Advertisement

Supramolecular Self-assembly of Discotic Liquid Crystalline LEGOs

Living reference work entry

Abstract

Discotic liquid crystals with well-defined columnar self-assemblies are promising for technological applications in organic electronics such as organic solar cells and field-effect transistors. In this entry, we review the self-assembly behavior of discotic supermolecules comprised of various discotic and cubic building blocks, including porphyrin, phthalocyanine, triphenylene, and polyhedral oligomeric silsesquioxane (POSS). With the help of amide hydrogen bonding, triphenylenes and porphyrins stack into the ordered “lamello-columnar” phase. Without hydrogen bonding interaction, the π-π stacking interaction leads to a hexagonal columnar phase with mixed phthalocyanine and triphenylene columns. For a POSS molecule covalently attached to eight triphenylenes, the triphenylenes and the POSS core can form a super-column when the space length is short. Self-assembly of these supercolumns can lead to a hexagonal superlattice. From this study, the spacer length, molecular geometry/size, and intermolecular interactions play an important role in the self-assembly of the discotic liquid crystalline LEGOs.

Keywords

Discotic liquid crystals Columnar self-assembly Hydrogen bonding Triphenylene Phthalocyanine Porphyrin Polyhedral oligomeric silsesquioxane (POSS) 

Notes

Acknowledgment

This work was supported by the National Science Foundation CAREER Award (DMR-0348724), DuPont Young Professor Award, and 3M Nontenured Faculty Award.

References

  1. Adam D, Schuhmacher P, Simmerer J, Haussling L, Siemensmeyer K, Etzbach KH, Ringsdorf H, Haarer D (1994) Fast photoconduction in the highly ordered columnar phase of a discotic liquid-crystal. Nature 371(6493):141–143CrossRefGoogle Scholar
  2. Bacher A, Bleyl I, Erdelen CH (1997) Low molecular weight and polymeric triphenylenes as hole transport materials inorganic two-layer LEDs. Adv Mater 9(13):1031–1035CrossRefGoogle Scholar
  3. Beginn U (2003) Thermotropic columnar mesophases from N-H·· O, and N···H-O hydrogen bond supramolecular mesogenes. Prog Polym Sci 28(7):1049–1105CrossRefGoogle Scholar
  4. Benanti TL, Saejueng P, Venkataraman D (2007) Segregated assemblies in bridged electron-rich and electron-poor π-conjugated moieties. Chem Commun (7):692–694Google Scholar
  5. Bu LJ, Guo XY, Yu B, Qu Y, Xie ZY, Yan DH, Geng YH, Wang FS (2009) Monodisperse co-oligomer approach toward nanostructured films with alternating donor-acceptor lamellae. J Am Chem Soc 131(37):13242–13243CrossRefGoogle Scholar
  6. Bullock JE, Carmieli R, Mickley SM, Vura-Weis J, Wasielewski MR (2009) Photoinitiated charge transport through π-stacked electron conduits in supramolecular ordered assemblies of donor-acceptor triads. J Am Chem Soc 131(33):11919–11929CrossRefGoogle Scholar
  7. Bushey ML, Hwang A, Stephens PW, Nuckolls C (2001) Enforced stacking in crowded arenes. J Am Chem Soc 123(33):8157–8158CrossRefGoogle Scholar
  8. Bushey ML, Hwang A, Stephens PW, Nuckolls C (2002) The consequences of chirality in crowded arenes – macromolecular helicity, hierarchical ordering, and directed assembly. Angew Chem Int Ed 41(15):2828–2831CrossRefGoogle Scholar
  9. Charvet R, Yamamoto Y, Sasaki T, Kim J, Kato K, Takata M, Saeki A, Seki S, Aida T (2012) Segregated and alternately stacked donor/acceptor nanodomains in tubular morphology tailored with zinc porphyrin-C60 amphiphilic dyads: clear geometrical effects on photoconduction. J Am Chem Soc 134(5):2524–2527CrossRefGoogle Scholar
  10. Christ T, Glusen B, Greiner A, Kettner A, Sander R, Stumpflen V, Tsukruk V, Wendorff JH (1997) Columnar discotics for light emitting diodes. Adv Mater 9(1):48–52CrossRefGoogle Scholar
  11. Cooke G, Kaushal N, Boden N, Bushby RJ, Lu ZB, Lozman O (2000) Synthesis of liquid crystalline anthraquinolyl-triphenylenes. Tetrahedron Lett 41(41):7955–7959CrossRefGoogle Scholar
  12. Dong L, Li W, Li WS (2011) Construction of a long range p/n heterojunction with a pair of nanometre-wide continuous D/A phases. Nanoscale 3(9):3447–3461CrossRefGoogle Scholar
  13. Dossel LF, Kamm V, Howard IA, Laquai F, Pisula W, Feng XL, Li C, Takase M, Kudernac T, De Feyter S, Mullen K (2012) Synthesis and controlled self-assembly of covalently linked hexa-peri-hexabenzocoronene/perylene diimide dyads as models to study fundamental energy and electron transfer processes. J Am Chem Soc 134(13):5876–5886CrossRefGoogle Scholar
  14. Gearba RI, Lehmann M, Levin J, Ivanov DA, Koch MHJ, Barbera J, Debije MG, Piris J, Geerts YH (2003) Tailoring discotic mesophases: columnar order enforced with hydrogen bonds. Adv Mater 15(19):1614–1618CrossRefGoogle Scholar
  15. Gommans H, Schols S, Kadashchuk A, Heremans P, Meskers SCJ (2009) Exciton diffusion length and lifetime in subphthalocyanine films. J Phys Chem C 113(7):2974–2979CrossRefGoogle Scholar
  16. Hanabusa K, Koto C, Kimura M, Shirai H, Kakehi A (1997) Remarkable viscoelasticity of organic solvents containing trialkyl-1,3,5-benzenetricarboxamides and their intermolecular hydrogen bonding. Chem Lett (5):429–430CrossRefGoogle Scholar
  17. Hayashi H, Nihashi W, Umeyama T, Matano Y, Seki S, Shimizu Y, Imahori H (2011) Segregated donor-acceptor columns in liquid crystals that exhibit highly efficient ambipolar charge transport. J Am Chem Soc 133(28):10736–10739CrossRefGoogle Scholar
  18. Hertmanowski R, Martynski T, Stolarski R, Bauman D (2008) Intermolecular interactions in Langmuir-Blodgett films of liquid crystalline perylene derivatives. Opto-Electron Rev 16(3):237–243CrossRefGoogle Scholar
  19. Hizume Y, Tashiro K, Charvet R, Yamamoto Y, Saeki A, Seki S, Aida T (2010) Chiroselective assembly of a chiral porphyrin-fullerene dyad: photoconductive nanofiber with a top-class ambipolar charge-carrier mobility. J Am Chem Soc 132(19):6628–6629CrossRefGoogle Scholar
  20. Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ (2005) About supramolecular assemblies of π-conjugated systems. Chem Rev 105(4):1491–1546CrossRefGoogle Scholar
  21. Ichihara M, Suzuki A, Hatsusaka K, Ohta K (2007) Discotic liquid crystals of transition metal complexes 38: peripheral chain substituent position effect on columnar mesophase and stacking structures of novel phthalocyanine-based liquid crystals. J Porphyrins Phthalocyanines 11(7):503–512CrossRefGoogle Scholar
  22. Ito S, Wehmeier M, Brand JD, Kubel C, Epsch R, Rabe JP, Mullen K (2000) Synthesis and self-assembly of functionalized hexa-peri-hexabenzocoronenes. Chem Eur J 6(23):4327–4342CrossRefGoogle Scholar
  23. Janietz D (1998) Structure formation of functional sheet-shaped mesogens. J Mater Chem 8(2):265–274CrossRefGoogle Scholar
  24. Kawada H, Matsunaga Y, Takamura T, Terada M (1988) Design of novel mesomorphic compounds methyl-substituted N,N′-dialkanoyl-1,3-benzenediamines. Can J Chem 66(8):1867–1871CrossRefGoogle Scholar
  25. Kumar S, Rao DSS, Prasad SK (1999) New branched chain tricycloquinazoline derivatives: a room temperature electron deficient discotic system. J Mater Chem 9(11):2751–2754CrossRefGoogle Scholar
  26. Laschat S, Baro A, Steinke N, Giesselmann F, Hagele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M (2007) Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Ed 46(26):4832–4887CrossRefGoogle Scholar
  27. Li WS, Yamamoto Y, Fukushima T, Saeki A, Seki S, Tagawa S, Masunaga H, Sasaki S, Takata M, Aida T (2008) Amphiphilic molecular design as a rational strategy for tailoring bicontinuous electron donor and acceptor arrays: photoconductive liquid crystalline oligothiophene-C60 dyads. J Am Chem Soc 130(28):8886–8887CrossRefGoogle Scholar
  28. Liu CY, Bard AJ (2002) Pressure-induced insulator-conductor transition in a photoconducting organic liquid-crystal film. Nature 418(6894):162–164CrossRefGoogle Scholar
  29. Mahlstedt S, Janietz D, Stracke A, Wendorff JH (2000) First triphenylene based non-symmetric donor-acceptor triple mesogen possessing disc-like and rod-like characteristics. Chem Commun (1):15–16Google Scholar
  30. Mativetsky JM, Kastler M, Savage RC, Gentilini D, Palma M, Pisula W, Mullen K, Samori P (2009) Self-assembly of a donor-acceptor dyad across multiple length scales: functional architectures for organic electronics. Adv Funct Mater 19(15):2486–2494CrossRefGoogle Scholar
  31. Meier H (1992) The photochemistry of stilbenoid compounds and their role in materials technology. Angew Chem Int Ed 31(11):1399–1420CrossRefGoogle Scholar
  32. Miao J, Zhu L (2010a) Columnar liquid crystalline assembly of doubly discotic supermolecules based on tetra-triphenylene-substituted phthalocyanine. Soft Matter 6(9):2072–2079CrossRefGoogle Scholar
  33. Miao J, Zhu L (2010b) Hydrogen bonding induced supramolecular self-assembly of linear doubly discotic triad supermolecules. Chem Asian J 5(7):1634–1641CrossRefGoogle Scholar
  34. Miao J, Zhu L (2010c) Hydrogen bond-assisted supramolecular self-assembly of doubly discotic supermolecules based on porphyrin and triphenylene. Chem Mater 22(1):197–206CrossRefGoogle Scholar
  35. Miao J, Zhu L (2010d) Topology controlled supramolecular self-assembly of octa triphenylene-substituted polyhedral oligomeric silsesquioxane hybrid supermolecules. J Phys Chem B 114(5):1879–1887CrossRefGoogle Scholar
  36. Nelson J (2001) Solar energy – solar cells by self-assembly? Science 293(5532):1059–1060CrossRefGoogle Scholar
  37. Oukachmih M, Destruel P, Seguy I, Ablart G, Jolinat P, Archambeau S, Mabiala M, Fouet S, Bock H (2005) New organic discotic materials for photovoltaic conversion. Sol Energy Mater Sol Cells 85(4):535–543CrossRefGoogle Scholar
  38. Palmans ARA, Vekemans JAJM, Havinga EE, Meijer EW (1997) Sergeants-and-soldiers principle in chiral columnar stacks of disc-shaped molecules with C3 symmetry. Angew Chem Int Ed 36(23):2648–2651CrossRefGoogle Scholar
  39. Paraschiv I, Giesbers M, van Lagen B, Grozema FC, Abellon RD, Siebbeles LDA, Marcelis ATM, Zuilhof H, Sudholter EJR (2006) H-bond-stabilized triphenylene-based columnar discotic liquid crystals. Chem Mater 18(4):968–974CrossRefGoogle Scholar
  40. Paraschiv I, de Lange K, Giesbers M, van Lagen B, Grozema FC, Abellon RD, Siebbeles LDA, Sudholter EJR, Zuilhof H, Marcelis ATM (2008) Hydrogen-bond stabilized columnar discotic benzenetrisamides with pendant triphenylene groups. J Mater Chem 18(45):5475–5481CrossRefGoogle Scholar
  41. Peeters E, van Hal PA, Meskers SCJ, Janssen RAJ, Meijer EW (2002) Photoinduced electron transfer in a mesogenic donor-acceptor-donor system. Chem Eur J 8(19):4470–4474CrossRefGoogle Scholar
  42. Pieterse K, van Hal PA, Kleppinger R, Vekemans JAJM, Janssen RAJ, Meijer EW (2001) An electron-deficient discotic liquid-crystalline material. Chem Mater 13(8):2675–2679CrossRefGoogle Scholar
  43. Pisula W, Menon A, Stepputat M, Lieberwirth I, Kolb U, Tracz A, Sirringhaus H, Pakula T, Mullen K (2005) A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene. Adv Mater 17(6):684–689CrossRefGoogle Scholar
  44. Saleh M, Park YS, Baumgarten M, Kim JJ, Mullen K (2009) Conjugated triphenylene polymers for blue OLED devices. Macromol Rapid Commun 30(14):1279–1283CrossRefGoogle Scholar
  45. Samori P, Fechtenkotter A, Reuther E, Watson MD, Severin N, Mullen K, Rabe JP (2006) Self-assembly of perylene monoimide substituted hexa-peri-bexabenzocoronenes: dyads and triads at surfaces. Adv Mater 18(10):1317–1321CrossRefGoogle Scholar
  46. Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E, Friend RH, MacKenzie JD (2001) Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293(5532):1119–1122CrossRefGoogle Scholar
  47. Schultz A, Laschat S, Abbott AP, Langner M, Reeve TB (2000) Synthesis of novel donor-acceptor twins. J Chem Soc Perkin Trans 1(20):3356–3361CrossRefGoogle Scholar
  48. Seguy I, Destruel P, Bock H (2000) An all-columnar bilayer light-emitting diode. Synth Met 111:15–18CrossRefGoogle Scholar
  49. Sergeyev S, Pisula W, Geerts YH (2007) Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev 36(12):1902–1929CrossRefGoogle Scholar
  50. Simpson CD, Wu JS, Watson MD, Mullen K (2004) From graphite molecules to columnar superstructures – an exercise in nanoscience. J Mater Chem 14(4):494–504CrossRefGoogle Scholar
  51. Smulders MMJ, Schenning APHJ, Meijer EW (2008) Insight into the mechanisms of cooperative self-assembly: the “sergeants-and-soldiers” principle of chiral and achiral C3-symmetrical discotic triamides. J Am Chem Soc 130(2):606–611CrossRefGoogle Scholar
  52. Tchebotareva N, Yin XM, Watson MD, Samori P, Rabe JP, Mullen K (2003) Ordered architectures of a soluble hexa-peri-hexabenzocoronene-pyrene dyad: thermotropic bulk properties and nanoscale phase segregation at surfaces. J Am Chem Soc 125(32):9734–9739CrossRefGoogle Scholar
  53. Terao Y, Sasabe H, Adachi C (2007) Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells. Appl Phys Lett 90(10):103515CrossRefGoogle Scholar
  54. Tschierske C (2001) Non-conventional soft matter. Annu Rep Prog Chem Sect C 97:191–267CrossRefGoogle Scholar
  55. van de Craats AM, Warman JM (2001) The core-size effect on the mobility of charge in discotic liquid crystalline materials. Adv Mater 13(2):130–133CrossRefGoogle Scholar
  56. van de Craats AM, Warman JM, Hasebe H, Naito R, Ohta K (1997) Charge transport in the mesomorphic free-radical compound bis(octakis(dodecyloxy)phthalocyaninato)lutetium(III). J Phys Chem B 101(45):9224–9232CrossRefGoogle Scholar
  57. van de Craats AM, Warman JM, Mullen K, Geerts Y, Brand JD (1998) Rapid charge transport along self-assembling graphitic nanowires. Adv Mater 10(1):36–38CrossRefGoogle Scholar
  58. van de Craats AM, Warman JM, Fechtenkotter A, Brand JD, Harbison MA, Mullen K (1999) Record charge carrier mobility in a room-temperature discotic liquid-crystalline derivative of hexabenzocoronene. Adv Mater 11(17):1469–1472CrossRefGoogle Scholar
  59. van de Craats AM, Stutzmann N, Bunk O, Nielsen MM, Watson M, Mullen K, Chanzy HD, Sirringhaus H, Friend RH (2003) Meso-epitaxial solution-growth of self-organizing discotic liquid-crystalline semiconductors. Adv Mater 15(6):495–499CrossRefGoogle Scholar
  60. van Gorp JJ, Vekemans JAJM, Meijer EW (2002) C3-symmetrical supramolecular architectures: fibers and organic gels from discotic trisamides and trisureas. J Am Chem Soc 124(49):14759–14769CrossRefGoogle Scholar
  61. Wasserfallen D, Fischbach I, Chebotareva N, Kastler M, Pisula W, Jackel F, Watson MD, Schnell I, Rabe JP, Spiess HW, Mullen K (2005) Influence of hydrogen bonds on the supramolecular order of hexa-peri-hexabenzocoronenes. Adv Funct Mater 15(10):1585–1594CrossRefGoogle Scholar
  62. Zamir S, Poupko R, Luz Z, Huser B, Boeffel C, Zimmermann H (1994) Molecular ordering and dynamics in the columnar mesophase of a new dimeric discotic liquid-crystal as studied by X-ray-diffraction and deuterium NMR. J Am Chem Soc 116(5):1973–1980CrossRefGoogle Scholar
  63. Zeng DL, Tahar-Djebbar I, Xiao YM, Kameche F, Kayunkid N, Brinkmann M, Guillon D, Heinrich B, Donnio B, Ivanov DA, Lacaze E, Kreher D, Mathevet F, Attias AJ (2014) Intertwined lamello-columnar coassemblies in liquid-crystalline side-chain π-conjugated polymers: toward a new class of nanostructured supramolecular organic semiconductors. Macromolecules 47(5):1715–1731CrossRefGoogle Scholar
  64. Zhao KQ, An LL, Zhang XB, Yu WH, Hu P, Wang BQ, Xu J, Zeng QD, Monobe H, Shimizu Y, Heinrich B, Donnio B (2015) Highly segregated lamello-columnar mesophase organizations and fast charge carrier mobility in new discotic donor-acceptor triads. Chem Eur J 21(29):10379–10390CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations