The Family Shewanellaceae

  • Masataka SatomiEmail author
Reference work entry


Shewanellaceae, a family within the order Alteromonadales, consist of a sole genus Shewanella. Almost all species of this genus are Gram-negative, motile rod with positive oxidase and catalase reaction. Facultatively anaerobic. Oxygen is used as the electron acceptor during aerobic growth. The mol% G+C of the DNA is 38–54. The genome size of Shewanella is approximately 5 Mb by whole-genome sequences analysis based on some species reported. The organisms are widely distributed in nature; marine environment, marine organisms, deep sea, iced fish, proteinaceous foods, and occasionally clinical samples. Roughly, three major groups are delineated within the genus based on the 16S rRNA gene sequence analysis: high GC content group, psychrotolerant and non-halophilic group, and psychrotolerant and psychrophilic sodium ion-requiring group. Most species related to marine environment are psychrophile and halophile, and can grow at 4 °C, with production of polyunsaturated fatty acid in phospholipids consisting of their cytoplasmic membrane. Psychrotolerant species representing S. putrefaciens which is the type of Shewanella species generally do not synthesize polyunsaturated fatty acid. Due to the ability to grow at 4 °C and to produce a variety of volatile sulfides, including H2S, and in marine fish, they reduce trimethylamine oxide (TMAO) to trimethylamine (TMA) which has a fishy smell; some Shewanella species are important in the food industry. Additionally, S. alga, formerly identified as S. putrefaciens, has been implicated in human disease (bacteremia and sepsis). Some Shewanella species are known to have unique metabolic characteristics including dissimilatory reduction of manganese, iron oxide, and other metal compounds. Therefore, these bacteria are implicated to apply as the microbial fuel cell based on their ability to make electricity.


Internal Transcribe Spacer Fatty Acid Profile Anaerobic Respiration Marine Agar Metal Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abu GO, Weiner R, Colwell RR (1994) Glucose metabolism and polysaccharide accumulation in the marine bacterium, Shewanella colwelliana. World J Microbiol Biotechnol 10:543–546PubMedGoogle Scholar
  2. Akagawa-Matsushita M, Ito T, Katayama Y, Kuraishi H, Yamasato K (1992) Isoprenoid quinone composition of some marine Alteromonas, Marinomonas, Deleya, Pseudomonas and Shewanella species. J Gen Microbiol 138:2275–2281Google Scholar
  3. Amiri-Jami M, Griffiths MW (2010) Recombinant production of omega-3 fatty acids in Escherichia coli using a gene cluster isolated from Shewanella baltica MAC1. J Appl Microbiol 109:1897–1905PubMedGoogle Scholar
  4. Aono E, Baba T, Ara T, Nishi T, Nakamichi T, Inamoto E, Toyonaga H, Hasegawa M, Takai Y, Okumura Y, Baba M, Tomita M, Kato C, Oshima T, Nakasone K, Mori H (2010) Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments. Mol Biosyst 6:1216–1226PubMedGoogle Scholar
  5. Baumann L, Baumann P, Mandel M, Allen RD (1972) Taxonomy of aerobic marine eubacteria. J Bacteriol 110:402–429PubMedPubMedCentralGoogle Scholar
  6. Beliaev AS, Thompson DK, Fields MW, Wu L, Lies DP, Nealson KH, Zhou J (2002a) Microarray transcription profiling of a Shewanella oneidensis etrA mutant. J Bacteriol 184:4612–4616PubMedPubMedCentralGoogle Scholar
  7. Beliaev AS, Thompson DK, Khare T, Lim H, Brandt CC, Li G, Murray AE, Heidelberg JF, Giometti CS, Yates J 3rd, Nealson KH, Tiedje JM, Zhou J (2002b) Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors. OMICS 6:39–60PubMedGoogle Scholar
  8. Bohme K, Fernandez-No IC, Barros-Velazquez J, Gallardo JM, Calo-Mata P, Canas B (2010) Species differentiation of seafood spoilage and pathogenic Gram-negative bacteria by MALDI-TOF mass fingerprinting. J Proteome Res 9:3169–3183PubMedGoogle Scholar
  9. Bonar DB, Weiner RM, Colwell RR (1986) Microbial-invertebrate interactions and potential for biotechnology. Microb Ecol 12:101–110PubMedGoogle Scholar
  10. Borch E, Kant-Muermans ML, Blixt Y (1996) Bacterial spoilage of meat and cured meat products. Int J Food Microbiol 33:103–120PubMedGoogle Scholar
  11. Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS, Nichols PD, Skerratt JH, Staley JT, McMeekin TA (1998) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6 omega 3). Int J Syst Bacteriol 48:1171–1180Google Scholar
  12. Bowman JP, Rea SM, McCammon SA, McMeekin TA (2000) Diversity and community structure within anoxic sediment from marin salinity meromictic lakes and a coastal meromictic marine basin, Vestfold HiIls, Eastern Antarctica. Environ Microbiol 2:227–237PubMedGoogle Scholar
  13. Bowman JP (2005) Genus XIII. Shewanella. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic biology, vol 1, 2nd edn. Springer, New York, pp 480–491Google Scholar
  14. Bowman JP, McCammon SHA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., Novel Antarctic species with the ability to produce Eicosapentaenoic Acid (20:5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047PubMedGoogle Scholar
  15. Bozal N, Montes MJ, Tudela E, Nez FJ, Guinea J (2002) Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205PubMedGoogle Scholar
  16. Bozal N, Montes MJ, Galbis DM, Manresa A, Mercade E (2009) Shewanella vesiculosa sp. nov., a psychrotolerant bacterium isolated from an Antarctic coastal area. Int J Syst Evol Microbiol 59:336–340PubMedGoogle Scholar
  17. Brettar I, Christen R, Höfle MG (2002) Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic–anoxic interface of the Gotland Deep in the central Baltic Sea. Int J Syst Evol Microbiol 52:2211–2217PubMedGoogle Scholar
  18. Brettar IR, Höfle M (1993) Nitrous oxide producing heterotrophic bacteria from the water column of the central Baltic: abundance and molecular identification. Mar Ecol Prog Ser 94:253–265Google Scholar
  19. Burdige DJ, Nealson KH (1985) Microbial manganese reduction by enrichment cultures from coastal marine sediments. Appl Environ Microbiol 50:491–497PubMedPubMedCentralGoogle Scholar
  20. Caccavo F Jr (1999) Protein-mediated adhesion of the dissimiIatory Fe(III)-reducing bacterium Shewanella alga BrY to hydrous ferric oxide. Appl Environ Microbiol 65:5017–5022PubMedPubMedCentralGoogle Scholar
  21. Caccavo F, Blakemore RP, Lovley DR (1992) A hydrogen-oxidising, Fe(III) reducing microorganism from the Great Bay estuary, NH. Appl Environ Microbiol 58:3211–3216PubMedPubMedCentralGoogle Scholar
  22. Canfield DE, Caro-Quintero A, Auchtung J, Deng J, Brettar I, Höfle M, Tiedje JM, Konstantinidis KT (2012) Genome sequencing of five Shewanella baltica strains recovered from the oxic-anoxic interface of the Baltic Sea. J Bacteriol 194:1236Google Scholar
  23. Cervini-Silva J, Kostka JE, Larson RA, Stucki JW, Wu J (2003) Dehydrochlorination of 1,1,1-trichloroethane and pentachloroethane by microbially reduced ferruginous smectite. Environ Toxicol Chem 22:1046–1050PubMedGoogle Scholar
  24. Chen CH, Chang CF, Liu SM (2010) Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions. J Hazard Mater 177:281–289PubMedGoogle Scholar
  25. Chikuma S, Kasahara R, Kato C, Tamegai H (2007) Bacterial adaptation to high pressure: a respiratory system in the deep-sea bacterium Shewanella violacea DSS12. FEMS Microbiol Lett 267:108–112PubMedGoogle Scholar
  26. Chilukuri LN, Bartlett DH (1997) Isolation and characterization of the gene encoding single-stranded-DNA-binding protein (SSB) from four marine Shewanella strains that differ in their temperature and pressure optima for growth. Microbiology 143:1163–1174PubMedGoogle Scholar
  27. Chilukuri LN, Bartlett DH, Fortes PA (2002) Comparison of high pressure-induced dissociation of single-stranded DNA-binding protein (SSB) from high pressure-sensitive and high pressure-adapted marine Shewanella species. Extremophiles 6:377–383PubMedGoogle Scholar
  28. Chinivasagam HN, Bremner HA, Wood AF, Nottingham SM (1998) Volatile components associated with bacterial spoilage of tropical prawns. Int J Food Microbiol 42:45–55PubMedGoogle Scholar
  29. Coleman JR, Culley DE, Chrisler WB, Brockman FJ (2007) mRNA-targeted fluorescent in situ hybridization (FISH) of Gram-negative bacteria without template amplification or tyramide signal amplification. J Microbiol Methods 71:246–255PubMedGoogle Scholar
  30. Coon SL, Kotob S, Jarvis BB, Wang S, Fuqua WC, Weiner RM (1994) Homogentisic acid is the product of MelA, which mediates melanogenesis in the marine bacterium Shewanella colwelliana D. Appl Environ Microbiol 60:3006–3010PubMedPubMedCentralGoogle Scholar
  31. Chang HW, Roh SW, Kim KH, Nam YD, Jeon CO, Oh HM, Bae JW (2008) Shewanella basaltis sp. nov., a marine bacterium isolated from black sand. Int J Syst Evol Microbiol 58:1907–1910PubMedGoogle Scholar
  32. Coyne VE, Pillidge CJ, Sledjeski DD, Hori H, Ortiz-Conde BA, Muir DG, Weiner RM, Colwell RR (1989) Reclassification of Alteromonas colwelliana to the genus Shewanella by DNA-DNA hybridization, serology and 5S ribosomal RNA sequence data System. Appl Microbiol 12:275–279Google Scholar
  33. Dainty RH, Edwards RA, Hibbard CM, Marnewick JJ (1989) Volatile compounds associated with microbial growth on normal and high pH beef stored at chill temperatures. J Appl Bacteriol 66:281–289PubMedGoogle Scholar
  34. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridisation from renaturation rates. Eur J Biochem 12:133–142PubMedGoogle Scholar
  35. Debevere J, Devlieghere F, van Sprundel P, De Meulenaer B (2001) Influence of acetate and CO2 on the TMAO-reduction reaction by Shewanella baltica. Int J Food Microbiol 68:115–123PubMedGoogle Scholar
  36. DeLong EF, Yayanos AA (1985) Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1102PubMedGoogle Scholar
  37. Delong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737PubMedPubMedCentralGoogle Scholar
  38. Delong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108PubMedPubMedCentralGoogle Scholar
  39. Deming JW, Hada H, Colwell RR, Luehrsen KR, Fox GE (1984) The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol 130:1911–1920PubMedGoogle Scholar
  40. Derby HA, Hammer BW (1931) Bacteriology of butter. IV. Bacteriological studies of surface taint butter. Iowa Agric Exp Stn Res Bull 145:387–416Google Scholar
  41. DiChristina TJ, DeLong EF (1993) Design and application of rRNA-targeted oligonucleotide probes for the dissimilatory iron- and manganese-reducing bacterium Shewanella putrefaciens. Appl Environ Microbiol 59:4152–4160PubMedPubMedCentralGoogle Scholar
  42. Dietz AS, Yayanos AA (1978) Silica gel media for isolating and studying bacteria under hydrostatic pressure. Appl Environ Microbiol 36:966–968PubMedPubMedCentralGoogle Scholar
  43. Dikow RB (2011) Genome-level homology and phylogeny of Shewanella (Gammaproteobacteria: lteromonadales: Shewanellaceae). BMC Genomics 12:237PubMedPubMedCentralGoogle Scholar
  44. Domínguez H, Vogel BF, Gram L, Hoffmann S, Schaebel S (1996) Shewanella alga bacteremia in two patients with lower leg ulcers. Clin Infect Dis 22:1036–1039PubMedGoogle Scholar
  45. Dos Santos JP, Iobbi-Nivol C, Couillault C, Giordano G, Méjean V (1988) Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species. J Mol Biol 284:421–433Google Scholar
  46. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229Google Scholar
  47. Fang J, Kato C, Sato T, Chan O, McKay D (2004) Biosynthesis and dietary uptake of polyunsaturated fatty acids by piezophilic bacteria. Comp Biochem Physiol B Biochem Mol Biol 137:455–461PubMedGoogle Scholar
  48. Farmer JJ III (1992) The family Vibrionaceae. In: Starr MP, Stolp H, Triiper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 2939–2951Google Scholar
  49. Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170PubMedGoogle Scholar
  50. Fredrickson JK, Zachara JM, Kennedy DW, Duff MC, Gorby YA, Li SW, Krupka KM (2000) Reductionof U(VI) in goethite (α-FeOOH) suspensions by adissimilatory metal, -reducing bacterium. Geochim Cosmochim Acta 64:3085–3098Google Scholar
  51. Fredrickson JK, Zachara JM, Kennedy DW, Liu CX, Duff MC, Hunter DB, Dohnalkova A (2002) Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens. Geochim Cosmochim Acta 66:3247–3262Google Scholar
  52. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JL, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6:592–603PubMedGoogle Scholar
  53. Fuqua WC, Weiner RM (1993) The melA gene is essential for melanin biosynthesis in the marine bacterium Shewanella colwelliana. J Gen Microbiol 139:1105–1114PubMedGoogle Scholar
  54. Ganesh R, Robinson KG, Reed GD, Sayler GS (1997) Reduction of hexavalent uranium from organic complexes by sulfate- and iron-reducing bacteria. Appl Environ Microbiol 63:4385–4391PubMedPubMedCentralGoogle Scholar
  55. Gao W, Liu Y, Zhou J, Pan H (2005) Effects of a strong static magnetic field on bacterium Shewanella oneidensis: an assessment by using whole genome microarray. Bioelectromagnetics 26:558–563PubMedGoogle Scholar
  56. Gao H, Obraztova A, Stewart N, Popa R, Fredrickson JK, Tiedje JM, Nealson KH, Zhou J (2006) Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int J Syst Evol Microbiol 56:1911–1916PubMedGoogle Scholar
  57. Gauthier G, Gauthier M, Christen R (1995) Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45:755–761PubMedGoogle Scholar
  58. Gentile G, Bonasera V, Amico C, Giuliano L, Yakimov MM (2003) Shewanella sp. GA-22, a psychrophilic hydrocarbonoclastic antarctic bacterium producing polyunsaturated fatty acids. J Appl Microbiol 95:1124–1133PubMedGoogle Scholar
  59. Gilardi GL (1972) Infrequently encountered Pseudomonas species causing infection in humans. Ann Intern Med 77:211–215PubMedGoogle Scholar
  60. Gorby YA, Lovley DR (1992) Enzymatic uranium precipitation. Environ Sci Technol 26:205–207Google Scholar
  61. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363PubMedPubMedCentralGoogle Scholar
  62. Gram L (1992) Evaluation of the bacteriological quality of seafood. Int J Food Microbiol 16:25–39PubMedGoogle Scholar
  63. Gram L (1993) Inhibitory effect against pathogenic and spoilage bacteria of Pseudomonas strains isolated from spoiled and fresh fish. Appl Environ Microbiol 59:2197–2203PubMedPubMedCentralGoogle Scholar
  64. Gram L (1994) Siderophore-mediated iron sequestering by Shewanella putrefaciens. Appl Environ Microbiol 60:2132–2136PubMedPubMedCentralGoogle Scholar
  65. Gram L, Huss HH (1996) Microbiological spoilage of fish and fish products. Int J Food Microbiol 33:121–138PubMedGoogle Scholar
  66. Gram L, Trolle G, Huss HH (1987) Detection of specific spoilage bacteria from fish stored at low (0 °C) and high (20 °C) temperatures. Int J Food Microbiol 4:65–72Google Scholar
  67. Gram L, Wedell-Neergaard C, Huss HH (1990) Tle bacteriology of fresh and spoiling Lake Victoria Nile perch. Int J Food Microbiol 10:303–316PubMedGoogle Scholar
  68. Gram L, Bundvad A, Melchiorsen J, Johansen C, Fonnesbech Vogel B (1999) Occurrence of Shewanella algae in Danish Coastal water and effects of water temperature and culture conditions on its survival. Appl Environ Microbiol 65:3896–3900PubMedPubMedCentralGoogle Scholar
  69. Hamana K (1997) Polyamine distribution patterns within the families Aeromonadaceae, Vibrionaceae, Pasteurellaceae, and Halomonadaceae, and related genera of the gamma subclass of the Proteobacteria. J Gen Appl Microbiol 43:49–59PubMedGoogle Scholar
  70. Hastings JW, Nealson KH (1977) Bacterial bioluminescence. Annu Rev Microbiol 31:549–595PubMedGoogle Scholar
  71. Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258PubMedGoogle Scholar
  72. Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123PubMedGoogle Scholar
  73. Herbert RA, Hendrie MS, Gibson DM, Shewan JM (1971) Symposium on microbial changes in foods. Bacteria active in the spoilage of certain sea foods. J Appl Bacteriol 34:41–50PubMedGoogle Scholar
  74. Hirota K, Nodasaka Y, Orikasa Y, Okuyama H, Yumoto I (2005) Shewanella pneumatophori sp. nov., an eicosapentaenoic acid-producing marine bacterium isolated from the intestines of Pacific mackerel (Pneumatophorus japonicus). Int J Syst Evol Microbiol 55:2355–2359PubMedGoogle Scholar
  75. Holt HM, Gahrn-Hansen B, Bruun B (2005) Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics. Clin Microbiol Infect 11:347–352PubMedGoogle Scholar
  76. Hong Y, Guo J, Xu Z, Mo C, Xu M, Sun G (2007) Reduction and partial degradation mechanisms of naphthylaminesulfonic azo dye amaranth by Shewanella decolorationis S12. Appl Microbiol Biotechnol 75:647–654PubMedGoogle Scholar
  77. Huang J, Sun B, Zhang X (2010) Shewanella xiamenensis sp. nov., isolated from coastal sea sediment. Int J Syst Evol Microbiol 60:1585–1589PubMedGoogle Scholar
  78. Icopini G, Boukhalfa H, Neu MP (2007) Biological reduction of Np(V) and Np(V)-citrate by metal reducing bacteria. Environ Sci Technol 41:2764–2769PubMedGoogle Scholar
  79. Itoh T, Funabashi H, Katayama-Fujimura Y, Iwasaki S, Kuraishi H (1985) Structure of methylmenaquinone-7 isolated from Alteromonas putrefaciens IAM 12079. Biochim Biophys Acta 840:51–55Google Scholar
  80. IUMS (1986) Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst. Bacteriol. 36: 354–356Google Scholar
  81. IUMS (1990) Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol. 40: 320–321Google Scholar
  82. Ivanova EP, Flavier S, Christen R (1994) Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788Google Scholar
  83. Ivanova EP, Sawabe T, Gorshkova NM, Svetashev VI, Mikhailov VV, Nicolau DV, Christen R (2001) Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51:1027–1033PubMedGoogle Scholar
  84. Ivanova EP, Sawabe T, Zhukova NV, Gorshkova NM, Nedashkovskaya OI, Hayashi K, Frolova GM, Sergeev AF, Pavel KG, Mikhailov VV, Nicolau DV (2003) Occurrence and diversity of mesophilic Shewanella strains isolated from the North-West Pacific Ocean. Syst Appl Microbiol 26:293–301PubMedGoogle Scholar
  85. Ivanova EP, Nedashkovskaya OI, Zhukova NV, Nicolau DV, Christen R, Mikhailov VV (2003a) Shewanella waksmanii sp. nov., isolated from a sipuncula (Phascolosoma japonicum). Int J Syst Evol Microbiol 53:1471–1477PubMedGoogle Scholar
  86. Ivanova EP, Sawabe T, Hayashi K, Gorshkova NM, Zhukova NV, Nedashkovskaya OI, Mikhailov VV, Nicolau DV, Christen R (2003b) Shewanella fidelis sp. nov., isolated from sediments and sea water. Int J Syst Evol Microbiol 53:577–582PubMedGoogle Scholar
  87. Ivanova EP, Gorshkova NM, Bowman JP, Lysenko AM, Zhukova NV, Sergeev AF, Mikhailov VV, Nicolau DV (2004a) Shewanella pacifica sp. nov., a polyunsaturated fatty acid-producing bacterium isolated from sea water. Int J Syst Evol Microbiol 54:1083–1087PubMedGoogle Scholar
  88. Ivanova EP, Nedashkovskaya OI, Sawabe T, Zhukova NV, Frolova GM, Nicolau DV, Mikhailov VV, Bowman JP (2004b) Shewanella affinis sp. nov., isolated from marine invertebrates. Evol Microbiol 54:1089–1093Google Scholar
  89. Jensen MJ, Tebo BM, Baumann P, Mandel M, Nealson KH (1980) Characterization of Alteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin. Curr Microbiol 3:311–315Google Scholar
  90. Jian H, Xu J, Xiao X, Wang F (2012) Dynamic modulation of DNA replication and gene transcription in deep-sea filamentous phage SW1 in response to changes of host growth and temperature. PLoS One 7:e41578PubMedPubMedCentralGoogle Scholar
  91. Johns RB, Perry GJ (1977) Lipids of the bacterium Flexibacter polymorphus. Arch Microbiol 114:267–271Google Scholar
  92. Jorgensen BR, Huss HH (1989) Growth and activity of Shewanella putrefaciens isolated from spoiling fish. Int J Food Microbiol 9:51–62PubMedGoogle Scholar
  93. Jørgensen BR, Gibson DM, Huss HH (1988) Microbial quality and shelf life prediction of chilled fish. Int J Food Microbiol 6:295–307PubMedGoogle Scholar
  94. Jostensen JP, Landfald B (1996) Influence of growth conditions on fatty acid composition of a polyunsaturated-fatty-acid-producing Vibrio species. Arch Microbiol 165:306–310PubMedGoogle Scholar
  95. Kan J, Flood B, McCrow JP, Kim JS, Tan L, Nealson KH (2011) A rapid fingerprinting approach to distinguish between closely related strains of Shewanella. J Microbiol Methods 86:62–68PubMedGoogle Scholar
  96. Kato C, Sato T, Horikoshi K (1995) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 4:1–9Google Scholar
  97. Kato C, Masui N, Horikoshi K (1996) Properties of obligately barophilic bacteria isolated from a sample of deep-sea sediment from the Izu-Bonin trench. J Mar Biotechnol 4:96–99Google Scholar
  98. Kato C, Smorawinska M, Li L, Horikoshi K (1997) Comparison of the gene expression of aspartate beta-d-semialdehyde dehydrogenase at elevated hydrostatic pressure in deep-sea bacteria. J Biochem 121:717–723PubMedGoogle Scholar
  99. Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513PubMedPubMedCentralGoogle Scholar
  100. Kawamoto J, Kurihara T, Yamamoto K, Nagayasu M, Tani Y, Mihara H, Hosokawa M, Baba T, Sato SB, Esaki N (2009) Eicosapentaenoic acid plays a beneficial role in membrane organization and cell division of a cold-adapted bacterium, Shewanella livingstonensis Ac10. J Bacteriol 191:632–640PubMedPubMedCentralGoogle Scholar
  101. Kawano H, Takahashi H, Abe F, Kato C, Horikoshi K (2009) Identification and characterization of two alternative sigma factors of RNA polymerase in the deep-sea piezophilic bacterium Shewanella violacea, strain DSS12. Biosci Biotechnol Biochem 73:200–202PubMedGoogle Scholar
  102. Khashe S, Janda JM (1998) Biochemical and pathogenic properties of Shewanella alga and Shewanella putrefaciens. J Clin Microbiol 36:783–787PubMedPubMedCentralGoogle Scholar
  103. Kim D, Baik KS, Kim MS, Jung BM, Shin TS, Chung GH, Rhee MS, Seong CN (2007) Shewanella haliotis sp. nov., isolated from the gut microflora of abalone, Haliotis discus hannai. Int J Syst Evol Microbiol 57:2926–2931PubMedGoogle Scholar
  104. Kita-Tsukamoto K, Oyaizu H, Nanba K, Simidu U (1993) Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int J Syst Bacteriol 43:8–19PubMedGoogle Scholar
  105. Kobayashi H, Nogi Y, Horikoshi K (2007) New violet 3,3′-bipyridyl pigment purified from deep-sea microorganism Shewanella violacea DSS12. Extremophiles 11:245–250PubMedGoogle Scholar
  106. Kolker E, Picone AF, Galperin MY, Romine MF, Higdon R, Makarova KS, Kolker N, Anderson GA, Qiu X, Auberry KJ, Babnigg G, Beliaev AS, Edlefsen P, Elias DA, Gorby YA, Holzman T, Klappenbach JA, Konstantinidis KT, Land ML, Lipton MS, McCue LA, Monroe M, Pasa-Tolic L, Pinchuk G, Purvine S, Serres MH, Tsapin S, Zakrajsek BA, Zhu W, Zhou J, Larimer FW, Lawrence CE, Riley M, Collart FR, Yates JR 3rd, Smith RD, Giometti CS, Nealson KH, Fredrickson JK, Tiedje JM (2005) Global profiling of Shewanella oneidensis MR-1: expression of hypothetical genes and improved functional annotations. Proc Natl Acad Sci USA 102:2099–2104PubMedPubMedCentralGoogle Scholar
  107. Kotob SI, Coon SL, Quintero EJ, Weiner RM (1995) Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae, a Hyphomonas strain, and Shewanella colwelliana. Appl Environ Microbiol 61:1620–1622PubMedPubMedCentralGoogle Scholar
  108. Kumar RS, Sasi Jyothsna TS, Sasikala C, Seong CN, Lim CH, Park SC, Ramana CV (2010) Shewanella fodinae sp. nov., isolated from a coal mine and from a marine lagoon. Int J Syst Evol Microbiol 60:1649–1654Google Scholar
  109. Ledyard KM, Butler A (1997) Structure of putrebactin, a new dihydroxamate siderophore produced by ShewanelIa putrefaciens. J Bioinorg Chem 2:93–97Google Scholar
  110. Lee JV, Gibson DM, Shewan JM (1977) A numerical taxonomic study of some Pseudomonas-like marine bacteria. J Gen Microbiol 98:439–451Google Scholar
  111. Lee OO, Lau SCK, Tsoi MMY, Li X, Plakhotnikova I, Dobretsov S, Wu MCS, Wong PK, Weinbauer M, Qian PY (2006) Shewanella irciniae sp. nov., a novel member of the family Shewanellaceae, isolated from the marine sponge Ircinia dendroides in the bay of Villefranche, Mediterranean Sea. Int J Syst Evol Microbiol 56:2871–2877PubMedGoogle Scholar
  112. Leifson E (1963) Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184PubMedPubMedCentralGoogle Scholar
  113. Leone S, Silipo AL, Nazarenko E, Lanzetta R, Parrilli M, Molinaro A (2007) Molecular structure of endotoxins from Gram-negative marine bacteria: an update. Mar Drugs 5:85–112PubMedPubMedCentralGoogle Scholar
  114. Leonardo MR, Moser DP, Barbieri E, Brantner CA, MacGregor BJ, Paster BJ, Stackebrandt E, Nealson KH (1999) Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei. Int J Syst Bacteriol 49:1341–1351PubMedGoogle Scholar
  115. Leroi F, Joffraud JJ, Chevalier F, Cardinal M (1998) Study of the microbial ecology of cold-smoked salmon during storage at 8 °C. Int J Food Microbiol 39:111–121PubMedGoogle Scholar
  116. Levin RE (1968) Detection and incidence of specific species of spoilage bacteria on fish. Appl Microbiol 16:1734–1737PubMedPubMedCentralGoogle Scholar
  117. Li L, Kato C, Nogi Y, Horikoshi K (1998) Distribution of the pressure regulated operons in deep-sea bacteria. FEMS Microbiol Lett 159:159–166PubMedGoogle Scholar
  118. Li H, Qiao G, Li Q, Zhou W, Won KM, Xu DH, Park SI (2010) Biological characteristics and pathogenicity of a highly pathogenic Shewanella marisflavi infecting sea cucumber, Apostichopus japonicus. J Fish Dis 33:865–877PubMedGoogle Scholar
  119. Li C, Ying Q, Su X, Li T (2012) Development and application of reverse transcription loop-mediated isothermal amplification for detecting live Shewanella putrefaciens in preserved fish sample. J Food Sci 77:M226–M230PubMedGoogle Scholar
  120. Lloyd JR, Macaskie LE (1996) A novel phosphorImager-based technique for monitoring the microbial reduction of technetium. Appl Environ Microbiol 62:578–582PubMedPubMedCentralGoogle Scholar
  121. Long HF, Hammer BW (1941) Distribution of Pseudomonas putrefaciens. J Bacteriol 41:100–101Google Scholar
  122. Lovley DR (1997) Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20:305–313Google Scholar
  123. Lovley DR, Phillips EJ (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689PubMedPubMedCentralGoogle Scholar
  124. Lovley DR, Phillips EJ (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480PubMedPubMedCentralGoogle Scholar
  125. Lovley DR, Phillips EJP, Lonergan DJ (1989) Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl Environ Microbiol 55:700–706PubMedPubMedCentralGoogle Scholar
  126. Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature (London) 350:413–416Google Scholar
  127. MacDonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella System. Appl Microbiol 6:171–182Google Scholar
  128. Makemson JC, Fulayfil NR, Landry W, Vanert LM, Wimpee CHF, Widder EA, Case JF (1997) Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039PubMedGoogle Scholar
  129. Marmur J, Doty P (1962) Determination of deoxyribonucleic acid from thermal denaturation temperature. J Mol Biol 5:109–118PubMedGoogle Scholar
  130. Mergaert J, Verhelst A, Cnockaert MC, Tan TL, Swings J (2001) Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences. Syst Appl Microbiol 24:98–107PubMedGoogle Scholar
  131. Miyazaki M, Nogi Y, Usami R, Horikoshi K (2006) Shewanella surugensis sp. nov., Shewanella kaireitica sp. nov. and Shewanella abyssi sp. nov., isolated from deep-sea sediments of Suruga Bay, Japan. Int J Syst Evol Microbiol 56:1607–1613PubMedGoogle Scholar
  132. Morita RY (1976) Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria. In: Gray RG, Postgate JR (eds) The survival of vegetative microbes. Cambridge University Press, Cambridge, pp 279–298Google Scholar
  133. Moser DP, Nealson KH (1996) Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl Environ Microbiol 62:2100–2105PubMedPubMedCentralGoogle Scholar
  134. Motoigi T, Okuyama H (2011) Fatty acid and hydrocarbon composition in tropical marine Shewanella amazonensis strain SB2BT. J Basic Microbiol 51:484–489PubMedGoogle Scholar
  135. Moule AL, Wilkinson SG (1987) Polar lipids, fatty acids, and isoprenoid quinones of Alteromonas putrefaciens (Shewanella putrefaciens). Syst Appl Microbiol 9:192–198Google Scholar
  136. Moule AL, Wilkinson SG (1989) Composition of lipopolysaccharides from Alteromonas putrefaciens (Shewanella putrefaciens). J Gen Microbiol 135:163–173Google Scholar
  137. Murray AE, Lies D, Li G, Nealson K, Zhou J, Tiedje JM (2001) DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. Proc Natl Acad Sci U S A 98:9853–9858PubMedPubMedCentralGoogle Scholar
  138. Myers C, Myers J (1993) Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by Shewanella putrefaciens MR-1. FEMS Microbiol Lett 114:215–222Google Scholar
  139. Myers CR, Myers JM (1997) Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J Bacteriol 179:1143–1152PubMedPubMedCentralGoogle Scholar
  140. Myers JM, Myers CR (2000) Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J Bacteriol 182:67–75PubMedPubMedCentralGoogle Scholar
  141. Myers JM, Myers CR (2001) Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl Environ Microbiol 67:260–269PubMedPubMedCentralGoogle Scholar
  142. Myers CR, Myers JM (2002) MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. Appl Environ Microbiol 68:5585–5594PubMedPubMedCentralGoogle Scholar
  143. Myers CR, Myers JM (2004) Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant. Appl Environ Microbiol 70:5415–5425PubMedPubMedCentralGoogle Scholar
  144. Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321PubMedGoogle Scholar
  145. Nazarenko EL, Crawford RJ, Ivanova EP (2011) The structural diversity of carbohydrate antigens of selected gram-negative marine bacteria. Mar Drugs 9:1914–1954PubMedPubMedCentralGoogle Scholar
  146. Nealson KH, Saffarini DA (1995) Iron and manganese in anaerobic respiration: environmental significance, physiology and regulation. Ann Rev Microbiol 48:311–343Google Scholar
  147. Nealson KH, Scott J (2006) Ecophysiology of the genus Shewanella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes, 3rd edn. Springer, New York, pp 1133–1151Google Scholar
  148. Nealson KH, Myers CR, Wimpee B (1991) Isolation and identification of manganese reducing bacteria, and estimates of microbial manganese reducing potential in Black Sea. Deep Sea Res 38:S907–S920Google Scholar
  149. Nealson KH, Moser DP, Saffarini DA (1995) Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl Environ Microbiol 61:1551–1554PubMedPubMedCentralGoogle Scholar
  150. Nichols DS, Russell NJ (1996) Fatty acid adaptation in an Antarctic bacterium – changes in primer utilization. Microbiology 142:747–754Google Scholar
  151. Nichols DS, Nichols PD, McMeekin TA (1992) Anaerobic production of polyunsaturated fatty acids by Shewanella putrefaciens strain ACAM 342. FEMS Microbiol Lett 98:117–122Google Scholar
  152. Nichols DS, McMeekin TA, Nichols PD (1994) Manipulation of polyunsaturated, branched-chain and trans-fatty acid production in Shewanella putrefaciens strain ACAM 342. Microbiology 140:577–584Google Scholar
  153. Nichols DS, Nichols PD, Russell NJ, Davies NW, McMeekin TA (1997) Polyunsaturated fatty acids in the psychrophilic bacterium Shewanella gelidimarina ACAM 456T: molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid. Biochim Biophys Acta 1347:164–176PubMedGoogle Scholar
  154. Nichols DS, Olley J, Garda H, Brenner RR, McMeekin TA (2000) Effect of temperature and salinity stress on growth and lipid composition of Shewanella gelidimarina. Appl Environ Microbiol 66:2422–2429PubMedPubMedCentralGoogle Scholar
  155. Nishida T, Hori R, Morita N, Okuyama H (2010) Membrane eicosapentaenoic acid is involved in the hydrophobicity of bacterial cells and affects the entry of hydrophilic and hydrophobic compounds. FEMS Microbiol Lett 306:91–96PubMedGoogle Scholar
  156. Nogi Y, Kato C, Horikoshi K (1998) Tazonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170:331–338PubMedGoogle Scholar
  157. Nozue H, Hayashi T, Hashimoto Y, Ezaki T, Hamasaki K, Ohwada K, Terasaki Y (1992) Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description S. alga Simidu et al., 1990, 335. Int J Syst Bacteriol 42:628–634PubMedGoogle Scholar
  158. Orikasa Y, Yamada A, Yu R, Ito Y, Nishida T, Yumoto I, Watanabe K, Okuyama H (2004) Characterization of the eicosapentaenoic acid biosynthesis gene cluster from Shewanella sp. strain SCRC-2738. Cell Mol Biol 50:625–630PubMedGoogle Scholar
  159. Orikasa Y, Tanaka M, Sugihara S, Hori R, Nishida T, Ueno A, Morita N, Yano Y, Yamamoto K, Shibahara A, Hayashi H, Yamada Y, Yamada A, Yu R, Watanabe K, Okuyama H (2009) pfaB products determine the molecular species produced in bacterial polyunsaturated fatty acid biosynthesis. FEMS Microbiol Lett 295:170–176PubMedGoogle Scholar
  160. Orland MS, Sivan A, Kushmaro A (2010) Shewanella corallii sp. nov., a marine bacterium isolated from a Red Sea coral. Int J Syst Evol Microbiol 60:2293–2297Google Scholar
  161. Owen RJ, Legros RM, Lapage SP (1978) Base composition, size, and sequence similarities of genome deoxyribonucleic acids from clinical isolates of Pseudomonas putrefaciens. J Gen Microbiol 104:127–138PubMedGoogle Scholar
  162. Ozawa K, Tsapin AI, Nealson KH, Cusanovich MA, Akutsu H (2000) Expression of atetraheme protein, Desulfovibrio vulgaris Miyazaki F cytochrome c(3), in Shewanella oneidensis MR-1. Appl Environ Microbiol 66:4168–4171PubMedPubMedCentralGoogle Scholar
  163. Ozawa K, Yasukawa F, Fujiwara Y, Akutsu H (2001) A simple, rapid, and highly efficient gene expression system for multiheme cytochromes c. Biosci Biotechnol Biochem 65:185–189PubMedGoogle Scholar
  164. Park SC, Baik KS, Kim MS, Kim D, Seong CN (2009) Shewanella marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 59:1888–1894PubMedGoogle Scholar
  165. Parker LL, Levin RE (1983) Relative incidence of Alteromonas putrefaciens and Pseudomonas putrefaciens in ground beef. Appl Environ Microbiol 45:796–799PubMedPubMedCentralGoogle Scholar
  166. Perry KA, Kostka JE, Luther GW 3rd, Nealson KH (1993) Mediation of sulfur speciation by a Black Sea facultative anaerobe. Science 259:801–803PubMedGoogle Scholar
  167. Petrovskis EA, Vogel TM, Adriaens P (1994) Effects of electron acceptors and donors on transformation of tetrachloromethane by Shewanella putrefaciens MR-1. FEMS Microbiol Lett 121:357–364PubMedGoogle Scholar
  168. Picardel FW, Arnold RG, Couch H, Little AM, Smith ME (1993) Involvement of cytochromes in the anaeroþic biotransformation of tetrachloromethane by Shewanella putrefaciens 200. Appl Environ Microbiol 59:3763–3770Google Scholar
  169. Pinchuk GE, Geydebrekht OV, Hill EA, Reed JL, Konopka AE, Beliaev AS, Fredrickson JK (2012) Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl Environ Microbiol 77:8234–8240Google Scholar
  170. Qian F, Morse DE (2011) Miniaturizing microbial fuel cells. Trends Biotechnol 29:62–69PubMedGoogle Scholar
  171. Reid GA, Gordon EHJ (1999) Phylogeny of marine and freshwater Shewanella: Reclassification of Shewanella putrefaciens NC1MB 400 as Shewanella gerigidimarina. Int J Syst Bacteriol 49:189–191PubMedGoogle Scholar
  172. Richard C, Kiredjian M, Guilvout I (1985) Characteristics of phenotypes of Alteromonas putrefaciens. Study of 123 strains. Ann Biol Clin 43:732–738Google Scholar
  173. Richards GP, Watson MA, Crane EJ 3rd, Burt IG, Bushek D (2008) Shewanella and Photobacterium spp. in oysters and seawater from the Delaware Bay. Appl Environ Microbiol 74:3323–3327PubMedPubMedCentralGoogle Scholar
  174. Riley PS, Tatum HW, Weaver RE (1972a) Pseudomonas putrefaciens isolates from clinical specimens. Appl Microbiol 24:798–800PubMedPubMedCentralGoogle Scholar
  175. Riley PS, Tatum HW, Weaver RE (1972b) Pseudomonas putrefaciens isolates from clinical specimens. Appl Microbiol 24:798–800PubMedPubMedCentralGoogle Scholar
  176. Ringo E, Stenberg E, Strom AR (1984) Amino acid and lactate catabolism in trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735. Appl Environ Microbiol 47:1084–1089PubMedPubMedCentralGoogle Scholar
  177. Ringø E, Stenberg E, Strøm AR (1984) Amino acid and lactate catabolism in trimethyl-amine oxide respiration of Alteromonas putrefaciens NCMB 1735. Appl Environ Microbiol 47:1084–1089PubMedPubMedCentralGoogle Scholar
  178. Rossello-Mora RA, Ludwig W, Kampfer P, Amann R, Schleifer KH (1995) Ferrimonas balearica gen. nov., a marine facultative Fe(II1)-reducing bacterium. Syst Appl Microbiol 18:196–202Google Scholar
  179. Ruby EG, Greenberg EP, Hastings JW (1980) Planktonic marine luminous bacteria: species distribution in the water column. Appl Environ Microbiol 39:302–306PubMedPubMedCentralGoogle Scholar
  180. Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria – a dogma rewritten. Microbiology 145:767–779PubMedGoogle Scholar
  181. Russell SM, Fletcher DL, Cox NA (1995) Spoilage bacteria of fresh broiler chicken carcasses. Poult Sci 74:2041–2047PubMedGoogle Scholar
  182. Ruzafa C, Solano F, Sanchez-Amat A (1994) The protein encoded by the Shewanella colwelliana melA gene is a p-hydroxyphenylpyruvate dioxygenase. FEMS Microbiol Lett 124:179–184PubMedGoogle Scholar
  183. Saffarini DA, DiChristina TJ, Bermudes D, Nealson KH (1994) Anaerobic respiration of Shewanella putrefaciens requires both chromosomal and plasmid-borne genes. FEMS Microbiol Lett 119:271–278Google Scholar
  184. Saffarini DA, Blumerman SL, Mansoorabadi KJ (2002) Role of menaquinones in Fe(III) reduction by membrane fractions of Shewanella putrefaciens. J Bacteriol 184:846–848PubMedPubMedCentralGoogle Scholar
  185. Sakiyama T, Ohwada K (1997) Isolation and growth characteristics of deep-sea barophilic bacteria from the Japan Trench. Fish Sci 63:228–232Google Scholar
  186. Sato S, Kurihara T, Kawamoto J, Hosokawa M, Sato SB, Esaki N (2008) Cold adaptation of eicosapentaenoic acid-less mutant of Shewanella livingstonensis Ac10 involving uptake and remodeling of synthetic phospholipids containing various polyunsaturated fatty acids. Extremophiles 12:753–761PubMedGoogle Scholar
  187. Satomi M, Oikawa H, Yano Y (2003) Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J Syst Evol Microbiol 53:491–4999PubMedGoogle Scholar
  188. Satomi M, Vogel BF, Gram L, Venkateswaran K (2006) Shewanella hafniensis sp. nov. and Shewanella morhuae sp. nov., isolated from marine fish of the Baltic Sea. Int J Syst Evol Microbiol 56:243–249PubMedGoogle Scholar
  189. Satomi M, Vogel BF, Venkateswaran K, Gram L (2007) Description of Shewanella glacialipiscicola sp. nov. and Shewanella algidipiscicola sp. nov., isolated from marine fish of the Danish Baltic Sea, and proposal that Shewanella affinis is a later heterotypic synonym of Shewanella colwelliana. Int J Syst Evol Microbiol 57:347–352PubMedGoogle Scholar
  190. Schildcraut CL, Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol 4:430–443Google Scholar
  191. Scott JH, Nealson KH (1994) A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens. J Bacteriol 176:3408–3411PubMedPubMedCentralGoogle Scholar
  192. Semple KM, Westlake DWS (1987) Characterization of iron reducing Alteromonas putrefaciens strains from oil field fluids. Can J Microbiol 33:366–371Google Scholar
  193. Shashkov AS, Senchenkova SN, Nazarenko EV, Zubkov VA, Gorshkova NM, Knirel YA, Gorshkova RP (1997) Structure of phosphorylated polysaccharide from Shewanella putrefaciens strain S29. Carbohydr Res 303:333–338PubMedGoogle Scholar
  194. Shewan JM (1971) The microbiology of fish and fishery products-a progress report. J Appl Bacteriol 34:299–315PubMedGoogle Scholar
  195. Shewan JM (1977) The bacteriology of fresh and spoiling fish and the biochemical changes induced by bacterial action. In: Proceedings of the conference on handling, processing and marketing of tropical fish. Tropical Products Institute, London, pp 51–66Google Scholar
  196. Shewan JM, Hobbs G, Hodgkiss W (1960) A determinative scheme for the identification of certain genera of Gram-negative bacteria with special reference to Pseudomonadaceae. J Appl Bacteriol 23:379–390Google Scholar
  197. Shi L, Chen B, Wang Z, Elias DA, Mayer MU, Gorby YA, Ni S, Lower BH, Kennedy DW, Wunschel DS, Mottaz HM, Marshall MJ, Hill EA, Beliaev AS, Zachara JM, Fredrickson JK, Squier TC (2006) Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J Bacteriol 188:4705–4714PubMedPubMedCentralGoogle Scholar
  198. Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65:12–20PubMedPubMedCentralGoogle Scholar
  199. Shi L, Rosso KM, Clarke TA, Richardson DJ, Zachara JM, Fredrickson JK (2012) Molecular underpinnings of Fe(III) oxide reduction by Shewanella Oneidensis MR-1. Front Microbiol Chem 3:50Google Scholar
  200. Simidu U, Noguchi T, Hwang DF, Shida Y, Hashimoto K (1987) Marine bacteria which produce tetrodotoxin. Appl Environ Microbiol 53:1714–1715PubMedPubMedCentralGoogle Scholar
  201. Simidu U, Kita-Tsukamoto K, Yasumoto T, Yotsu M (1990) Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int J Syst Bacteriol 40:331–336PubMedGoogle Scholar
  202. Simon J, Gross R, Klimmek O, Ringel M, Kröger A (1998) A periplasmic flavoprotein in Wolinella succinogenes that resembles the fumarate reductase of Shewanella putrefaciens. Arch Microbiol 169:424–433PubMedGoogle Scholar
  203. Skerratt JH, Bowman JP, Nichols PD (2002) Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int J Syst Evol Microbiol 52:2101–2106PubMedGoogle Scholar
  204. Skjerdal OT, Lorentzen G, Tryland I, Berg JD (2004) New method for rapid and sensitive quantification of sulphide-producing bacteria in fish from arctic and temperate waters. Int J Food Microbiol 93:325–333PubMedGoogle Scholar
  205. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849Google Scholar
  206. Stenström IM, Molin G (1990) Classification of the spoilage flora of fish, with special reference to Shewanella putrefaciens. J Appl Bacteriol 68:601–618PubMedGoogle Scholar
  207. Subasinghe RP, Shariff M (1992) Multiplebacteriosis, with special reference to spoilage bacterium Shewanella putrefaciens, in cage-cultured Barramundi Perch in Malaysià. J Aquat Anim Health 4:309–311Google Scholar
  208. Sucharita K, Sasikala C, Park SC, Baik KS, Seong CN, Ramana CV (2009) Shewanella chilikensis sp. nov., a moderately alkaliphilic gammaproteobacterium isolated from a lagoon. Int J Syst Evol Microbiol 59:3111–3115PubMedGoogle Scholar
  209. Sugihara S, Hori R, Nakanowatari H, Takada Y, Yumoto I, Morita N, Yano Y, Watanabe K, Okuyama H (2010) Possible biosynthetic pathways for all cis-3,6,9,12,15,19,22, 25,28-hentriacontanonaene in bacteria. Lipids 45:167–177PubMedGoogle Scholar
  210. Takeyama H, Takeda D, Yazawa K, Yamada A, Matsunaga T (1997) Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp. Microbiology 143:2725–2731PubMedGoogle Scholar
  211. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128Google Scholar
  212. Tamegai H, Ota Y, Haga M, Fujimori H, Kato C, Nogi Y, Kawamoto J, Kurihara T, Sambongi Y (2011) Piezotolerance of the respiratory terminal oxidase activity of the piezophilic Shewanella violacea DSS12 as compared with non-piezophilic Shewanella species. Biosci Biotechnol Biochem 75:919–924PubMedGoogle Scholar
  213. Temara A, DeRidder C, Kaisin M (1991) Presence of an essential polyunsaturated fatty acid in intradigestive bacterial symbionts of a deposit-feeder echinoid (Echinodermata). Comp Biochem Physiol 100B:503–505Google Scholar
  214. Thompson DK, Beliaev AS, Giometti CS, Tollaksen SL, Khare T, Lies DP, Nealson KH, Lim H, Yates J 3rd, Brandt CC, Tiedje JM, Zhou J (2002) Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: possible involvement of fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl Environ Microbiol 68:881–892PubMedPubMedCentralGoogle Scholar
  215. Toffin L, Bidault A, Pignet P, Tindall BJ, Slobodkin A, Kato C, Prieur D (2004) Shewanella profunda sp. nov., isolated from deep marine sediment of the Nankai trough. Int J Syst Evol Microbiol 54:1943–1949PubMedGoogle Scholar
  216. Tsai MS, You HL, Tang YF, Liu JW (2008) Shewanella soft tissue infection: case report and literature review. Int J Infect Dis 12:e119–e124PubMedGoogle Scholar
  217. Turick CE, Tisa LS, Caccavo F Jr (2002) Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl Environ Microbiol 68:2436–2444PubMedPubMedCentralGoogle Scholar
  218. Turick CE, Caccavo F Jr, Tisa LS (2008) Pyomelanin is produced by Shewanella algae BrY and affected by exogenous iron. Can J Microbiol 54:334–339PubMedGoogle Scholar
  219. Usui K, Hiraki T, Kawamoto J, Kurihara T, Nogi Y, Kato C, Abe F (2012) Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement. Biochim Biophys Acta 1818:574–583PubMedGoogle Scholar
  220. Venkateswaran K, Dollhopf ME, Aller R, Stackebrandt E, Nealson KH (1998) Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol 48:965–972PubMedGoogle Scholar
  221. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackebrandt E, Nealson KH (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. Nov. Int J Syst Bacteriol 49:705–724PubMedGoogle Scholar
  222. Verma P, Pandey PK, Gupta AK, Kim HJ, Baik KS, Seong CN, Patole MS, Shouche YS (2011) Shewanella indica sp. nov., isolated from sediment of the Arabian Sea. Int J Syst Evol Microbiol 61:2058–2064PubMedGoogle Scholar
  223. Vogel BF, Gram L (1994) Encyclopedia of food microbiology. Elsevier, London, pp 2008–2015Google Scholar
  224. Vogel BF, Jørgensen K, Christensen H, Olsen JE, Gram L (1997) Differentiation of Shewanella putrefaciens and Shewanella alga on the basis of whole-cell protein profiles, ribotyping, phenotypic characterization, and 16S rRNA gene sequence analysis. Appl Environ Microbiol 63:2189–2199PubMedPubMedCentralGoogle Scholar
  225. Vogel BF, Holt HM, Gerner-Smidt P, Bundvad A, Sogaard P, Gram L (2000) Homogeneity of Danish environmental and clinical isolates of Shewanella algae. Appl Environ Microbiol 66:443–448PubMedPubMedCentralGoogle Scholar
  226. Vogel BF, Venkateswaran K, Satomi M, Gram L (2005) Identification of Shewanella baltica as the most important H2S-producing species during iced storage of Danish marine fish. Appl Environ Microbiol 71:6689–6697PubMedCentralGoogle Scholar
  227. Wang F, Wang P, Chen M, Xiao X (2004) Isolation of extremophiles with the detection and retrieval of Shewanella strains in deep-sea sediments from the west Pacific. Extremophiles 8:165–168PubMedGoogle Scholar
  228. Wang F, Wang F, Li Q, Xiao X (2007) A novel filamentous phage from the deep-sea bacterium Shewanella piezotolerans WP3 is induced at low temperature. J Bacteriol 189:7151–7153PubMedPubMedCentralGoogle Scholar
  229. Wang F, Wang J, Jian H, Zhang B, Li S, Wang F, Zeng X, Gao L, Bartlett DH, Yu J, Hu S, Xiao X (2008) Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS One. doi:10.1371/journal.pone.0001937Google Scholar
  230. Wang FX, Xiao X, Ou HY, Gai Y, Wang F (2009) Role and regulation of fatty acid biosynthesis in the response of Shewanella piezotolerans WP3 to different temperatures and pressures. J Bacteriol 191:2574–2584PubMedPubMedCentralGoogle Scholar
  231. Watanabe K, Yazawa K, Kondo K, Kawaguchi A (1997) Fatty acid synthesis of an eicosapentaenoic acid-producing bacterium: de novo synthesis, chain elongation, and desaturation systems. J Biochem 122:467–473PubMedGoogle Scholar
  232. Wayne LG, Brenner DJ, Colwell RR et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464Google Scholar
  233. Weiner RM, Coyne VE, Brayton P, West P, Raiken SF (1998) Alteromonas colwelliana sp. nov. an Isolate from oyster habitats. Int J Syst Bacteriol 38:240–244Google Scholar
  234. Wilkinson SG (1968) Glycosyl diglycerides from Pseudomonas rubescens. Biochim Biophys Acta 164:148–156PubMedGoogle Scholar
  235. Wilkinson SG (1972) Composition and structure of the ornithine-containing lipid from Pseudomonas rubescens. Biochim Biophys Acta 270:1–17PubMedGoogle Scholar
  236. Wilkinson SG (1988) Gram-negative bacteria. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 299–488Google Scholar
  237. Wilkinson SG, Caudwell PF (1980) Lipid composition and chemotaxonomy of Pseudomonas putrefaciens (Alteromonas putrefaciens). J Gen Microbiol 118:329–341PubMedGoogle Scholar
  238. Wilkinson SG, Galbraith L, Lightfoot GA (1973) Cell walls, lipids, and lipopolysaccharides of Pseudomonas species. Eur J Biochem 33:158–174PubMedGoogle Scholar
  239. Xiao X, Wang P, Zeng X, Hoyt Bartlett D, Wang F (2007) Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific Deep-sea sediment. Int J Syst Evol Microbiol 57:60–65PubMedGoogle Scholar
  240. Xu M, Guo J, Cen Y, Zhong X, Cao W, Sun G (2005) Shewanella decolorationis sp. nov., a dye decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int J Syst Evol Microbiol 55:363–368PubMedGoogle Scholar
  241. Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109PubMedPubMedCentralGoogle Scholar
  242. Yamamoto S, Harayama S (1996) Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int J Syst Bacteriol 46:506–511PubMedGoogle Scholar
  243. Yamamoto S, Harayama S (1998) Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol 48:813–819PubMedGoogle Scholar
  244. Yang SH, Kwon KK, Lee HS, Kim SJ (2006) Shewanella spongiae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 56:2879–2882PubMedGoogle Scholar
  245. Yang SH, Lee JH, Ryu JS, Kato C, Kim SJ (2007) Shewanella donghaensis sp. nov., a psychrophilic, piezosensitive bacterium producing high levels of polyunsaturated fatty acid, isolated from deep-sea sediments. Int J Syst Evol Microbiol 57:208–212PubMedGoogle Scholar
  246. Yano Y, Nakayama A, Saito H, Ishihara K (1994) Production of docosahexaenoic acid by marine bacteria isolated from deep sea fish. Lipids 29:527–528PubMedGoogle Scholar
  247. Yano Y, Nakayama A, Yoshida K (1997) Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep sea fish and shallow-sea poikilothermic animals. Appl Environ Microbiol 63:2572–2577PubMedPubMedCentralGoogle Scholar
  248. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rossello-Mora R (2008) The All-Species Living Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250PubMedGoogle Scholar
  249. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living-Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedGoogle Scholar
  250. Yayanos AA, Dietz AS, Van Boxtel R (1979) Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–810PubMedGoogle Scholar
  251. Yayanos AA, Dietz AS, Van Boxtel R (1982) Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl Environ Microbiol 44:1356–1361PubMedPubMedCentralGoogle Scholar
  252. Yazawa K (1996) Production of eicosapentaenoic acid from marine bacteria. Lipids 31(Suppl):S297–S300PubMedGoogle Scholar
  253. Yazawa K, Araki K, Watanabe K, Ishikawa C, Inoue A, Kondo K, Watanabe S, Hashimoto K (1988) Eicosapentaenoic acid productivity of the bacteria isolated from fish intestines. Nippon Suisan Gakkaishi 54:1835–1838Google Scholar
  254. Yoon JH, Kang KH, Oh TK, Park YH (2004a) Shewanella gaetbuli sp. nov., a slight halophile isolated from a tidal flat in Korea. Int J Syst Evol Microbiol 54:487–491PubMedGoogle Scholar
  255. Yoon JH, Yeo SH, Kim IG, Oh TK (2004b) Shewanella marisflavi sp. nov. and Shewanella aquimarina sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:2347–2352PubMedGoogle Scholar
  256. Yu R, Yamada A, Watanabe K, Yazawa K, Takeyama H, Matsunaga T, Kurane R (2000) Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp. Lipids 35:1061–1064PubMedGoogle Scholar
  257. Zhao JS, Manno D, Beaulieu C, Paquet L, Hwari J (2005) Shewanella sediminis sp. nov., a novel Na+ -requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading bacterium from marine sediment. Int J Syst Evol Microbiol 55:1511–1520PubMedGoogle Scholar
  258. Zhao JS, Manno D, Leggiadro C, O’Neil D, Hawari J (2006) Shewanella halifaxensis sp. nov., a novel obligately respiratory and denitrifying psychrophile. Int J Syst Evol Microbiol 56:205–212PubMedGoogle Scholar
  259. Zhao JS, Manno D, Thiboutot S, Ampleman G, Hawari J (2007) Shewanella canadensis sp. nov. and Shewanella atlantica sp. nov., manganese dioxide- and hexahydro-1,3,5-trinitro-1,3,5-triazine-reducing, psychrophilic marine bacteria. Int J Syst Evol Microbiol 57:2155–2162PubMedGoogle Scholar
  260. Ziemke F, Hofle MG, Lalucat’ J, Mora RR (1998) Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.National Research Institute of Fisheries ScienceFisheries Research AgencyYokohamaJapan

Personalised recommendations