Advertisement

Neurosurgery for Cranial Dural Arteriovenous Fistulas

  • Cameron M. McDougall
  • Michael T. Lawton
Reference work entry

Abstract

Dural arteriovenous fistulae (DAVFs) are a subset of vascular lesions comprising 10–15 % of all cerebral vascular malformations. They are high-flow, low-resistance connections between a dural artery (or arteries) and a venous sinus or cortical vein. The fistulae lead to venous hypertension, creating ischemic conditions that can trigger a cascade of angiogenesis encouraging fistulous development in a vicious cycle.

Cortical venous drainage of DAVFs increases their risk of hemorrhage or leads to nonhemorrhagic neurological deficits and necessitates treatment. DAVFs are treated most commonly through endovascular approaches, but some lesions are better treated with open surgical disconnection.

Keywords

Venous Sinus Superior Sagittal Sinus Venous Hypertension Middle Meningeal Artery Dural Arteriovenous Fistula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Glossary of Terms

Angiogenesis

The process through which new blood vessels form from preexisting vessels.

Dural arteriovenous fistula

Pathological connection directly between a dural artery (or arteries) and a venous sinus or cortical vein.

References

  1. Adeeb N, Mortazavi MM, Tubbs S, Cohen-Gadol A (2007) The cranial dura mater (2007) a review of its history, embryology and anatomy. Childs Nerv Syst 28:827–837CrossRefGoogle Scholar
  2. Agid R, Terbrugge K, Rodesch G, Anderson T, Soderman M (2009) Management strategies for anterior cranial fossa (ethmoidal) dural arteriovenous fistulas with an emphasis on endovascular management. J Neuorsurg 110:79–84CrossRefGoogle Scholar
  3. Agostoni E, Aliprandi A, Longoni M (2009) Cerebral venous thrombosis. Expert Rev Neurother 9:553–564CrossRefPubMedGoogle Scholar
  4. Albuquerque FC, Ducruet AF, Crowley RW, Bristol RE, Ahmed A, McDougall CG (2013) Transvenous to arterial Onyx embolization. J Neurointerv Surg 6:281–285CrossRefPubMedGoogle Scholar
  5. Alexander M, McTaggart R, Santarelli J, Fischbein N, Marks M, Zaharchuk G, Do H (2007) Multimodality evaluation of dural arteriovenous fistula with CT angiography, MR with arterial spin labeling, and digital subtraction angiography: case report. J Neuroimaging 24:520–523CrossRefGoogle Scholar
  6. Anwar MA, Shalhoub J, Lim CS, Gohel MS, Davies AH (2012) The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J Vasc Res 49:463–478CrossRefPubMedGoogle Scholar
  7. Awad IA, Little JR, Akrawi WP et al (1990) Intracranial dural arteriovenous malformations: factors predisposing to an aggressive neurological course. J Neurosurg 72:839–850CrossRefPubMedGoogle Scholar
  8. Barnwell SL, Halbach VV, Dowd CF, Higashida RT, Hieshima GB (1990) Dural arteriovenous fistulas involving the inferior petrosal sinus: angiographic finding in six patients. AJNR 11:511–516PubMedGoogle Scholar
  9. Barrow DL, Spector RH, Braun IF, Landman JA, Tindall SC, Tindall GT (1985) Classification and treatment of spontaneous carotid-cavernous sinus fistulas. J Neurosurg 62:248–256CrossRefPubMedGoogle Scholar
  10. Beijer TR, van Dijk EJ, de Vries J, Vermeer SE, Prokop M, Meijer FJ (2013) 4D-CT angiography differentiating arteriovenous fistula subtypes. Clin Neurol Neurosurg 115:1313–1316CrossRefPubMedGoogle Scholar
  11. Borden JA, Wu JK, Shucart WA (1995) A proposed classification for spinal and cranial dural arteriovenous fistulous malformations and implications for treatment. J Neuorsurg 82:166–179CrossRefGoogle Scholar
  12. Brouwer PA, Bosman T, van Walderveen MA et al (2010) Dynamic 320-section CT angiography in cranial arteriovenous shunting lesions. AJNR 31:767–770CrossRefPubMedGoogle Scholar
  13. Bulters DO, Mathad N, Culliford D, Millar J, Sparrow OC (2012) The natural history of cranial dural arteriovenous fistulae with cortical venous reflux–the significance of venous ectasia. Neurosurgery 70:312–318CrossRefPubMedGoogle Scholar
  14. Byrne JV, Garcia M (2013) Tentorial dural fistulas: endovascular management and description of the medial dural-tentorial branch of the superior cerebellar artery. AJNR 34:1798–1804CrossRefPubMedGoogle Scholar
  15. Chen L, Mao Y, Zhou LF (2009) Local chronic hypoperfusion secondary to sinus high pressure seems to be mainly responsible for the formation of intracranial dural arteriovenous fistula. Neurosurgery 64:973–983CrossRefPubMedGoogle Scholar
  16. Chi JH, Lawton MT (2006) Posterior interhemispheric approach (2007) surgical technique, application to vascular lesions, and benefits of gravity retraction. Neurosurgery 59(S1):41–49Google Scholar
  17. Chowdhury R, Hardy A, Schofield CJ (2008) The human oxygen sensing machinery and its manipulation. Chem Soc Rev 37:1308–1319CrossRefPubMedGoogle Scholar
  18. Chung SJ, Kim JS, Kim JC, Lee SK, Kwon SU, Lee MC, Suh DC (2002) Intracranial dural arteriovenous fistulas: analysis of 60 patients. Cerebrovasc Dis 12:79–88CrossRefGoogle Scholar
  19. Claesson-Welsh L, Welsh M (2013) VEGFA and tumor angiogenesis. J Intern Med 273:114–127CrossRefPubMedGoogle Scholar
  20. Cognard C, Gobin YP, Pierot L, Bailly AL, Houdart E, Casasco A, Chiras J, Merland JJ (1995) Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology 194:671–680CrossRefPubMedGoogle Scholar
  21. Dalyai R, Ghobrial G, Chalouhi N, Dumont A, Thoumakaris S, Gonzalez F, Rossenwasser R, Jabbour P (2013) Radiosurgery for dural arterio-venous fistulas: a review. Clin Neruol Neurosurg 115:512–516CrossRefGoogle Scholar
  22. Davies MA, TerBrugge K, Willinsky R (1996) The validity of classification for the clinical presentation of intracranial dural arteriovenous fistulas. J Neurosurg 85:830–837CrossRefPubMedGoogle Scholar
  23. Davis MA, Ter Brugge K, Willinsky R et al (1997) The natural history and management of intracranial dural arteriovenous fistulae. Interv Neruoradiol 3:303–311Google Scholar
  24. Deschiens MA, Conard J, Horellou MH, Ameri A, Preter M, Chedru F (1996) Coagulation studies, factor V Leiden, and anticardiolipin antibodies in 40 cases of cerebral venous thrombosis. Stroke 27:1724–1730CrossRefPubMedGoogle Scholar
  25. Duffau H, Lopes M, Janosevic V, Sichez JP, Faillot T, Capelle L et al (1999) Early rebleeding from intracranial dural arteriovenous fistulas: report of 20 cases and review of the literature. J Neuorsurg 90:78–84CrossRefGoogle Scholar
  26. Elde PK, Sorteberg AG, Meling TR, Sorteberg W (2013) Directional intraoperative ultrasonography during surgery on cranial dural arteriovenous fistulas. Neruosurgery 73(2):211–222Google Scholar
  27. Feldman RA, Hieshima G, Giannotta SL, Glad GF (1980) Traumatic dural arteriovenous fistula supplied by scalp, meningeal and cortical arteries: case report. Neurosurgery 6:670–674CrossRefPubMedGoogle Scholar
  28. Gerlach R, Yahya H, Rhode S, Bohm M, Berkefeld J, Scharrer I (2003) Increased incidence of thrombophilic abnormalities in patients with cranial dural arteriovenous fistulae. Neruol Res 25:745–748CrossRefGoogle Scholar
  29. Goto K, Sidipratomo P, Ogata N, Inoue T, Matsuno H (1999) Combining endovascular and neurosurgical treatments of high-risk dural arteriovenous fistulas in the lateral sinus and the confluence of the sinuses. J Neuorsurg 90:289–299CrossRefGoogle Scholar
  30. Gross BA, Du R (2012) The natural history of cerebral dural arteriovenous fistulae. Neurosurgery 71:594–602CrossRefPubMedGoogle Scholar
  31. Gross BA, Du R (2013) Surgical treatment of high grade dural arteriovenous fistulae. J Clin Neurosci 20:1527–1532CrossRefPubMedGoogle Scholar
  32. Gross BA, Lai PM, Frerichs KU, Du R (2013) Angiotensin-converting enzyme-inhibitors, statins and the risk of hemorrhage from cerebral dural arteriovenous fistulae. J Clin Neurosci 20:1228–1231CrossRefPubMedGoogle Scholar
  33. Hanggi D, Etminan N, Stieger HJ (2010) The impact of microscope-integrated intraoperative near-infrared indocyanine green videoangiography on surgery of arteriovenous malformations and dural arteriovenous fistulae. Neurosurgery 67:1094–1103CrossRefPubMedGoogle Scholar
  34. Hashimoto T, Lawton MT, Wen G, Yang GY, Chaly T, Stewart CL, Dressman HK, Barbaro NM, Marchuk DA, Young WL (2004) Gene microarray analysis of human brain arteriovenous malformations. Neurosurgery 54:410–425CrossRefPubMedGoogle Scholar
  35. Herman JM, Spetzler RF, Bederson JB, Kurbat JM, Zabramski JM (1995) Genesis of a dural arteriovenous malformation in a rat model. J Neurosurg 83:539–545CrossRefPubMedGoogle Scholar
  36. Hirono N, Yamadori A, Komiyama M (1993) Dural arteriovenous fistula: a cause of hypoperfusion-induced intellectual impairment. Eur Neurol 33:5–8CrossRefPubMedGoogle Scholar
  37. Hiu T, Kitagawa N, Morikawa M, Hayashi K, Horie N, Morofuji Y, Suyama K, Nagata I (2009) Efficacy of DynaCT digital angiography in the detection of the fistulous point of dural arteriovenous fistulas. AJNR 30:487–491CrossRefPubMedGoogle Scholar
  38. Hoh BL, Choudhri TF, Connoll ES, Solomon RA (1998) Surgical management of high-grade intracranial dural arteriovenous fistulas: leptomeningeal venous disruption without nidus excision. Neurosurgery 42:796–804CrossRefPubMedGoogle Scholar
  39. Hurley MC, Rahme RJ, Fishman AJ, Batjer HH, Bendok BR (2011) Combined surgical and endovascular access of the superficial middle cerebral vein to occlude a high grade cavernous dural arteriovenous fistula: case report. Neurosurgery 69:E475–E481CrossRefPubMedGoogle Scholar
  40. Iwama T, Hashimoto N, Takagi Y, Tanaka M, Yamamoto S, Nishi S et al (1997) Hemodynamic and metabolic disturbances in patients with intracranial dural arteriovenous fistulas: positron emission tomography evaluation before and after treatment. J Neuorsurg 86:806–811CrossRefGoogle Scholar
  41. Juncos JP, Grande JP, Kang L, Ackerman AW, Croatt AJ, Katusic ZS, Nath KA (2011) MCP-1 contributes to arteriovenous fistulae failure. J Am Soc Nephrol 22:43–48CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kerber CW, Newton TH (1973) The macro and microvasculature of the dura mater. Neuroradiology 6:175–179CrossRefPubMedGoogle Scholar
  43. Knoll GA, Wells PS, Young D, Perkins SL, Pilkey RM, Clinch JJ, Rodger MA (2005) Thrombophilia and the risk for hemodialysis vascular access thrombosis. J Am Soc Nephrol 16:1108–1114CrossRefPubMedGoogle Scholar
  44. Kwon BJ, Han MH, Kang HS et al (2005) MR imaging findings of intracranial dural arteriovenous fistulas: relations with venous drainage patterns. AJNR 26:2500–2507PubMedGoogle Scholar
  45. Lasjaunias P (1987) Surgical neuroangiography: search for a specialty. AJNR 8:581–582PubMedGoogle Scholar
  46. Lawton JR, Spetzler RF (1997) Redefined role of angiogenesis in the pathogenesis of dural arteriovenous malformations. J Neurosurg 87:267–274CrossRefPubMedGoogle Scholar
  47. Lawton MT, Stewart CL, Wulfstat AA, Derugin N, Hashimoto T, Young WL (2004) The transgenic arteriovenous fistula in the rat: an experimental model of gene therapy for brain arteriovenous malformations. Neurosurgery 54:1463–1471CrossRefPubMedGoogle Scholar
  48. Lawton MT, Sanchez-Mejia RO, Pham D, Tan J, Halbach VV (2008) Tentorial dural arteriovenous fistulae: operative strategies and microsurgical results for six types. Neurosurgery 62:110–124PubMedGoogle Scholar
  49. Lee PH, Lee JS, Shin DH, Kim BH, Huh K (2005) Parkinsonism as an initial manifestation of dural arteriovenous fistula. Eur J Neurol 12:403–406CrossRefPubMedGoogle Scholar
  50. Lee DG, Zhao LB, Shim JH, Lee DH, Suh DC (2013) Relationship between diabetes mellitus with dural arteriovenous fistula. Neuroradiology 55:1129–1134CrossRefPubMedGoogle Scholar
  51. Leng LZ, Rubin DG, Patsalides A, Riina HA (2013) Fusion of intraoperative three-dimensional rotational angiography and flat panel detector computed tomography for cerebrovascular neuronavigation. World Neurosurg 79:504–509CrossRefPubMedGoogle Scholar
  52. Liu JK, Dogan A, Ellegala DB, Carlson J, Nesbit GM, Barnwell SL, Delashaw JB (2009) The role of surgery for high-grade intracranial dural arteriovenous fistulas: importance of obliteration of venous outflow. J Neuorsurg 110:913–920CrossRefGoogle Scholar
  53. Liu JK, Choudhry OJ, Barnwell SL, Delashaw JB, Dogan A (2012) Single stage transcranial exposure of large dural venous sinuses for surgically-assisted direct transvenous embolization of high-grade dural arteriovenous fistulas: technical note. Acta Neurochir (Wien) 154:1855–1859CrossRefGoogle Scholar
  54. Matsushima T, Suzuki SO, Fukui M, Rhoton AL, de Oliveira E, Ono M (1989) Microsurgical anatomy of the tentorial sinuses. J Neuorsurg 71:923–928CrossRefGoogle Scholar
  55. Miabi Z, Midia R, Rohrer SE, Hoeffner EG, Vandorpe R, Berk CM et al (2004) Delineation of lateral tentorial sinus with contrast-enhanced MR imaging and its surgical implications. AJNR 25:1181–1188PubMedGoogle Scholar
  56. Morita A, Meyer FB, Nichols DA (1995) Childhood dural arteriovenous fistulae of the posterior dural sinuses: three case reports and literature review. Neurosurgery 37:1193–1199CrossRefPubMedGoogle Scholar
  57. Muthukumar N, Palaniappan P (1998) Tentorial venous sinuses: an anatomic study. Neurosurgery 42:363–371CrossRefPubMedGoogle Scholar
  58. Nabors MW, Azzam CJ, Albanna FJ, Gulya AJ, Davis DO, Kobrine AI (1987) Delayed postoperative dural arteriovenous malformations. Report of two cases. J Neurosurg 66:768–772CrossRefPubMedGoogle Scholar
  59. Nakagawa I, Taoka T, Wada T, Nakagawa H, Sakamoto M, Kichikawa K, Hironaka Y, Motoyama Y, Park YS, Nakase H (2013) The use of susceptibility-weighted imaging as an indicator of retrograde leptomeningeal venous drainage and venous congestion with dural arteriovenous fistula: diagnosis and follow-up after treatment. Neurosurgery 72:47–54CrossRefPubMedGoogle Scholar
  60. Nakahara Y, Ogata A, Takase Y, Maeda K, Okamoto H, Matsushima T, Sakata S (2011) Treatment of dural arteriovenous fistula presenting as typical symptoms of hydrocephalus caused by venous congestion: case report. Neurol Med Chir (Tokyo) 51:229–232CrossRefGoogle Scholar
  61. Newton TH, Cronqvist S (1969) Involvement of dural arteries in intracranial arteriovenous malformations. Radiology 93:1071–1078CrossRefPubMedGoogle Scholar
  62. Nishio A, Ohata K, Tsuchida K, Tsuyuguchi N, Hara M, Komiyama M, Tsuruno T, Murata T (2002) Dural arteriovenous fistula involving the superior sagittal sinus following sinus thrombosis–case report. Neurol Med Chir (Tokyo) 45:217–220CrossRefGoogle Scholar
  63. Ohta T, Kajikawa H (1978) Dural arteriovenous malformation (author’s transl). Neurol Med Chir (Tokyo) 18:439–472CrossRefGoogle Scholar
  64. Patel NN, Mangano FT, Klimo P (2010) Indirect revascularization techniques for treating moyamoya disease. Neruosurg Clin N Am 21:553–563CrossRefGoogle Scholar
  65. Peragallo Urrutia R, Coeytaux RR, McBroom A, Gierisch J, Havrilesky L, Moorman P, Lowery W, Dinan M, Hasselblad V, Sanders G, Meyers E (2013) Risk of acute thromboembolic events with oral contraceptive use: a systemic review and meta-analysis. Obstet Gynecol 122:380–389CrossRefPubMedGoogle Scholar
  66. Petrovič D (2013) Candidate genes for proliferative diabetic retinopathy. Biomed Res Int 2013:540416Google Scholar
  67. Phatouros CC, Halbach VV, Malek AM, Dowd CF, Higashida RT (1999) Simultaneous subarachnoid hemorrhage and carotid cavernous fistula after rupture of a paraclinoid aneurysm during balloon-assisted coil embolisation. AJNR 20:1100–1102PubMedGoogle Scholar
  68. Picard L, Bracard S, Islak C, Roy D, Moreno A, Marchal JC et al (1990) Dural fistulae of the tentorium cerebelli. Radioanatomical, clinical and therapeutic considerations. J Neuroradiol 17:161–181PubMedGoogle Scholar
  69. Quinones-Hinojosa A, Chang EF, Lawton MT (2006) The extended retrosigmoid approach: an alternative to radical cranial base approaches for posterior fossa lesions. Neurosurgery 58:ONS208–ONS214Google Scholar
  70. Reuner KH, Ruf A, Grau A, Rickmann H, Stolz E, Juttler E (1998) Prothrombin gene G20210A transition is a risk factor for cerebral venous thrombosis. Stroke 29:1765–1769CrossRefPubMedGoogle Scholar
  71. Roy-Chaudhury P, Lee TC (2007) Vascular stenosis: biology and interventions. Curr Opin Nephrol Hypertens 16:516–522CrossRefPubMedGoogle Scholar
  72. Roy-Chaudhury P, Sukhatme VP, Cheung A (2006) Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J Am Soc Nephrol 17:1112–1127CrossRefPubMedGoogle Scholar
  73. Sakaki T, Morimoto T, Nakase H, Kakizaki T, Nagata K (1996) Dural arteriovenous fistula of the posterior fossa developing after surgical occlusion of the sigmoid sinus. Report of five cases. J Neurosurg 84:113–118CrossRefPubMedGoogle Scholar
  74. Sakamoto S, Ohba S, Shibukawa M, Kiura Y, Okazaki T, Kurisu K (2008) Course of apparent diffusion coefficient values in cerebral edema of dural arteriovenous fistula before and after treatment. Clin Neurol Neurosurg 110:400–403CrossRefPubMedGoogle Scholar
  75. Sato K, Shimizu H, Fujimura M, Inoue T, Matsumoto Y, Tominaga T (2011) Compromise of brain tissue caused by cortical venous reflux of intracranial dural arteriovenous fistulas: assessment with diffusion-weighted magnetic resonance imaging. Stroke 42:998–1003CrossRefPubMedGoogle Scholar
  76. Satomi J, van Dijk JM, Terburgge KG, Willinsky RA, Wallace MC (2002) Benign cranial dural arteriovenous fistulas: outcome of conservative management based on the natural history of the lesion. J Neuorsurg 97:767–770CrossRefGoogle Scholar
  77. Schanker BD, Walcott BP, Nahed BV, Ogilvy CS, Kiruluta AJ, Rabinov JD, Copen WA (2011) Time-resolved contrast-enhanced magnetic resonance angiography in the investigation of suspected intracranial dural arteriovenous fistula. J Clin Neurosci 18:837–839CrossRefPubMedGoogle Scholar
  78. Shidoh S, Akiyama T, Ohira T, Yoshida K (2014) Cerebral perfusion change of venous hypertension on near-infrared spectroscopy signals after operation for dural arteriovenous fistula. J Stroke Cerebrovasc Dis 23:823–828CrossRefPubMedGoogle Scholar
  79. Simal Julian JA, Miranda Lloret P, Aprarici Robles F, Bletra Giner A, Botella Asuncion C (2013) Indocyanine green videoangiography “in negative”: definition and usefulness in intracranial dural arteriovenous fistulae. Neruosurgery 73:ONS86–ONS92CrossRefGoogle Scholar
  80. Singh V, Meyers PM, Halvach VH, Greass DR, Higashida RT, Dowd CF (2001) Dural arteriovenous fistula associated with prothrombin gene mutation. J Neuroimaging 11:319–321CrossRefPubMedGoogle Scholar
  81. Singh V, Smith WS, Lawton MT, Halbach VV, Young WL (2008) Risk factors for hemorrhagic presentation in patients with dural arteriovenous fistulae. Neurosurgery 62:628–635CrossRefPubMedGoogle Scholar
  82. Smith KA, Spetzler RF (1995) Supratentorial-infraoccipital approach for posteromedial temporal lobe lesions. J Neurosurg 82:940–944CrossRefPubMedGoogle Scholar
  83. Sundt T, Piepgras DG (1983) The surgical approach to arteriovenous malformations of the lateral and sigmoid dural sinuses. J Neuorsurg 59:32–39CrossRefGoogle Scholar
  84. Tee JW, Dally M, Madan A, Hwang P (2012) Surgical treatment of poorly visualized and complex cerebrovascular lesions using pre-operative angiographic data as angiographic DynaCT datasets for frameless stereotactic navigation. Acta Neurochir (Wien) 154:1159–1167CrossRefGoogle Scholar
  85. Terada T, Tsuura M, Komai N, Higashida RT, Halbach VV, Dowd CF, Wilson CB, Hieshima GB (1996) The role of angiogenic factor bFGF in the development of dural AVFs. Acta Neurochir (Wien) 138:877–883CrossRefGoogle Scholar
  86. Tomak PR, Cloft HJ, Kaga A, Cawley CM, Dion J, Barrow DL (2003) Evolution of the management of tentorial dural arteriovenous malformations. Neurosurgery 52:750–760CrossRefPubMedGoogle Scholar
  87. Toya S, Shiobara R, Izumi J, Shinomiya Y, Shiga H, Kimura C (1981) Spontaneous carotid-cavernous fistula during pregnancy or in the postpartum stage. Report of two cases. J Neurosurg 54:252–256CrossRefPubMedGoogle Scholar
  88. Uranishi R, Nakase H, Sakaki T (1999) Expression of angiogenic growth factors in dural arteriovenous fistula. J Neurosurg 91:781–786CrossRefPubMedGoogle Scholar
  89. Wajnberg E, Spilberg G, Rezende M, Abud D, Kessler I, Mounayer C (2012) Endovascular treatment of tentorial dural arteriovenous fistulae. Interv Neruoradiol 18:60–68Google Scholar
  90. Waragai M, Takeuchi H, Fukushima T (2006) MRI and SPECT studies of dural arteriovenous fistulas presenting as pure progressive dementia with leukoencephalopathy: a cause of treatable dementia. Eur J Neurol 13:754–759CrossRefPubMedGoogle Scholar
  91. Wu H, Block W, Turski P, Mistretta C, Rusinak D, Wu Y, Johnson K (2013) Noncontrast dynamic 3D intracranial MR angiography using pseudo continuous arterial spin labeling (PCASL) and accelerated 3D radial acquisition. J Magn Reson Imaging 39(5):1320–1326CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zhu Y, Lawton MT, Du R, Shwe Y, Chen Y, Shen F (2006) Expression of hypoxia-inducible factor-1 and vascular endothelial growth factor in response to venous hypertension. Neurosurgery 59:687–696CrossRefPubMedGoogle Scholar
  93. Zipfel GJ, Shah MN, Refai D et al (2009) Cranial dural arteriovenous fistulas (2007) modification of angiographic classification scales based on new natural history data. Neurosurg Focus 26:E14CrossRefPubMedGoogle Scholar

Further Reading

  1. Berenstein A, Lasjaunias P, Ter Brugge K (2001) Surgical neuroangiography. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Neurological SurgeryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations