18):5135–5136PubMedPubMedCentralGoogle Scholar
  67. Klippel B, Lochner A et al (2011) Complete genome sequence of the marine cellulose- and xylan-degrading bacterium Glaciecolasp. strain 4H-3-7 + YE-5. J Bacteriol 193(17):4547–4548PubMedPubMedCentralGoogle Scholar
  68. Klochko VV, Zelena BL et al (2012) Peculiarities of Alteromonas macleodii strains reflects their deep/surface habitation rather than geographical distribution. J Gen Appl Microbiol 58(2):129–135PubMedGoogle Scholar
  69. Kodama K, Shiozawa H, Ishii A (1993) Alteromonas rava sp. nov., a marine bacterium that produces a new antibiotic, thiomarinol. Annu Rep Sankyo Res Lab 45:131–136Google Scholar
  70. Kolekar YM, Kodam KM (2012) Decolorization of textile dyes by Alishewanella sp. KMK6. Appl Microbiol Biotechnol 95(2):521–529PubMedGoogle Scholar
  71. Kurahashi M, Yokota A (2004) Agarivorans albus gen. nov., sp. nov., a γ-proteobacterium isolated from marine animals. Int J Syst Evol Microbiol 54(3):693–697PubMedGoogle Scholar
  72. Lai Q, Yuan J et al (2009) Bowmanella pacifica sp. nov., isolated from a pyrene-degrading consortium. Int J Syst Evol Microbiol 59(7):1579–1582PubMedGoogle Scholar
  73. Lee B-K, Katano T et al (2008) Monitoring of algicidal bacterium, Alteromonas sp. Strain A14 in its application to natural Cochlodinium polykrikoides blooming seawater using fluorescence in situ hybridization. J Microbiol 46(3):274–282PubMedGoogle Scholar
  74. Leon O, Quintana L et al (1992) Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl Environ Microbiol 58(12):4060–4063PubMedPubMedCentralGoogle Scholar
  75. Li AX, Guo LZ et al (2012) Alkaline inulinase production by a newly isolated bacterium Marinimicrobium sp. LS-A18 and inulin hydrolysis by the enzyme. World J Microbiol Biotechnol 28(1):81–89PubMedGoogle Scholar
  76. Liebgott PP, Casalot L et al (2006) Marinobacter vinifirmus sp. nov., a moderately halophilic bacterium isolated from a wine-barrel-decalcification wastewater. Int J Syst Evol Microbiol 56(11):2511–2516PubMedGoogle Scholar
  77. Lim JM, Jeon CO et al (2006) Marinimicrobium koreense gen. nov., sp. nov. and Marinimicrobium agarilyticum sp. nov., novel moderately halotolerant bacteria isolated from tidal flat sediment in Korea. Int J Syst Evol Microbiol 56(3):653–657PubMedGoogle Scholar
  78. Long M, Yu Z et al (2010) A Novel β-Agarase with high pH stability from marine Agarivorans sp. LQ48. Marine Biotechnol 12(1):62–69Google Scholar
  79. Lucena T, Pascual J et al (2010) Haliea mediterranea sp. nov., a marine gammaproteobacterium. Int J Syst Evol Microbiol 60(8):1844–1848PubMedGoogle Scholar
  80. Lyman J, Fleming RH (1940) Composition of sea water. J Mar Res 3:134–146Google Scholar
  81. MacDonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae, and recommendation for two new Genera, Listonella and Shewanella. Syst Appl Microbiol 6(2):171–182Google Scholar
  82. Martín S, Márquez MC et al (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53(5):1383–1387PubMedGoogle Scholar
  83. Martin-Cuadrado AB, Lopez-Garcia P et al (2007) Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS One 2(9):e914PubMedPubMedCentralGoogle Scholar
  84. Martínez-Checa F, Béjar V et al (2005) Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 55(6):2385–2390PubMedGoogle Scholar
  85. Math RK, Jin HM et al (2012) Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism. PLoS One 7(4):e35784PubMedPubMedCentralGoogle Scholar
  86. Matsuyama H, Hirabayashi T et al (2006) Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 56(12):2883–2886PubMedGoogle Scholar
  87. McCarren J, Becker JW et al (2010) Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA 107(38):16420–16427PubMedPubMedCentralGoogle Scholar
  88. Miyazaki M, Nogi Y et al (2008) Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol 58(5):1128–1133PubMedGoogle Scholar
  89. Moller M, Kjeldsen K et al (2010) Marinimicrobium haloxylanilyticum sp. nov., a new moderately halophilic, polysaccharide-degrading bacterium isolated from Great Salt Lake, Utah. Antonie Van Leeuwenhoek 98(4):553–565PubMedGoogle Scholar
  90. Montes MJ, Bozal N et al (2008) Marinobacter guineae sp. nov., a novel moderately halophilic bacterium from an Antarctic environment. Int J Syst Evol Microbiol 58(6):1346–1349PubMedGoogle Scholar
  91. Newton RJ, Griffin LE et al (2010) Genome characteristics of a generalist marine bacterial lineage. ISME J 4(6):784–798PubMedGoogle Scholar
  92. Nishijima M, Takadera T et al (2009) Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod–coccus cell cycle in association with the growth phase. Int J Syst Evol Microbiol 59(7):1696–1707PubMedGoogle Scholar
  93. Orikoshi H, Nakayama S et al (2005) Roles of four chitinases (ChiA, ChiB, ChiC, and ChiD) in the chitin degradation system of marine bacterium Alteromonas sp. strain O-7. Appl Environ Microbiol 71(4):1811–1815PubMedPubMedCentralGoogle Scholar
  94. Pukall R, Pauker O et al (1999) High sequence diversity of Alterornonas rnacleodii-related cloned and celular 16s rDNAs from a Mediterranean Sea-water mesocosm experiment. FEMS Microbiol Ecol 28:335–344Google Scholar
  95. Qin QL, Xie BB et al (2012) Genome sequence of proteorhodopsin-containing sea ice bacterium glaciecola punicea ACAM 611 T. J Bacteriol 194(12):3267PubMedPubMedCentralGoogle Scholar
  96. Quaiser A, Zivanovic Y et al (2011) Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. ISME J 5(2):285–304PubMedPubMedCentralGoogle Scholar
  97. Quévrain E, Domart-Coulon I et al (2009) Novel natural parabens produced by a Microbulbifer bacterium in its calcareous sponge host Leuconia nivea. Environ Microbiol 11(6):1527–1539PubMedGoogle Scholar
  98. Reichelt JL, Baumann P (1973) Change of the name Alteromonas marinopraesens (ZoBell and Upham) Baumann et al. to Alteromonas haloplanktis (ZoBell and Upham) comb. nov. and assignment of strain ATCC 23821 (Pseudomonas enalia) and strain c-A1 of De Voe and Oginsky to this species. Int J Syst Bacteriol 23(4):438–441Google Scholar
  99. Riquelme C, Araya R et al (1997) Potential probiotic strains in the culture of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). Aquaculture 154(1):17–26Google Scholar
  100. Roh SW, Quan ZX et al (2008) Marinobacter goseongensis sp. nov., from seawater. Int J Syst Evol Microbiol 58(12):2866–2870PubMedGoogle Scholar
  101. Roh SW, Nam Y-D et al (2009) Alishewanella aestuarii sp. nov., isolated from tidal flat sediment, and emended description of the genus Alishewanella. Int J Syst Evol Microbiol 59(2):421–424PubMedGoogle Scholar
  102. Romanenko LA, Lysenko AM, Mikhailov VV, Kurika AV (1994) A novel species of brown-pigmented agarolytic bacteria of the genus Alteromonas. Mikrobiologiya 63:1081–1087Google Scholar
  103. Romanenko LA, Mikhailov VV et al (1995) A novel species of melanin-synthesizing bacteria of the genus Alteromonas. Mikrobiologiya 64:74–77Google Scholar
  104. Romanenko LA, Zhukova NV et al (2003) Glaciecola mesophila sp. nov., a novel marine agar-digesting bacterium. Int J Syst Evol Microbiol 53(3):647–651PubMedGoogle Scholar
  105. Romanenko LA, Schumann P et al (2005) Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55(1):143–148PubMedGoogle Scholar
  106. Romera-Castillo C, Sarmento H et al (2011) Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Appl Environ Microbiol 77(21):7490–7498PubMedPubMedCentralGoogle Scholar
  107. Satomi M, Kimura B et al (2002) Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. no. Int J Syst Evol Microbiol 52(3):739–747PubMedGoogle Scholar
  108. Sawabe T, Ohtsuka M et al (1997) Novel alginate lyases from marine bacterium Alteromonas sp. strain H-4. Carbohydr Res 304(1):69–76PubMedGoogle Scholar
  109. Sawabe T, Ohtsuka M et al (1998) ChemInform abstract: novel alginate lyases from marine bacterium Alteromonas sp. strain H-4. ChemInform 29(7)Google Scholar
  110. Sawabe T, Tanaka R et al (2000) Assignment of Alteromonas elyakovii KMM 162 T and five strains isolated from spot-wounded fronds of Laminaria japonica to Pseudoalteromonas elyakovii comb. nov. and the extended description of the species. Int J Syst Evol Microbiol 50:265–271PubMedGoogle Scholar
  111. Schafer H, Servais P et al (2000) Successional changes in the genetic diversity of a marine bacterial assemblage during confinement. Arch Microbiol 173(2):138–145PubMedGoogle Scholar
  112. Shi Y, McCarren J et al (2012) Transcriptional responses of surface water marine microbial assemblages to deep-sea water amendment. Environ Microbiol 14(1):191–206PubMedGoogle Scholar
  113. Shieh WY, Jean WD et al (2003) Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49(4):244–252PubMedGoogle Scholar
  114. Shigemori H, Bae MA et al (1992) Alteramide A, a new tetracyclic alkaloid from a bacterium Alteromonas sp. associated with the marine sponge Halichondria okadai. J Org Chem 57(15):4317–4320Google Scholar
  115. Shivaji S, Gupta P et al (2005) Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 55(4):1453–1456PubMedGoogle Scholar
  116. Simidu U, Kita-Tsukamoto K et al (1990) Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int J Syst Bacteriol 40(4):331–336PubMedGoogle Scholar
  117. Smedile F, Messina E et al (2012) Metagenomic analysis of hadopelagic microbial assemblages thriving at the deepest part of Mediterranean Sea, Matapan-Vavilov Deep. Environ Microbiol 3(10):1462–2920Google Scholar
  118. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690PubMedGoogle Scholar
  119. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147(1):3–9PubMedGoogle Scholar
  120. Suzuki T, Nakamura T et al (2012) Isolation of two novel marine ethylene-assimilating bacteria, Haliea Species ETY-M and ETY-NAG, containing particulate methane monooxygenase-like genes. Microbes Environ 27(1):54–60PubMedPubMedCentralGoogle Scholar
  121. Tada Y, Taniguchi A et al (2011) Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean. Appl Environ Microbiol 77(12):4055–4065PubMedPubMedCentralGoogle Scholar
  122. Talmont F, Vincent P et al (1991) Structural investigation of an acidic exopolysaccharide from a deep-sea hydrothermal vent marine bacteria. Food Hydrocolloid 5:171–172Google Scholar
  123. Tanaka N, Romanenko LA et al (2010) Aestuariibacter litoralis sp. nov., isolated from a sandy sediment of the Sea of Japan. Int J Syst Evol Microbiol 60(2):317–320PubMedGoogle Scholar
  124. Tarhriz V, Nematzadeh G et al. (2011) Alishewanella tabrizica sp. nov., isolated from Qurugöl Lake in mountainous region of Azarbayjan. Int J Syst Evol Microbiol 62(8):1986–1991Google Scholar
  125. Urios L, Agogué H et al (2008a) Melitea salexigens gen. nov., sp. nov., a gammaproteobacterium from the Mediterranean Sea. Int J Syst Evol Microbiol 58(11):2479–2483PubMedGoogle Scholar
  126. Urios L, Intertaglia L et al (2008b) Haliea salexigens gen. nov., sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 58(5):1233–1237PubMedGoogle Scholar
  127. Urios L, Intertaglia L et al (2009) Haliea rubra sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 59(5):1188–1192PubMedGoogle Scholar
  128. Van Landschoot A, De Ley J (1983) Intra- and intergeneric similarities of the rRNA cistrons of Alteromonas, Marinomonas (gen. nov.) and some other gram-negative bacteria. J Gen Microbiol 129(10):3057–3074Google Scholar
  129. Van Spreekens KJA (1974) The suitability of modification of Long and Hammer’s medium for the enumeration of more fastidious bacteria from fresh fishery products. Arch Lebensmittelhyg 25:213–219Google Scholar
  130. Van Trappen S, Tan TL et al (2004a) Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 54(4):1157–1163PubMedGoogle Scholar
  131. Van Trappen S, Tan TL et al (2004b) Glaciecola polaris sp. nov., a novel budding and prosthecate bacterium from the Arctic Ocean, and emended description of the genus Glaciecola. Int J Syst Evol Microbiol 54(5):1765–1771PubMedGoogle Scholar
  132. Vandamme EJ, De Baets S et al (2002) Biopolymers. Polysaccharides I. Polysaccharides from prokaryotes. W. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  133. Vandecandelaere I, Nercessian O et al (2008) Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (Approved Lists 1980). Int J Syst Evol Microbiol 58(11):2589–2596PubMedGoogle Scholar
  134. Varbanets LD, Avdeeva LV et al (2011) The Black Sea bacteria – producers of hydrolytic enzymes. Mikrobiol Z 73(5):9–15PubMedGoogle Scholar
  135. Vargas WA, Weyman PD et al (2011) [NiFe] Hydrogenase from Alteromonas macleodii with unusual stability in the presence of oxygen and high temperature. Appl Environ Microbiol 77(6):1990–1998PubMedPubMedCentralGoogle Scholar
  136. Vijayaraghavan R, Rajendran S (2012) Identification of a novel agarolytic γ-Proteobacterium Microbulbifer maritimus and characterization of its agarase. J Basic Microbiol 52(6):705–712Google Scholar
  137. Vogel BF, Venkateswaran K et al (2000) Polyphasic taxonomic approach in the description of Alishewanella fetalis gen. nov., sp. nov., isolated from a human foetus. Int J Syst Evol Microbiol 50(3):1133–1142PubMedGoogle Scholar
  138. Wakabayashi M, Sakatoku A et al (2012) Isolation and characterization of Microbulbifer species 6532A degrading seaweed thalli to single cell detritus particles. Biodegradation 1:93–105Google Scholar
  139. Wang J, Mou H et al (2006) Characterization of a novel β-agarase from marine Alteromonas sp. SY37–12 and its degrading products. Appl Microbiol Biotechnol 71(6):833–839PubMedGoogle Scholar
  140. Wang CS, Wang Y et al (2009a) Microbulbifer donghaiensis sp. nov., isolated from marine sediment of the East China Sea. Int J Syst Evol Microbiol 59(3):545–549PubMedGoogle Scholar
  141. Wang CY, Ng CC et al (2009b) Marinobacter szutsaonensis sp. nov., isolated from a solar saltern. Int J Syst Evol Microbiol 59(10):2605–2609PubMedGoogle Scholar
  142. Wang Y, Wang H et al (2010) Aestuariibacter aggregatus sp. nov., a moderately halophilic bacterium isolated from seawater of the Yellow Sea. FEMS Microbiol Lett 309(1):48–54PubMedGoogle Scholar
  143. Wang H, Li H et al (2012) Genome sequence of deep-sea manganese-oxidizing bacterium marinobacter manganoxydans MnI7-9. J Bacteriol 194(4):899–900PubMedPubMedCentralGoogle Scholar
  144. Weiner RM, Taylor LE II et al (2008) Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T. PLoS Genet 4(5):e1000087PubMedPubMedCentralGoogle Scholar
  145. Weyman PD, Vargas WA et al (2011) Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] hydrogenases in Escherichia coli. Microbiology 157(5):1363–1374PubMedGoogle Scholar
  146. Wong TY, Preston LA et al (2000) ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54(1):289–340PubMedGoogle Scholar
  147. Xu XW, Wu YH et al (2008) Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol 58(3):637–640PubMedGoogle Scholar
  148. Yarza P, Ludwing W et al (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33(6):291–299PubMedGoogle Scholar
  149. Yi H, Bae KS et al (2004) Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii. Int J Syst Evol Microbiol 54(2):571–576PubMedGoogle Scholar
  150. Yong JJ, Park SJ et al (2007) Glaciecola agarilytica sp. nov., an agar-digesting marine bacterium from the East Sea, Korea. Int J Syst Evol Microbiol 57(5):951–953PubMedGoogle Scholar
  151. Yoon JH, Kim H et al (2003a) Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int J Syst Evol Microbiol 53(5):1357–1361PubMedGoogle Scholar
  152. Yoon JH, Kim IG et al (2003b) Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 53(5):1625–1630PubMedGoogle Scholar
  153. Yoon JH, Kim IG et al (2003c) Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53(1):53–57PubMedGoogle Scholar
  154. Yoon JH, Shin DY et al (2003d) Marinobacter litoralis sp. nov., a moderately halophilic bacterium isolated from sea water from the East Sea in Korea. Int J Syst Evol Microbiol 53(2):563–568PubMedGoogle Scholar
  155. Yoon JH, Kim IG et al (2004a) Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 54(4):1111–1116PubMedGoogle Scholar
  156. Yoon JH, Yeo SH et al (2004b) Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54(5):1799–1803PubMedGoogle Scholar
  157. Yoon JH, Yeo SH et al (2004c) Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54(4):1197–1201PubMedGoogle Scholar
  158. Yoon JH, Jung SY et al (2007a) Microbulbifer celer sp. nov., isolated from a marine solar saltern of the Yellow Sea in Korea. Int J Syst Evol Microbiol 57(10):2365–2369PubMedGoogle Scholar
  159. Yoon J-H, Lee M-H et al (2007b) Marinobacter salicampi sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 57(9):2102–2105PubMedGoogle Scholar
  160. Yoon JH, Kang SJ et al (2012) Salinimonas lutimaris sp. nov., a polysaccharide-degrading bacterium isolated from a tidal flat. Antonie Van Leeuwenhoek 101(4):803–810PubMedGoogle Scholar
  161. Young KS, Bhattacharjee SS et al (1978) Enzymatic cleavage of the α-linkages in agarose, to yield agaro-oligosaccharides. Carbohydr Res 66(1):207–212Google Scholar
  162. Yuan L, Ren L et al (2011) A complete genome assembly of Glaciecola mesophila sp. nov. sequenced by using BIGIS-4 sequencer system. Sci China Life Sci 54(9):835–840PubMedGoogle Scholar
  163. Zemb O, West N et al (2010) Effect of a transient perturbation on marine bacterial communities with contrasting history. J Appl Microbiol 109(3):751–762PubMedGoogle Scholar
  164. Zhang DC, Yu Y et al (2006) Glaciecola psychrophila sp. nov., a novel psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 56(12):2867–2869PubMedGoogle Scholar
  165. Zhang DC, Li HR et al (2008) Marinobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58(6):1463–1466PubMedGoogle Scholar
  166. Zhang YJ, Zhang XY et al (2011) Glaciecola arctica sp. nov., isolated from Arctic marine sediment. Int J Syst Evol Microbiol 61(10):2338–2341PubMedGoogle Scholar
  167. Zhao K, Guo LZ et al (2012) Extracellular production of novel halotolerant, thermostable, and alkali-stable carboxymethyl cellulase by marine bacterium; Marinimicrobium sp. LS-A18. Appl Biochem Biotechnol 168(3):550–567Google Scholar
  168. Zheng L, Han X et al (2005) Marine bacteria associated with marine macroorganisms: the potential antimicrobial resources. Ann Microbiol 55(2):119–124Google Scholar
  169. Zhuang DC, Chen YG et al (2009) Marinobacter zhanjiangensis sp. nov., a marine bacterium isolated from sea water of a tidal flat of the South China Sea. Antonie Van Leeuwenhoek 96(3):295–301PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Evolutionary Genomics Group, División de MicrobiologíaUniversidad Miguel HernándezAlicanteSpain

Personalised recommendations