Skip to main content

Anatomy and Physiology of the Hepatic Circulation

  • Reference work entry
  • First Online:

Abstract

The liver with its complex functions in biosynthesis, metabolism, clearance, and host defense plays a central role in the physiology of the human body. Hepatic homeostasis is highly dependent on adequate perfusion and microcirculation. Hereby, the liver presents with unique features, such as the dual hepatic arterial and portal venous blood supply and the fenestrated sinusoids, guaranteeing the supply of the parenchymal tissue with oxygen and nutrients and the clearance of toxicants and foreign bodies from the bloodstream. With the introduction, development, and refinement of in vivo imaging techniques, sophisticated analyses contributed markedly to our current understanding of the regulation of hepatic blood flow and microvascular perfusion in both health and disease. This chapter will address the physiology of the hepatic macro- and microcirculation, thereby highlighting the dual blood supply of the liver with the intimate relationship between the two vascular systems and the regulation of sinusoidal perfusion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CBS:

Cystathionine-beta-synthetase

CO:

Carbon monoxide

CSE:

Cystathionine-gamma-lyase

eNOS:

Endothelial nitric oxide synthase

ET:

Endothelin

H2S:

Hydrogen sulfide

HABR:

Hepatic arterial buffer response

HO:

Heme oxygenase

HSCs:

Hepatic stellate cells

iNOS:

Inducible nitric oxide synthase

KCs:

Kupffer cells

NO:

Nitric oxide

NOS:

Nitric oxide synthase

SECs:

Sinusoidal endothelial cells

αSMA:

Alpha smooth muscle actin

References

  • Abrahám S, Szabó A, Kaszaki J, Varga R, Eder K, Duda E, Lázár G, Tiszlavicz L, Boros M, Lázár G Jr (2008) Kupffer cell blockade improves the endotoxin-induced microcirculatory inflammatory response in obstructive jaundice. Shock 30:69–74

    PubMed  Google Scholar 

  • Abshagen K, Eipel C, Kalff JC, Menger MD, Vollmar B (2008) Kupffer cells are mandatory for adequate liver regeneration by mediating hyperperfusion via modulation of vasoactive proteins. Microcirculation 15:37–47

    Article  CAS  PubMed  Google Scholar 

  • Alexander B, Blumgart LH, Mathie RT (1989) The effect of propranolol on the hyperaemic response of the hepatic artery to portal venous occlusion in the dog. Br J Pharmacol 96:356–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki T, Imamura H, Kaneko J, Sakamoto Y, Matsuyama Y, Kokudo N, Sugawara Y, Makuuchi M (2005) Intraoperative direct measurement of hepatic arterial buffer response in patients with or without cirrhosis. Liver Transpl 11:684–691

    Article  PubMed  Google Scholar 

  • Arii S, Imamura M (2000) Physiological role of sinusoidal endothelial cells and Kupffer cells and their implication in the pathogenesis of liver injury. J Hepatobiliary Pancreat Surg 7:40–48

    Article  CAS  PubMed  Google Scholar 

  • Atkinson M, Sherlock S (1954) Intrasplenic pressure as index of portal venous pressure. Lancet 266:1325–1327

    Article  CAS  PubMed  Google Scholar 

  • Ayuse T, Brienza N, Revelly JP, O'Donnell CP, Boitnott JK, Robotham JL (1995) Alterations in liver hemodynamics in an intact porcine model of endotoxin shock. Am J Physiol 268:H1106–H1114

    CAS  PubMed  Google Scholar 

  • Ayuse T, Mishima K, Oi K, Ureshino H, Sumikawa K (2010) Effects of nitric oxide donor on hepatic arterial buffer response in anesthetized pigs. J Invest Surg 23:183–189

    Article  PubMed  Google Scholar 

  • Balfour DC Jr, Reynolds TB, Levinson DC, Mikkelsen WP, Pattison AC (1954) Hepatic vein pressure studies for evaluation of intrahepatic portal hypertension. AMA Arch Surg 68:442–447

    Article  PubMed  Google Scholar 

  • Bansal R, Prakash J, Post E, Beljaars L, Schuppan D, Poelstra K (2011) Novel engineered targeted interferon-gamma blocks hepatic fibrogenesis in mice. Hepatology 54:586–596

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Zhang JX, Bauer I, Clemens MG (1994) ET-1 induced alterations of hepatic microcirculation: sinusoidal and extrasinusoidal sites of action. Am J Physiol 267:G143–G149

    CAS  PubMed  Google Scholar 

  • Bauer I, Vollmar B, Jaeschke H, Rensing H, Kraemer T, Larsen R, Bauer M (2000) Transcriptional activation of heme oxygenase-1 and its functional significance in acetaminophen-induced hepatitis and hepatocellular injury in the rat. J Hepatol 33:395–406

    Article  CAS  PubMed  Google Scholar 

  • Baveja R, Kresge N, Ashburn JH, Keller S, Yokoyama Y, Sonin N, Zhang JX, Huynh T, Clemens MG (2002) Potentiated hepatic microcirculatory response to endothelin-1 during polymicrobial sepsis. Shock 18:415–422

    Article  PubMed  Google Scholar 

  • Biernat J, Pawlik WW, Sendur R, Dembiński A, Brzozowski T, Konturek SJ (2005) Role of afferent nerves and sensory peptides in the mediation of hepatic artery buffer response. J Physiol Pharmacol 56:133–145

    CAS  PubMed  Google Scholar 

  • Bloch EH (1955) The in vivo microscopic vascular anatomy and physiology of the liver as determined with the quartz rod method of transillumination. Angiology 6:340–349

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff R, Wake K (1991) Perisinusoidal stellate cells of the liver: important roles in retinol metabolism and fibrosis. FASEB J 5:271–277

    CAS  PubMed  Google Scholar 

  • Boillot O, Mechet I, Le Derf Y, Bernard P, Figueiredo P, Berger F, Paquet C, Pouyet M (2003) Portomesenteric disconnection for small-for-size grafts in liver transplantation: Preclinical studies in pigs. Liver Transpl 9:S42–S46

    Article  PubMed  Google Scholar 

  • Bouwens L, Baekeland M, De Zanger R, Wisse E (1986) Quantitation, tissue distribution and proliferation kinetics of Kupffer cells in normal rat liver. Hepatology 6:718–722

    Article  CAS  PubMed  Google Scholar 

  • Bouwens L, De Bleser P, Vanderkerken K, Geerts B, Wisse E (1992) Liver cell heterogeneity: functions of non-parenchymal cells. Enzyme 46:155–168

    CAS  PubMed  Google Scholar 

  • Braet F, Soon LL (2005) Diaphragmed fenestrae in the glomerular endothelium versus nondiaphragmed fenestrae in the hepatic endothelium. Kidney Int 68:1902–1903

    Article  PubMed  Google Scholar 

  • Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Braet F, Wisse E, Bomans P, Frederik P, Geerts W, Koster A, Soon L, Ringer S (2007) Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc Res Tech 70:230–242

    Article  PubMed  Google Scholar 

  • Braet F, Riches J, Geerts W, Jahn KA, Wisse E, Frederik P (2009) Three-dimensional organization of fenestrae labyrinths in liver sinusoidal endothelial cells. Liver Int 29:603–613

    Article  PubMed  Google Scholar 

  • Braide M, Amundson B, Chien S, Bagge U (1984) Quantitative studies on the influence of leukocytes on the vascular resistance in a skeletal muscle preparation. Microvasc Res 27:331–352

    Article  CAS  PubMed  Google Scholar 

  • Bredfeldt JE, Riley EM, Groszmann RJ (1985) Compensatory mechanisms in response to an elevated hepatic oxygen consumption in chronically ethanol-fed rats. Am J Physiol 248:G507–G511

    CAS  PubMed  Google Scholar 

  • Brock RW, Carson MW, Harris KA, Potter RF (1999) Microcirculatory perfusion deficits are not essential for remote parenchymal injury within the liver. Am J Physiol 277:G55–G60

    CAS  PubMed  Google Scholar 

  • Browse DJ, Mathie RT, Benjamin IS, Alexander B (2003) The role of ATP and adenosine in the control of hepatic blood flow in the rabbit liver in vivo. Comp Hepatol 2:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunner F, Stessel H, Kukovetz WR (1995) Novel guanylyl cyclase inhibitor, ODQ reveals role of nitric oxide, but not of cyclic GMP in endothelin-1 secretion. FEBS Lett 376:262–266

    Article  CAS  PubMed  Google Scholar 

  • Burkel WE (1970) The fine structure of the terminal branches of the hepatic arterial system of the rat. Anat Rec 167:329–349

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt M, Slotta JE, Garcia P, Seekamp A, Menger MD, Pohlemann T (2008) The effect of estrogen on hepatic microcirculation after ischemia/reperfusion. Int J Colorectal Dis 23:113–119

    Article  CAS  PubMed  Google Scholar 

  • Burton-Opitz R (1911) The vascularity of the liver: the influence of the portal blood flow upon the flow in the hepatic artery. Q J Exp Physiol 4:93–102

    Article  Google Scholar 

  • Cantré D, Schuett H, Hildebrandt A, Dold S, Menger MD, Vollmar B, Eipel C (2008) Nitric oxide reduces organ injury and enhances regeneration of reduced-size livers by increasing hepatic arterial flow. Br J Surg 95:785–792

    Article  PubMed  CAS  Google Scholar 

  • Chaudry IH, Clemens MG, Baue AE (1981) Alterations in cell function with ischemia and shock and their correction. Arch Surg 116:1309–1317

    Article  CAS  PubMed  Google Scholar 

  • Chien S (1985) The Microcirculatory Society Eugene M. Landis Award lecture. Role of blood cells in microcirculatory regulation. Microvasc Res 29:129–151

    Article  CAS  PubMed  Google Scholar 

  • Clemens MG, Zhang JX (1999) Regulation of sinusoidal perfusion: in vivo methodology and control by endothelins. Semin Liver Dis 19:383–396

    Article  CAS  PubMed  Google Scholar 

  • Demetris AJ, Kelly DM, Eghtesad B, Fontes P, Wallis Marsh J, Tom K, Tan HP, Shaw-Stiffel T, Boig L, Novelli P, Planinsic R, Fung JJ, Marcos A (2006) Pathophysiologic observations and histopathologic recognition of the portal hyperperfusion or small-for-size syndrome. Am J Surg Pathol 30:986–993

    Article  PubMed  Google Scholar 

  • Distrutti E, Mencarelli A, Santucci L, Renga B, Orlandi S, Donini A, Shah V, Fiorucci S (2008) The methionine connection: homocysteine and hydrogen sulfide exert opposite effects on hepatic microcirculation in rats. Hepatology 47:659–667

    Article  CAS  PubMed  Google Scholar 

  • Ebbing C, Rasmussen S, Godfrey KM, Hanson MA, Kiserud T (2008) Hepatic artery hemodynamics suggest operation of a buffer response in the human fetus. Reprod Sci 15:166–178

    Article  PubMed  Google Scholar 

  • Eipel C, Kidess E, Abshagen K, LeMinh K, Menger MD, Burkhardt H, Vollmar B (2007) Antileukoproteinase protects against hepatic inflammation, but not apoptosis in the response of D-galactosamine-sensitized mice to lipopolysaccharide. Br J Pharmacol 151:406–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eipel C, Abshagen K, Ritter J, Cantré D, Menger MD, Vollmar B (2010a) Splenectomy improves survival by increasing arterial blood supply in a rat model of reduced-size liver. Transpl Int 23:998–1007

    Article  PubMed  Google Scholar 

  • Eipel C, Abshagen K, Vollmar B (2010b) Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol 16:6046–6057

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekataksin W, Kaneda K (1999) Liver microvascular architecture: an insight into the pathophysiology of portal hypertension. Semin Liver Dis 19:359–382

    Article  CAS  PubMed  Google Scholar 

  • Eum HA, Park SW, Lee SM (2007) Role of nitric oxide in the expression of hepatic vascular stress genes in response to sepsis. Nitric Oxide 17:126–133

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Qin H, Seki T, Nakamura H, Tsukigawa K, Shin T, Maeda H (2011) Therapeutic potential of pegylated hemin for reactive oxygen species-related diseases via induction of heme oxygenase-1: results from a rat hepatic ischemia/reperfusion injury model. J Pharmacol Exp Ther 339:779–789

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci S, Antonelli E, Mencarelli A, Orlandi S, Renga B, Rizzo G, Distrutti E, Shah V, Morelli A (2005) The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology 42:539–548

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci S, Distrutti E, Cirino G, Wallace JL (2006) The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology 131:259–271

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glanemann M, Eipel C, Nussler AK, Vollmar B, Neuhaus P (2005) Hyperperfusion syndrome in small-for-size livers. Eur Surg Res 37:335–341

    Article  CAS  PubMed  Google Scholar 

  • Goda N, Suzuki K, Naito M, Takeoka S, Tsuchida E, Ishimura Y, Tamatani T, Suematsu M (1998) Distribution of heme oxygenase isoforms in rat liver. Topographic basis for carbon monoxide-mediated microvascular relaxation. J Clin Invest 101:604–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goligorsky MS, Tsukahara H, Magazine H, Andersen TT, Malik AB, Bahou WF (1994) Termination of endothelin signaling: role of nitric oxide. J Cell Physiol 158:485–494

    Article  CAS  PubMed  Google Scholar 

  • Goto M, Kawano S, Yoshihara H, Takei Y, Hijioka T, Fukui H, Matsunaga T, Oshita M, Kashiwagi T, Fusamoto H, Kamada T, Sato N (1992) Hepatic tissue oxygenation as a predictive indicator of ischemia-reperfusion liver injury. Hepatology 15:432–437

    Article  CAS  PubMed  Google Scholar 

  • Greenway CV, Stark RD (1971) Hepatic vascular bed. Physiol Rev 51:23–65

    CAS  PubMed  Google Scholar 

  • Grund F, Sommerschild HT, Winecoff A, Ujhelyi MR, Tønnessen T, Kirkebøen KA, Rutlen DL, Ilebekk A (1997) Importance of nitric oxide in hepatic arterial blood flow and total hepatic blood volume regulation in pigs. Acta Physiol Scand 161:303–309

    Article  CAS  PubMed  Google Scholar 

  • Gundersen Y, Saetre T, Scholz T, Carlsen H, Kjekshus H, Smiseth OA, Lilleaasen P, Aasen AO (1996) NO donor sodium nitroprusside reverses the negative effects on hepatic arterial flow induced by endotoxin and the NO synthase inhibitor L-NAME. Eur Surg Res 28:323–332

    Article  CAS  PubMed  Google Scholar 

  • Gupta TK, Toruner M, Groszmann RJ (1998) Intrahepatic modulation of portal pressure and its role in portal hypertension. Role of nitric oxide. Digestion 59:413–415

    Article  CAS  PubMed  Google Scholar 

  • Henderson JM, Gilmore GT, Mackay GJ, Galloway JR, Dodson TF, Kutner MH (1992) Hemodynamics during liver transplantation: the interactions between cardiac output and portal venous and hepatic arterial flows. Hepatology 16:715–718

    Article  CAS  PubMed  Google Scholar 

  • Ho H, Sorrell K, Bartlett A, Hunter P (2012) Blood flow simulation for the liver after a virtual right lobe hepatectomy. Med Image Comput Comput Assist Interv 15:525–532

    PubMed  Google Scholar 

  • Hoetzel A, Vagts DA, Loop T, Humar M, Bauer M, Pahl HL, Geiger KK, Pannen BH (2001) Effect of nitric oxide on shock-induced hepatic heme oxygenase-1 expression in the rat. Hepatology 33:925–937

    Article  CAS  PubMed  Google Scholar 

  • Hoetzel A, Welle A, Schmidt R, Loop T, Humar M, Ryter SW, Geiger KK, Choi AM, Pannen BH (2008) Nitric oxide-deficiency regulates hepatic heme oxygenase-1. Nitric Oxide 18:61–69

    Article  CAS  PubMed  Google Scholar 

  • Housset C, Rockey DC, Bissell DM (1993) Endothelin receptors in rat liver: lipocytes as a contractile target for endothelin 1. Proc Natl Acad Sci U S A 90:9266–9270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwakiri Y, Groszmann RJ (2006) The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology 43:S121–S131

    Article  CAS  PubMed  Google Scholar 

  • Iwakiri Y, Groszmann RJ (2007) Vascular endothelial dysfunction in cirrhosis. J Hepatol 46:927–934

    Article  CAS  PubMed  Google Scholar 

  • Jakab F, Ráth Z, Schmal F, Nagy P, Faller J (1995) The interaction between hepatic arterial and portal venous blood flows; simultaneous measurement by transit time ultrasonic volume flowmetry. Hepatogastroenterology 42:18–21

    CAS  PubMed  Google Scholar 

  • Kaneda K, Ekataksin W, Sogawa M, Matsumura A, Cho A, Kawada N (1998) Endothelin-1-induced vasoconstriction causes a significant increase in portal pressure of rat liver: localized constrictive effect on the distal segment of preterminal portal venules as revealed by light and electron microscopy and serial reconstruction. Hepatology 27:735–747

    Article  CAS  PubMed  Google Scholar 

  • Kardon RH, Kessel RG (1980) Three-dimensional organization of the hepatic microcirculation in the rodent as observed by scanning electron microscopy of corrosion casts. Gastroenterology 79:72–81

    CAS  PubMed  Google Scholar 

  • Kelly DM, Zhu X, Shiba H, Irefin S, Trenti L, Cocieru A, Diago T, Wang LF, Quintini C, Chen Z, Alster J, Nakagawa S, Miller C, Demetris A, Fung JJ (2009) Adenosine restores the hepatic artery buffer response and improves survival in a porcine model of small-for-size syndrome. Liver Transpl 15:1448–1457

    Article  PubMed  Google Scholar 

  • Khandoga A, Hanschen M, Kessler JS, Krombach F (2006) CD4+ T cells contribute to postischemic liver injury in mice by interacting with sinusoidal endothelium and platelets. Hepatology 43:306–315

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Lee SM (2004) Expression of hepatic vascular stress genes following ischemia/reperfusion and subsequent endotoxemia. Arch Pharm Res 27:769–775

    Article  CAS  PubMed  Google Scholar 

  • Knisely MH, Harding F, DeBacker H (1957) Hepatic sphincters; brief summary of present-day knowledge. Science 125:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Koeppel TA, Lehmann TG, Thies JC, Gehrcke R, Gebhard MM, Herfarth C, Otto G, Post S (1996) Impact of N-acetylcysteine on the hepatic microcirculation after orthotopic liver transplantation. Transplantation 61:1397–1402

    Article  CAS  PubMed  Google Scholar 

  • Kubulus D, Mathes A, Pradarutti S, Raddatz A, Heiser J, Pavlidis D, Wolf B, Bauer I, Rensing H (2008) Hemin arginate-induced heme oxygenase 1 expression improves liver microcirculation and mediates an anti-inflammatory cytokine response after hemorrhagic shock. Shock 29:583–590

    CAS  PubMed  Google Scholar 

  • Kuhla A, Norden J, Abshagen K, Menger MD, Vollmar B (2013) RAGE blockade and hepatic microcirculation in experimental endotoxaemic liver failure. Br J Surg 100:1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Kyokane T, Norimizu S, Taniai H, Yamaguchi T, Takeoka S, Tsuchida E, Naito M, Nimura Y, Ishimura Y, Suematsu M (2001) Carbon monoxide from heme catabolism protects against hepatobiliary dysfunction in endotoxin-treated rat liver. Gastroenterology 120:1227–1240

    Article  CAS  PubMed  Google Scholar 

  • Laschke MW, Dold S, Menger MD, Jeppsson B, Thorlacius H (2008) Platelet-dependent accumulation of leukocytes in sinusoids mediates hepatocellular damage in bile duct ligation-induced cholestasis. Br J Pharmacol 153:148–156

    Article  CAS  PubMed  Google Scholar 

  • Lautt WW (1977a) Hepatic vasculature: a conceptual review. Gastroenterology 73:1163–1169

    CAS  PubMed  Google Scholar 

  • Lautt WW (1977b) Minireview. The hepatic artery: subservient to hepatic metabolism or guardian of normal hepatic clearance rates of humoral substances. Gen Pharmacol 8:73–78

    Article  CAS  PubMed  Google Scholar 

  • Lautt WW (1980) Control of hepatic arterial blood flow: independence from liver metabolic activity. Am J Physiol 239:H559–H564

    CAS  PubMed  Google Scholar 

  • Lautt WW (1981) Role and control of the hepatic artery. In: Lautt WW (ed) Hepatic circulation in health and disease. Raven Press, New York, pp 203–226

    Google Scholar 

  • Lautt WW (1983) Relationship between hepatic blood flow and overall metabolism: the hepatic arterial buffer response. Fed Proc 42:1662–1666

    CAS  PubMed  Google Scholar 

  • Lautt WW (2007) Regulatory processes interacting to maintain hepatic blood flow constancy: Vascular compliance, hepatic arterial buffer response, hepatorenal reflex, liver regeneration, escape from vasoconstriction. Hepatol Res 37:891–903

    Article  PubMed  PubMed Central  Google Scholar 

  • Lautt WW, Greenway CV (1976) Hepatic venous compliance and role of liver as a blood reservoir. Am J Physiol 231:292–295

    CAS  PubMed  Google Scholar 

  • Lautt WW, Greenway CV (1987) Conceptual review of the hepatic vascular bed. Hepatology 7:952–963

    Article  CAS  PubMed  Google Scholar 

  • Lautt WW, Legare DJ (1985) The use of 8-phenyltheophylline as a competitive antagonist of adenosine and inhibitor of the intrinsic regulatory mechanism of the hepatic artery. Can J Physiol Pharmacol 63:717–722

    Article  CAS  PubMed  Google Scholar 

  • Lautt WW, Legare DJ, d’Almeida MS (1985) Adenosine as putative regulator of hepatic arterial flow (the buffer response). Am J Physiol 248:H331–H338

    CAS  PubMed  Google Scholar 

  • Lautt WW, Legare DJ, Ezzat WR (1990) Quantitation of the hepatic arterial buffer response to graded changes in portal blood flow. Gastroenterology 98:1024–1028

    Article  CAS  PubMed  Google Scholar 

  • Le Minh K, Klemm K, Abshagen K, Eipel C, Menger MD, Vollmar B (2007) Attenuation of inflammation and apoptosis by pre- and posttreatment of darbepoetin-alpha in acute liver failure of mice. Am J Pathol 170:1954–1963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Legare DJ, Lautt WW (1987) Hepatic venous resistance site in the dog: localization and validation of intrahepatic pressure measurements. Can J Physiol Pharmacol 65:352–359

    Article  CAS  PubMed  Google Scholar 

  • Li X, Klintman D, Sato T, Hedlund G, Schramm R, Jeppsson B, Thorlacius H (2004) Interleukin-10 mediates the protective effect of Linomide by reducing CXC chemokine production in endotoxin-induced liver injury. Br J Pharmacol 143:865–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang TB, Man K, Kin-Wah Lee T, Hong-Teng Tsui S, Lo CM, Xu X, Zheng SS, Fan ST, Wong J (2003) Distinct intragraft response pattern in relation to graft size in liver transplantation. Transplantation 75:673–678

    Article  CAS  PubMed  Google Scholar 

  • Lin HI, Wang D, Leu FJ, Chen CF, Chen HI (2004) Ischemia and reperfusion of liver induces eNOS and iNOS expression: effects of a NO donor and NOS inhibitor. Chin J Physiol 47:121–127

    CAS  PubMed  Google Scholar 

  • Loureiro-Silva MR, Cadelina GW, Groszmann RJ (2003) Deficit in nitric oxide production in cirrhotic rat livers is located in the sinusoidal and postsinusoidal areas. Am J Physiol Gastrointest Liver Physiol 284:G567–G574

    Article  CAS  PubMed  Google Scholar 

  • Malarkey DE, Johnson K, Ryan L, Boorman G, Maronpot RR (2005) New insights into functional aspects of liver morphology. Toxicol Pathol 33:27–34

    Article  CAS  PubMed  Google Scholar 

  • Matejovic M, Krouzecky A, Martinkova V, Rokyta R Jr, Kralova H, Treska V, Radermacher P, Novak I (2004) Selective inducible nitric oxide synthase inhibition during long-term hyperdynamic porcine bacteremia. Shock 21:458–465

    Article  CAS  PubMed  Google Scholar 

  • Mathie RT, Lam PHM, Harper AM, Blumgart LH (1980) The hepatic arterial blood flow response to portal vein occlusion in the dog. The effect of hepatic denervation. Pflugers Arch 386:77–83

    Article  CAS  PubMed  Google Scholar 

  • Mathie RT, Ralevic V, Alexander B, Burnstock G (1991) Nitric oxide is the mediator of ATP-induced dilatation of the rabbit hepatic arterial vascular bed. Br J Pharmacol 103:1602–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCuskey RS (2000) Morphological mechanisms for regulating blood flow through hepatic sinusoids. Liver 20:3–7

    Article  CAS  PubMed  Google Scholar 

  • McKee Olds J, Stafford ES (1930) On the manner of anastomosis of the hepatic and portal circulations. Bull Johns Hopkins Hosp 47:176–185

    Google Scholar 

  • Mehrabi A, Golling M, Jahnke C, Zapletal C, Busch C, Schemmer P, Gebhard MM, Büchler MW, Klar E, Kraus T (2003) Characterization of hepatic parenchymous perfusion heterogeneity and regional flow kinetics after porcine liver transplantation. Microvasc Res 65:78–87

    Article  CAS  PubMed  Google Scholar 

  • Menger MD, Marzi I, Messmer K (1991) In vivo fluorescence microscopy for quantitative analysis of the hepatic microcirculation in hamsters and rats. Eur Surg Res 23:158–169

    Article  CAS  PubMed  Google Scholar 

  • Menger MD, Richter S, Yamauchi J, Vollmar B (1999) Role of microcirculation in hepatic ischemia/reperfusion injury. Hepatogastroenterology 46(Suppl 2):1452–1457

    PubMed  Google Scholar 

  • Mitsuoka H, Suzuki S, Sakaguchi T, Baba S, Miwa M, Konno H, Nakamura S (1999) Contribution of endothelin-1 to microcirculatory impairment in total hepatic ischemia and reperfusion injury. Transplantation 67:514–520

    Article  CAS  PubMed  Google Scholar 

  • Mitsutomi N, Akashi C, Odagiri J, Matsumura Y (1999) Effects of endogenous and exogenous nitric oxide on endothelin-1 production in cultured vascular endothelial cells. Eur J Pharmacol 364:65–73

    Article  CAS  PubMed  Google Scholar 

  • Mittal MK, Gupta TK, Lee FY, Sieber CC, Groszmann RJ (1994) Nitric oxide modulates hepatic vascular tone in normal rat liver. Am J Physiol 267:G416–G422

    CAS  PubMed  Google Scholar 

  • Miyake T, Yokoyama Y, Kokuryo T, Mizutani T, Imamura A, Nagino M (2013) Endothelial nitric oxide synthase plays a main role in producing nitric oxide in the superacute phase of hepatic ischemia prior to the upregulation of inducible nitric oxide synthase. J Surg Res 183:742–751

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Kourembanas S (1995) Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J Clin Invest 96:2676–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motterlini R, Hidalgo A, Sammut I, Shah KA, Mohammed S, Srai K, Green CJ (1996) A precursor of the nitric oxide donor SIN-1 modulates the stress protein heme oxygenase-1 in rat liver. Biochem Biophys Res Commun 225:167–172

    Article  CAS  PubMed  Google Scholar 

  • Mücke I, Richter S, Menger MD, Vollmar B (2000) Significance of hepatic arterial responsiveness for adequate tissue oxygenation upon portal vein occlusion in cirrhotic livers. Int J Colorectal Dis 15:335–341

    Article  PubMed  Google Scholar 

  • Nakata K, Leong GF, Brauer RW (1960) Direct measurement of blood pressures in minute vessels of the liver. Am J Physiol 199:1181–1188

    CAS  PubMed  Google Scholar 

  • Norris EJ, Feilen N, Nguyen NH, Culberson CR, Shin MC, Fish M, Clemens MG (2013a) Hydrogen sulfide modulates sinusoidal constriction and contributes to hepatic microcirculatory dysfunction during endotoxemia. Am J Physiol Gastrointest Liver Physiol 304:G1070–G1078

    Article  CAS  PubMed  Google Scholar 

  • Norris EJ, Larion S, Culberson CR, Clemens MG (2013b) Hydrogen sulfide differentially affects the hepatic vasculature in response to phenylephrine and endothelin 1 during endotoxemia. Shock 39:168–175

    Article  CAS  PubMed  Google Scholar 

  • Oda M, Yokomori H, Han JY (2003) Regulatory mechanisms of hepatic microcirculation. Clin Hemorheol Microcirc 29:167–182

    CAS  PubMed  Google Scholar 

  • Oda M, Yokomori H, Han JY (2006) Regulatory mechanisms of hepatic microcirculatory hemodynamics: hepatic arterial system. Clin Hemorheol Microcirc 34:11–26

    PubMed  Google Scholar 

  • Palmes D, Minin E, Budny T, Uhlmann D, Armann B, Stratmann U, Herbst H, Spiegel HU (2005a) The endothelin/nitric oxide balance determines small-for-size liver injury after reduced-size rat liver transplantation. Virchows Arch 447:731–741

    Article  CAS  PubMed  Google Scholar 

  • Palmes D, Skawran S, Stratmann U, Armann B, Minin E, Herbst H, Spiegel HU (2005b) Amelioration of microcirculatory damage by an endothelin A receptor antagonist in a rat model of reversible acute liver failure. J Hepatol 42:350–357

    Article  CAS  PubMed  Google Scholar 

  • Pannarale L, Onori P, Borghese F, Conte D, Gaudio E (2007) Three-dimensional organization of the hepatic artery terminal branches: a scanning electron microscopic study of vascular corrosion casts of rat liver. Ital J Anat Embryol 112:1–12

    PubMed  Google Scholar 

  • Pannen BH (2002) New insights into the regulation of hepatic blood flow after ischemia and reperfusion. Anesth Analg 94:1448–1457

    CAS  PubMed  Google Scholar 

  • Pannen BH, Bauer M (1998) Differential regulation of hepatic arterial and portal venous vascular resistance by nitric oxide and carbon monoxide in rats. Life Sci 62:2025–2033

    Article  CAS  PubMed  Google Scholar 

  • Pannen BH, Bauer M, Zhang JX, Robotham JL, Clemens MG (1996a) A time-dependent balance between endothelins and nitric oxide regulating portal resistance after endotoxin. Am J Physiol 271:H1953–H1961

    CAS  PubMed  Google Scholar 

  • Pannen BH, Bauer M, Zhang JX, Robotham JL, Clemens MG (1996b) Endotoxin pretreatment enhances portal venous contractile response to endothelin-1. Am J Physiol 270:H7–H15

    CAS  PubMed  Google Scholar 

  • Pannen BH, Al-Adili F, Bauer M, Clemens MG, Geiger KK (1998) Role of endothelins and nitric oxide in hepatic reperfusion injury in the rat. Hepatology 27:755–764

    Article  CAS  PubMed  Google Scholar 

  • Pannen BH, Schroll S, Loop T, Bauer M, Hoetzel A, Geiger KK (2001) Hemorrhagic shock primes the hepatic portal circulation for the vasoconstrictive effects of endothelin-1. Am J Physiol Heart Circ Physiol 281:H1075–H1084

    CAS  PubMed  Google Scholar 

  • Pinzani M, Failli P, Ruocco C, Casini A, Milani S, Baldi E, Giotti A, Gentilini P (1992) Fat-storing cells as liver-specific pericytes. Spatial dynamics of agonist-stimulated intracellular calcium transients. J Clin Invest 90:642–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poelstra K, Schuppan D (2011) Targeted therapy of liver fibrosis/cirrhosis and its complications. J Hepatol 55:726–728

    Article  PubMed  Google Scholar 

  • Quintini C, Hirose K, Hashimoto K, Diago T, Aucejo F, Eghtesad B, Vogt D, Pierce G, Baker M, Kelly D, Miller CM (2008) “Splenic artery steal syndrome” is a misnomer: the cause is portal hyperperfusion, not arterial siphon. Liver Transpl 14:374–379

    Article  PubMed  Google Scholar 

  • Randle LE, Sathish JG, Kitteringham NR, Macdonald I, Williams DP, Park BK (2008) alpha(1)-Adrenoceptor antagonists prevent paracetamol-induced hepatotoxicity in mice. Br J Pharmacol 153:820–830

    Article  CAS  PubMed  Google Scholar 

  • Rappaport AM (1958) The structural and functional unit in the human liver (liver acinus). Anat Rec 130:673–689

    Article  CAS  PubMed  Google Scholar 

  • Rappaport AM (1973) The microcirculatory hepatic unit. Microvasc Res 6:212–228

    Article  CAS  PubMed  Google Scholar 

  • Rappaport AM (1980) Hepatic blood flow: morphologic aspects and physiologic regulation. Int Rev Physiol 21:1–63

    CAS  PubMed  Google Scholar 

  • Reetz J, Genz B, Meier C, Kowtharapu BS, Timm F, Vollmar B, Herchenröder O, Abshagen K, Pützer BM (2013) Development of adenoviral delivery systems to target hepatic stellate cells in vivo. PLoS One 8:e67091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renga B, Mencarelli A, Migliorati M, Distrutti E, Fiorucci S (2009) Bile-acid-activated farnesoid X receptor regulates hydrogen sulfide production and hepatic microcirculation. World J Gastroenterol 15:2097–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rensing H, Bauer I, Datene V, Pätau C, Pannen BH, Bauer M (1999) Differential expression pattern of heme oxygenase-1/heat shock protein 32 and nitric oxide synthase-II and their impact on liver injury in a rat model of hemorrhage and resuscitation. Crit Care Med 27:2766–2775

    Article  CAS  PubMed  Google Scholar 

  • Rensing H, Bauer I, Zhang JX, Paxian M, Pannen BH, Yokoyama Y, Clemens MG, Bauer M (2002) Endothelin-1 and heme oxygenase-1 as modulators of sinusoidal tone in the stress-exposed rat liver. Hepatology 36:1453–1465

    Article  CAS  PubMed  Google Scholar 

  • Rentsch M, Puellmann K, Sirek S, Iesalnieks I, Kienle K, Mueller T, Bolder U, Geissler E, Jauch KW, Beham A (2005) Benefit of Kupffer cell modulation with glycine versus Kupffer cell depletion after liver transplantation in the rat: effects on postischemic reperfusion injury, apoptotic cell death graft regeneration and survival. Transpl Int 18:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Richter S, Mücke I, Menger MD, Vollmar B (2000) Impact of intrinsic blood flow regulation in cirrhosis: maintenance of hepatic arterial buffer response. Am J Physiol Gastrointest Liver Physiol 279:G454–G462

    CAS  PubMed  Google Scholar 

  • Richter S, Olinger A, Hildebrandt U, Menger MD, Vollmar B (2001a) Loss of physiologic hepatic blood flow control (“hepatic arterial buffer response”) during CO2-pneumoperitoneum in the rat. Anesth Analg 93:872–877

    Article  CAS  PubMed  Google Scholar 

  • Richter S, Vollmar B, Mücke I, Post S, Menger MD (2001b) Hepatic arteriolo-portal venular shunting guarantees maintenance of nutritional microvascular supply in hepatic arterial buffer response of rat livers. J Physiol 531:193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockey DC (1995) Characterization of endothelin receptors mediating rat hepatic stellate cell contraction. Biochem Biophys Res Commun 207:725–731

    Article  CAS  PubMed  Google Scholar 

  • Rockey DC (2001) Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis 21:337–349

    Article  CAS  PubMed  Google Scholar 

  • Rockey DC, Weisiger RA (1996) Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology 24:233–240

    Article  CAS  PubMed  Google Scholar 

  • Rockey DC, Fouassier L, Chung JJ, Carayon A, Vallee P, Rey C, Housset C (1998) Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells. Hepatology 27:472–480

    Article  CAS  PubMed  Google Scholar 

  • Rodeberg DA, Chaet MS, Bass RC, Arkovitz MS, Garcia VF (1995) Nitric oxide: an overview. Am J Surg 170:292–303

    Article  CAS  PubMed  Google Scholar 

  • Roesner JP, Vagts DA, Iber T, Eipel C, Vollmar B, Nöldge-Schomburg GF (2006) Protective effects of PARP inhibition on liver microcirculation and function after haemorrhagic shock and resuscitation in male rats. Intensive Care Med 32:1649–1657

    Article  CAS  PubMed  Google Scholar 

  • Rubanyi GM, Polokoff MA (1994) Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46:325–415

    CAS  PubMed  Google Scholar 

  • Ryter SW, Choi AM (2007) Cytoprotective and anti-inflammatory actions of carbon monoxide in organ injury and sepsis models. Novartis Found Symp 280:165–181

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Cabús S, Fondevila C, Calatayud D, Ferrer J, Taurá P, Fuster J, García-Valdecasas JC (2013) Importance of the temporary portocaval shunt during adult living donor liver transplantation. Liver Transpl 19:174–183

    Article  PubMed  Google Scholar 

  • Sasse D, Spornitz UM, Maly IP (1992) Liver architecture. Enzyme 46:8–32

    CAS  PubMed  Google Scholar 

  • Sato Y, Yamamoto S, Oya H, Nakatsuka H, Tsukahara A, Kobayashi T, Watanabe T, Hatakeyama K (2002) Splenectomy for reduction of excessive portal hypertension after adult living-related donor liver transplantation. Hepatogastroenterology 49:1652–1655

    PubMed  Google Scholar 

  • Scommotau S, Uhlmann D, Löffler BM, Breu V, Spiegel HU (1999) Involvement of endothelin/nitric oxide balance in hepatic ischemia/reperfusion injury. Langenbecks Arch Surg 384:65–70

    Article  CAS  PubMed  Google Scholar 

  • Shah V, Haddad FG, Garcia-Cardena G, Frangos JA, Mennone A, Groszmann RJ, Sessa WC (1997) Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest 100:2923–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siebert N, Cantré D, Eipel C, Vollmar B (2008) H2S contributes to the hepatic arterial buffer response and mediates vasorelaxation of the hepatic artery via activation of K(ATP) channels. Am J Physiol Gastrointest Liver Physiol 295:G1266–G1273

    Article  CAS  PubMed  Google Scholar 

  • Singer G, Urakami H, Specian RD, Stokes KY, Granger DN (2006) Platelet recruitment in the murine hepatic microvasculature during experimental sepsis: role of neutrophils. Microcirculation 13:89–97

    Article  CAS  PubMed  Google Scholar 

  • Slotta JE, Scheuer C, Menger MD, Vollmar B (2006) Immunostimulatory CpG-oligodeoxynucleotides (CpG-ODN) induce early hepatic injury, but provide a late window for protection against endotoxin-mediated liver damage. J Hepatol 44:576–585

    Article  CAS  PubMed  Google Scholar 

  • Smedsrød B, De Bleser PJ, Braet F, Lovisetti P, Vanderkerken K, Wisse E, Geerts A (1994) Cell biology of liver endothelial and Kupffer cells. Gut 35:1509–1516

    Article  PubMed  PubMed Central  Google Scholar 

  • Smyrniotis V, Kostopanagiotou G, Kondi A, Gamaletsos E, Theodoraki K, Kehagias D, Mystakidou K, Contis J (2002) Hemodynamic interaction between portal vein and hepatic artery flow in small-for-size split liver transplantation. Transpl Int 15:355–360

    Article  PubMed  Google Scholar 

  • Sonin NV, Garcia-Pagan JC, Nakanishi K, Zhang JX, Clemens MG (1999) Patterns of vasoregulatory gene expression in the liver response to ischemia/reperfusion and endotoxemia. Shock 11:175–179

    Article  CAS  PubMed  Google Scholar 

  • Soon RK Jr, Yee HF Jr (2008) Stellate cell contraction: role, regulation, and potential therapeutic target. Clin Liver Dis 12:791–803

    Article  PubMed  PubMed Central  Google Scholar 

  • Suematsu M, Oda M, Suzuki H, Kaneko H, Watanabe N, Furusho T, Masushige S, Tsuchiya M (1993) Intravital and electron microscopic observation of Ito cells in rat hepatic microcirculation. Microvasc Res 46:28–42

    Article  CAS  PubMed  Google Scholar 

  • Suematsu M, Goda N, Sano T, Kashiwagi S, Egawa T, Shinoda Y, Ishimura Y (1995) Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin Invest 96:2431–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suematsu M, Wakabayashi Y, Ishimura Y (1996) Gaseous monoxides: a new class of microvascular regulator in the liver. Cardiovasc Res 32:679–686

    Article  CAS  PubMed  Google Scholar 

  • Tacke F, Weiskirchen R (2012) Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Expert Rev Gastroenterol Hepatol 6:67–80

    Article  CAS  PubMed  Google Scholar 

  • Takasaki S, Hano H (2001) Three-dimensional observations of the human hepatic artery (Arterial system in the liver). J Hepatol 34:455–466

    Article  CAS  PubMed  Google Scholar 

  • Takemura S, Minamiyama Y, Inoue M, Kubo S, Hirohashi K, Kinoshita H (2000) Nitric oxide synthase inhibitor increases hepatic injury with formation of oxidative DNA damage and microcirculatory disturbance in endotoxemic rats. Hepatogastroenterology 47:1364–1370

    CAS  PubMed  Google Scholar 

  • Tang G, Wu L, Liang W, Wang R (2005) Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 68:1757–1764

    CAS  PubMed  Google Scholar 

  • Taniguchi M, Shimamura T, Suzuki T, Yamashita K, Oura T, Watanabe M, Kamiyama T, Matsushita M, Furukawa H, Todo S (2007) Transient portacaval shunt for a small-for-size graft in living donor liver transplantation. Liver Transpl 13:932–934

    Article  PubMed  Google Scholar 

  • Teutsch HF, Schuerfeld D, Groezinger E (1999) Three-dimensional reconstruction of parenchymal units in the liver of the rat. Hepatology 29:494–505

    Article  CAS  PubMed  Google Scholar 

  • Timm F, Vollmar B (2013) Heterogeneity of the intrahepatic portal venous blood flow: impact on hepatocyte transplantation. Microvasc Res 86:34–41

    Article  PubMed  Google Scholar 

  • Tracz MJ, Juncos JP, Grande JP, Croatt AJ, Ackerman AW, Rajagopalan G, Knutson KL, Badley AD, Griffin MD, Alam J, Nath KA (2007) Renal hemodynamic, inflammatory, and apoptotic responses to lipopolysaccharide in HO-1−/−mice. Am J Pathol 170:1820–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran CT, Leiper JM, Vallance P (2003) The DDAH/ADMA/NOS pathway. Atheroscler Suppl 4:33–40

    Article  CAS  PubMed  Google Scholar 

  • Troisi R, de Hemptinne B (2003) Clinical relevance of adapting portal vein flow in living donor liver transplantation in adult patients. Liver Transpl 9:S36–S41

    Article  PubMed  Google Scholar 

  • Tu YL, Wang X, Wang DD, Zhu ZM, Tan JW (2013) Impact of mesocaval shunt on safe minimal liver remnant: Porcine model. World J Gastroenterol 19:5076–5084

    Article  PubMed  PubMed Central  Google Scholar 

  • Uhlmann D, Uhlmann S, Spiegel HU (2000) Endothelin/nitric oxide balance influences hepatic ischemia-reperfusion injury. J Cardiovasc Pharmacol 36(5 Suppl 1):S212–S214

    Article  CAS  PubMed  Google Scholar 

  • van Golen RF, Reiniers MJ, Olthof PB, van Gulik TM, Heger M (2013) Sterile inflammation in hepatic ischemia/reperfusion injury: present concepts and potential therapeutics. J Gastroenterol Hepatol 28:394–400

    Article  PubMed  CAS  Google Scholar 

  • van Landeghem L, Laleman W, Vander Elst I, Zeegers M, van Pelt J, Cassiman D, Nevens F (2009) Carbon monoxide produced by intrasinusoidally located haemoxygenase-1 regulates the vascular tone in cirrhotic rat liver. Liver Int 29:650–660

    Article  PubMed  CAS  Google Scholar 

  • Vollmar B, Menger MD (2009) The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 89:1269–1339

    Article  CAS  PubMed  Google Scholar 

  • Vollmar B, Conzen PF, Kerner T, Habazettl H, Vierl M, Waldner H, Peter K (1992) Blood flow and tissue oxygen pressures of liver and pancreas in rats: effects of volatile anesthetics and of hemorrhage. Anesth Analg 75:421–430

    Article  CAS  PubMed  Google Scholar 

  • Vollmar B, Glasz J, Leiderer R, Post S, Menger MD (1994a) Hepatic microcirculatory perfusion failure is a determinant of liver dysfunction in warm ischemia-reperfusion. Am J Pathol 145:1421–1431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmar B, Glasz J, Post S, Menger MD (1994b) Depressed phagocytic activity of Kupffer cells after warm ischemia-reperfusion of the liver. J Hepatol 20:301–304

    Article  CAS  PubMed  Google Scholar 

  • Vollmar B, Lang G, Menger MD, Messmer K (1994c) Hypertonic hydroxyethyl starch restores hepatic microvascular perfusion in hemorrhagic shock. Am J Physiol 266:H1927–H1934

    CAS  PubMed  Google Scholar 

  • Vollmar B, Menger MD, Glasz J, Leiderer R, Messmer K (1994d) Impact of leukocyte-endothelial cell interaction in hepatic ischemia-reperfusion injury. Am J Physiol 267:G786–G793

    CAS  PubMed  Google Scholar 

  • Vollmar B, Glasz J, Menger MD, Messmer K (1995) Leukocytes contribute to hepatic ischemia/reperfusion injury via intercellular adhesion molecule-1-mediated venular adherence. Surgery 117:195–200

    Article  CAS  PubMed  Google Scholar 

  • Vollmar B, Glasz J, Post S, Menger MD (1996a) Role of microcirculatory derangements in manifestation of portal triad cross-clamping-induced hepatic reperfusion injury. J Surg Res 60:49–54

    Article  CAS  PubMed  Google Scholar 

  • Vollmar B, Richter S, Menger MD (1996b) Leukocyte stasis in hepatic sinusoids. Am J Physiol 270:G798–G803

    CAS  PubMed  Google Scholar 

  • Vollmar B, Wolf B, Siegmund S, Katsen AD, Menger MD (1997) Lymph vessel expansion and function in the development of hepatic fibrosis and cirrhosis. Am J Pathol 151:169–175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmar B, Siegmund S, Menger MD (1998) An intravital fluorescence microscopic study of hepatic microvascular and cellular derangements in developing cirrhosis in rats. Hepatology 27:1544–1553

    Article  CAS  PubMed  Google Scholar 

  • Wang WW, Smith DL, Zucker SD (2004) Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology 40:424–433

    Article  CAS  PubMed  Google Scholar 

  • Warren A, Le Couteur DG, Fraser R, Bowen DG, McCaughan GW, Bertolino P (2006) T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44:1182–1190

    Article  CAS  PubMed  Google Scholar 

  • Wiest R, Groszmann RJ (2002) The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology 35:478–491

    Article  CAS  PubMed  Google Scholar 

  • Wisse E (1970) An electron microscopic study of fenestrated endothelium lining of rat liver sinusoids. J Ultrastruct Res 31:125–150

    Article  CAS  PubMed  Google Scholar 

  • Wisse E, De Zanger RB, Charels K, Van Der Smissen P, McCuskey RS (1985) The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5:683–692

    Article  CAS  PubMed  Google Scholar 

  • Wunder C, Scott JR, Lush CW, Brock RW, Bihari A, Harris K, Eichelbrönner O, Potter RF (2004) Heme oxygenase modulates hepatic leukocyte sequestration via changes in sinusoidal tone in systemic inflammation in mice. Microvasc Res 68:20–29

    Article  CAS  PubMed  Google Scholar 

  • Xie XQ, Shinozawa Y, Sasaki J, Takuma K, Akaishi S, Yamanouchi S, Endo T, Nomura R, Kobayashi M, Kudo D, Hojo N (2008) The effects of arginine and selective inducible nitric oxide synthase inhibitor on pathophysiology of sepsis in a CLP model. J Surg Res 146:298–303

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Sherman I, Phillips MJ, Fisher M (1985) Three-dimensional observations of the hepatic arterial terminations in rat, hamster and human liver by scanning electron microscopy of microvascular casts. Hepatology 5:452–456

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama Y, Baveja R, Sonin N, Nakanishi K, Zhang JX, Clemens MG (2000) Altered endothelin receptor subtype expression in hepatic injury after ischemia/reperfusion. Shock 13:72–78

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama Y, Wawrzyniak A, Baveja R, Sonin N, Clemens MG, Zhang JX (2001) Altered endothelin receptor expression in prehepatic portal hypertension predisposes the liver to microcirculatory dysfunction in rats. J Hepatol 35:29–36

    Article  CAS  PubMed  Google Scholar 

  • Yoon YJ, Chang S, Kim OY, Kang BK, Park J, Lim JH, Yun Huang J, Kim YK, Byun JH, Gho YS (2013) Three-dimensional imaging of hepatic sinusoids in mice using synchrotron radiation micro-computed tomography. PLoS One 8:e68600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Shao R, Qian HS, George SE, Rockey DC (2000) Gene transfer of the neuronal NO synthase isoform to cirrhotic rat liver ameliorates portal hypertension. J Clin Invest 105:741–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JX, Bauer M, Clemens MG (1995) Vessel- and target cell-specific actions of endothelin-1 and endothelin-3 in rat liver. Am J Physiol 269:G269–G277

    CAS  PubMed  Google Scholar 

  • Zhang B, Borderie D, Sogni P, Soubrane O, Houssin D, Calmus Y (1997) NO-mediated vasodilation in the rat liver. Role of hepatocytes and liver endothelial cells. J Hepatol 26:1348–1355

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20:6008–6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipprich A (2007) Hemodynamics in the isolated cirrhotic liver. J Clin Gastroenterol 41(Suppl 3):S254–S258

    Article  PubMed  Google Scholar 

  • Zipprich A, Mehal WZ, Ripoll C, Groszmann RJ (2010) A distinct nitric oxide and adenosine A1 receptor dependent hepatic artery vasodilatatory response in the CCl-cirrhotic liver. Liver Int 30:988–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Vollmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Abshagen, K., Kuhla, A., Genz, B., Vollmar, B. (2015). Anatomy and Physiology of the Hepatic Circulation. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37078-6_142

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37078-6_142

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37077-9

  • Online ISBN: 978-3-642-37078-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics