ACL Injuries Identifiable for Pre-participation Imagiological Analysis: Risk Factors

  • Hélder PereiraEmail author
  • Margarida Fernandes
  • Rogério Pereira
  • Henrique Jones
  • J. C. Vasconcelos
  • J. M. Oliveira
  • R. L. Reis
  • Volker Musahl
  • J. Espregueira-Mendes
Living reference work entry


Identification of pre-participation risk factors for noncontact anterior cruciate ligament (ACL) injuries has been attracting a great deal of interest in the sports medicine and traumatology communities. Appropriate methods that enable predicting which patients could benefit from preventive strategies are most welcome. This would enable athlete-specific training and conditioning or tailored equipment in order to develop appropriate strategies to reduce incidence of injury. In order to accomplish these goals, the ideal system should be able to assess both anatomic and functional features. Complementarily, the screening method must be cost-effective and suited for widespread application. Anatomic study protocol requiring only standard X rays could answer some of such demands. Dynamic MRI/CT evaluation and electronically assisted pivot-shift evaluation can be powerful tools providing complementary information. These upcoming insights, when validated and properly combined, envision changing pre-participation knee examination in the near future. Herein different methods (validated or under research) aiming to improve the capacity to identify persons/athletes with higher risk for ACL injury are overviewed.


Anterior Cruciate Ligament Anterior Cruciate Ligament Reconstruction Tibial Plateau Anterior Cruciate Ligament Injury Tibial Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alizadeh A, Kiavash V (2008) Mean intercondylar notch width index in cases with and without anterior cruciate ligament tears. Iran J Radiol 5:205–208Google Scholar
  2. Al-Saeed O, Brown M, Athyal R, Sheikh M (2013) Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 21:678–682PubMedCrossRefGoogle Scholar
  3. Arendt EA, Brown GA (2012) Non-contact ACL injury: can anatomic factors be used in screening at-risk athletes? Commentary on an article by Christopher J. Wahl, MD, et al.: “An association of lateral knee sagittal anatomic factors with non-contact ACL injury: sex or geometry?”. J Bone Joint Surg Am 94:e20PubMedCrossRefGoogle Scholar
  4. Balasch H, Schiller M, Friebel H, Hoffmann F (1999) Evaluation of anterior knee joint instability with the Rolimeter. A test in comparison with manual assessment and measuring with the KT-1000 arthrometer. Knee Surg Sports Traumatol Arthrosc 7:204–208PubMedCrossRefGoogle Scholar
  5. Benvenuti JF, Vallotton JA, Meystre JL, Leyvraz PF (1998) Objective assessment of the anterior tibial translation in Lachman test position. Comparison between three types of measurement. Knee Surg Sports Traumatol Arthrosc 6:215–219PubMedCrossRefGoogle Scholar
  6. Bisson LJ, Gurske-DePerio J (2010) Axial and sagittal knee geometry as a risk factor for noncontact anterior cruciate ligament tear: a case-control study. Arthroscopy 26:901–906PubMedCrossRefGoogle Scholar
  7. Boniface RJ, Fu FH, Ilkhanipour K (1986) Objective anterior cruciate ligament testing. Orthopedics 9:391–393PubMedGoogle Scholar
  8. Boyer P, Djian P, Christel P, Paoletti X, Degeorges R (2004) Reliability of the KT-1000 arthrometer (Medmetric) for measuring anterior knee laxity: comparison with Telos in 147 knees. Rev Chir Orthop Reparatrice Appar Mot 90:757–764PubMedCrossRefGoogle Scholar
  9. Branch TP, Browne JE, Campbell JD, Siebold R, Freedberg HI, Arendt EA et al (2010a) Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Knee Surg Sports Traumatol Arthrosc 18:1379–1384PubMedCrossRefGoogle Scholar
  10. Branch TP, Mayr HO, Browne JE, Campbell JC, Stoehr A, Jacobs CA (2010b) Instrumented examination of anterior cruciate ligament injuries: minimizing flaws of the manual clinical examination. Arthroscopy 26:997–1004PubMedCrossRefGoogle Scholar
  11. Chadwick CC, Rogowski J, Joyce BT (2008) The economics of anterior cruciate ligament reconstruction. In: Prodromos C, Brown C, F FH, Georgoulis AD, Gobbi A, Howell SM (eds) The anterior cruciate ligament: reconstruction and basic science. Saunders Elsevier, Philadelphia, pp 79–83Google Scholar
  12. Citak M, Suero EM, Rozell JC, Bosscher MR, Kuestermeyer J, Pearle AD (2011) A mechanized and standardized pivot shifter: technical description and first evaluation. Knee Surg Sports Traumatol Arthrosc 19:707–711PubMedCrossRefGoogle Scholar
  13. Daniel DM, Stone ML, Sachs R, Malcom L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 13:401–407PubMedCrossRefGoogle Scholar
  14. Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg (Br) 76:745–749Google Scholar
  15. Espregueira-Mendes J, Pereira H, Sevivas N, Passos C, Vasconcelos JC, Monteiro A et al (2012) Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Traumatol Arthrosc 20:671–678PubMedCrossRefGoogle Scholar
  16. Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21:134–145PubMedCrossRefGoogle Scholar
  17. Georgoulis AD, Ristanis S, Chouliaras V, Moraiti C, Stergiou N (2007) Tibial rotation is not restored after ACL reconstruction with a hamstring graft. Clin Orthop Relat Res 454:89–94PubMedCrossRefGoogle Scholar
  18. Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE et al (2000) Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 8:141–150PubMedGoogle Scholar
  19. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr et al (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38:54–62PubMedCrossRefGoogle Scholar
  20. Hemmerich A, van der Merwe W, Batterham M, Vaughan CL (2011) Knee rotational laxity in a randomized comparison of single- versus double-bundle anterior cruciate ligament reconstruction. Am J Sports Med 39:48–56PubMedCrossRefGoogle Scholar
  21. Highgenboten CL, Jackson A, Meske NB (1989) Genucom, KT-1000, and Stryker knee laxity measuring device comparisons. Am J Sports Med 17:743–746PubMedCrossRefGoogle Scholar
  22. Hoshino Y, Araujo P, Ahlden M, Samuelsson K, Muller B, Hofbauer M et al (2013) Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc 21:975–980PubMedCrossRefGoogle Scholar
  23. Hudek R, Fuchs B, Regenfelder F, Koch PP (2011) Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res 469:2377–2384PubMedCentralPubMedCrossRefGoogle Scholar
  24. Isberg J, Faxen E, Brandsson S, Eriksson BI, Karrholm J, Karlsson J (2006) KT-1000 records smaller side-to-side differences than radiostereometric analysis before and after an ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 14:529–535PubMedCrossRefGoogle Scholar
  25. Jardin C, Chantelot C, Migaud H, Gougeon F, Debroucker MJ, Duquennoy A (1999) Reliability of the KT-1000 arthrometer in measuring anterior laxity of the knee: comparative analysis with Telos of 48 reconstructions of the anterior cruciate ligament and intra- and interobserver reproducibility. Rev Chir Orthop Reparatrice Appar Mot 85:698–707PubMedGoogle Scholar
  26. Jonsson H, Elmqvist LG, Karrholm J, Fugl-Meyer A (1992) Lengthening of anterior cruciate ligament graft. Roentgen stereophotogrammetry of 32 cases 2 years after repair. Acta Orthop Scand 63:587–592PubMedGoogle Scholar
  27. Jung TM, Reinhardt C, Scheffler SU, Weiler A (2006) Stress radiography to measure posterior cruciate ligament insufficiency: a comparison of five different techniques. Knee Surg Sports Traumatol Arthrosc 14:1116–1121PubMedCrossRefGoogle Scholar
  28. Katz JW, Fingeroth RJ (1986) The diagnostic accuracy of ruptures of the anterior cruciate ligament comparing the Lachman test, the anterior drawer sign, and the pivot shift test in acute and chronic knee injuries. Am J Sports Med 14:88–91PubMedCrossRefGoogle Scholar
  29. Khan MS, Seon JK, Song EK (2011) Risk factors for anterior cruciate ligament injury: assessment of tibial plateau anatomic variables on conventional MRI using a new combined method. Int Orthop 35:1251–1256PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kvist J (2004) Sagittal plane translation during level walking in poor-functioning and well-functioning patients with anterior cruciate ligament deficiency. Am J Sports Med 32:1250–1255PubMedCrossRefGoogle Scholar
  31. Lob T, Verheyden AP, Josten Ch, (2006) The function of the ACL measured in an vertical opened MRI (0.5 Tesla). In: 12th F S ESSKA congress, InnsbruckGoogle Scholar
  32. Lubowitz JH, Poehling GG (2010) Understanding ACL research requires patience and persistence. Arthroscopy 26:869–871PubMedCrossRefGoogle Scholar
  33. Mayr HO, Hoell A, Bernstein A, Hube R, Zeiler C, Kalteis T et al (2011) Validation of a measurement device for instrumented quantification of anterior translation and rotational assessment of the knee. Arthroscopy 27:1096–1104PubMedCrossRefGoogle Scholar
  34. Menetrey J, Duthon VB, Laumonier T, Fritschy D (2008) “Biological failure” of the anterior cruciate ligament graft. Knee Surg Sports Traumatol Arthrosc 16:224–231PubMedCrossRefGoogle Scholar
  35. Miljko M, Grle M, Kozul S, Kolobaric M, Djak I (2012) Intercondylar notch width and inner angle of lateral femoral condyle as the risk factors for anterior cruciate ligament injury in female handball players in Herzegovina. Coll Antropol 36:195–200PubMedGoogle Scholar
  36. Musahl V, Voos J, O’Loughlin PF, Stueber V, Kendoff D, Pearle AD (2010) Mechanized pivot shift test achieves greater accuracy than manual pivot shift test. Knee Surg Sports Traumatol Arthrosc 18:1208–1213PubMedCrossRefGoogle Scholar
  37. Myer GD, Ford KR, Hewett TE (2011) New method to identify athletes at high risk of ACL injury using clinic-based measurements and freeware computer analysis. Br J Sports Med 45:238–244PubMedCrossRefGoogle Scholar
  38. Myrer JW, Schulthies SS, Fellingham GW (1996) Relative and absolute reliability of the KT-2000 arthrometer for uninjured knees. Am J Sports Med 24:104–108PubMedCrossRefGoogle Scholar
  39. Oliver JH, Coughlin LP (1987) Objective knee evaluation using the Genucom Knee Analysis System. Clinical implications. Am J Sports Med 15:571–578PubMedCrossRefGoogle Scholar
  40. Owings MF, Kozak LJ (1998) Ambulatory and inpatient procedures in the United States, 1996. Vital Health Stat 13:1–119Google Scholar
  41. Park HS, Wilson NA, Zhang LQ (2008) Gender differences in passive knee biomechanical properties in tibial rotation. J Orthop Res 26:937–944PubMedCrossRefGoogle Scholar
  42. Pereira H, Sevivas N, Pereira R, Monteiro A, Oliveira JM, Reis RL et al (2012) New tools for diagnosis, assessment of surgical outcome and follow-up. In: Hernández J, Monllau JC (eds) Lesiones Ligamentosas de La Rodilla. Marge Books, Barcelona, pp 185–194Google Scholar
  43. Pereira H, Silva-Correia J, Yan LP, Oliveira A, Oliveira JM, Espregueira-Mendes J et al (2013) Radiographic method to determine risk factors for ACL rupture in athletes based in bone morphology. In: French Arthroscopy Society meeting, BordeauxGoogle Scholar
  44. Prins M (2006) The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. Aust J Physiother 52:66PubMedCrossRefGoogle Scholar
  45. Robert H, Nouveau S, Gageot S, Gagniere B (2009) A new knee arthrometer, the GNRB: experience in ACL complete and partial tears. Orthop Traumatol Surg Res 95:171–176PubMedCrossRefGoogle Scholar
  46. Schulz MS, Russe K, Lampakis G, Strobel MJ (2005) Reliability of stress radiography for evaluation of posterior knee laxity. Am J Sports Med 33:502–506PubMedCrossRefGoogle Scholar
  47. Selvik G (1989) Roentgen stereophotogrammetry. A method for the study of the kinematics of the skeletal system. Acta Orthop Scand Suppl 232:1–51PubMedCrossRefGoogle Scholar
  48. Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43:1702–1707PubMedCentralPubMedCrossRefGoogle Scholar
  49. Smith HC, Vacek P, Johnson RJ, Slauterbeck JR, Hashemi J, Shultz S et al (2012a) Risk factors for anterior cruciate ligament injury: a review of the literature-part 2: hormonal, genetic, cognitive function, previous injury, and extrinsic risk factors. Sports Health 4:155–161PubMedCentralPubMedCrossRefGoogle Scholar
  50. Smith HC, Vacek P, Johnson RJ, Slauterbeck JR, Hashemi J, Shultz S et al (2012b) Risk factors for anterior cruciate ligament injury: a review of the literature – part 1: neuromuscular and anatomic risk. Sports Health 4:69–78PubMedCentralPubMedCrossRefGoogle Scholar
  51. Sorensen OG, Larsen K, Jakobsen BW, Kold S, Hansen TB, Lind M et al (2011) The combination of radiostereometric analysis and the telos stress device results in poor precision for knee laxity measurements after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19:355–362PubMedCrossRefGoogle Scholar
  52. Staubli HU, Noesberger B, Jakob RP (1992) Stress radiography of the knee. Cruciate ligament function studied in 138 patients. Acta Orthop Scand Suppl 249:1–27PubMedGoogle Scholar
  53. Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 16:112–117PubMedCrossRefGoogle Scholar
  54. Stijak L, Malis M, Maksimovic R, Aksic M, Filipovic B (2012) The influence of the morphometric parameters of the intercondylar notch on rupture of the anterior cruciate ligament. Vojnosanit Pregl 69:576–580PubMedCrossRefGoogle Scholar
  55. Sutton KM, Bullock JM (2013) Anterior cruciate ligament rupture: differences between males and females. J Am Acad Orthop Surg 21:41–50PubMedCrossRefGoogle Scholar
  56. Sward P, Kostogiannis I, Roos H (2010) Risk factors for a contralateral anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 18:277–291PubMedCrossRefGoogle Scholar
  57. Tashman S, Kolowich P, Collon D, Anderson K, Anderst W (2007) Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res 454:66–73PubMedCrossRefGoogle Scholar
  58. Terauchi M, Hatayama K, Yanagisawa S, Saito K, Takagishi K (2011) Sagittal alignment of the knee and its relationship to noncontact anterior cruciate ligament injuries. Am J Sports Med 39:1090–1094PubMedCrossRefGoogle Scholar
  59. Tsai AG, Musahl V, Steckel H, Bell KM, Zantop T, Irrgang JJ et al (2008) Rotational knee laxity: reliability of a simple measurement device in vivo. BMC Musculoskelet Disord 9:35PubMedCentralPubMedCrossRefGoogle Scholar
  60. Vyas S, van Eck CF, Vyas N, Fu FH, Otsuka NY (2011) Increased medial tibial slope in teenage pediatric population with open physes and anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 19:372–377PubMedCentralPubMedCrossRefGoogle Scholar
  61. Woo SLY, Fisher MB (2009) Evaluation of knee stability with use of a robotic system. J Bone Joint Surg (Am) 91:78–84CrossRefGoogle Scholar
  62. Wordeman SC, Quatman CE, Kaeding CC, Hewett TE (2012) In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury: a systematic review and meta-analysis. Am J Sports Med 40:1673–1681PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hélder Pereira
    • 1
    • 2
    • 3
    • 4
    Email author
  • Margarida Fernandes
    • 3
  • Rogério Pereira
    • 3
  • Henrique Jones
    • 5
  • J. C. Vasconcelos
    • 3
  • J. M. Oliveira
    • 1
    • 2
    • 3
  • R. L. Reis
    • 1
    • 2
    • 3
  • Volker Musahl
    • 6
  • J. Espregueira-Mendes
    • 1
    • 2
    • 3
    • 4
  1. 1.3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniv. MinhoGuimarãesPortugal
  2. 2.ICVS/3B’s – PT Government Associated LaboratoryBraga/GuimarãesPortugal
  3. 3.FIFA Medical Centre of ExcellenceClínica Espregueira-Mendes F.C. Porto StadiumPortoPortugal
  4. 4.Orthopedic DepartmentCentro Hospitalar Póvoa de VarzimVila do CondePortugal
  5. 5.Medical DepartmentPortuguese Football Federations and UEFA Medical CommitteeLisbonPortugal
  6. 6.Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations