Skip to main content

Biomedical Engineering and Orthopedic Sports Medicine

  • Living reference work entry
  • First Online:
Sports Injuries

Abstract

Orthopedic sports medicine has a broad area of interest from the prevention of sports injuries, diagnosis, treatment, and rehabilitation of athletes, children, females, as well as older people. Accordingly, a multidisciplinary approach is needed to improve orthopedic sports medicine. Biomedical engineering defined as the application of engineering principles based on science and mathematics to the various problems related to human health is a good candidate for that. To improve the orthopedic sports medicine, biomedical engineering with a special emphasis in the musculoskeletal system offers isolating the problem and developing a set of hypotheses tested with experiments, modeling, and theoretical methods. In this chapter, such approaches and modalities of biomedical engineering are discussed with possible implications in risk assessment, diagnosis, and treatment of sports injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adachi N, Ochi M, Uchio Y et al (2003) Harvesting hamstring tendons for ACL reconstruction influences postoperative hamstring muscle performance. Arch Orthop Trauma Surg 123:460–465

    PubMed  Google Scholar 

  • Ahlden M, Hoshino Y, Samuelsson K et al (2012) Dynamic knee laxity measurement devices. Knee Surg Sports Traumatol Arthrosc 20:621–632

    PubMed  Google Scholar 

  • Allinger TL, Herzog W, Epstein M (1996) Force-length properties in stable skeletal muscle fibers–theoretical considerations. J Biomech 29:1235–1240

    PubMed  CAS  Google Scholar 

  • Anderson AF, Dome DC, Gautam S et al (2001) Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 29:58–66

    PubMed  CAS  Google Scholar 

  • Ates F, Temelli Y, Yucesoy CA (2012) Human spastic Gracilis muscle isometric forces measured intraoperatively as a function of knee angle show no abnormal muscular mechanics. Clin Biomech (Bristol, Avon) 28(1):48–54

    Google Scholar 

  • Ates F, Ozdeslik RN, Huijing PA, et al (2013) Muscle lengthening surgery causes differential acute mechanical effects in both targeted and non-targeted synergistic muscles. J Electromyogr Kinesiol. pii: S1050-6411(13)00124-7

    Google Scholar 

  • Balint PV, Kane D, Hunter J et al (2002) Ultrasound guided versus conventional joint and soft tissue fluid aspiration in rheumatology practice: a pilot study. J Rheumatol 29:2209–2213

    PubMed  Google Scholar 

  • Bancroft LW (2013) Wrist injuries: a comparison between high- and low-impact sports. Radiol Clin North Am 51:299–311

    PubMed  Google Scholar 

  • Bartel DL, Davy DT, Keaveny TM (2006) Orthopaedic biomechanics : mechanics and design in musculoskeletal systems. Pearson/Prentice Hall, Upper Saddle River

    Google Scholar 

  • Bates NA, Ford KR, Myer GD et al (2013) Impact differences in ground reaction force and center of mass between the first and second landing phases of a drop vertical jump and their implications for injury risk assessment. J Biomech 46:1237–1241

    PubMed  PubMed Central  Google Scholar 

  • Bencardino JT, Mellado JM (2005) Hamstring injuries of the hip. Magn Reson Imaging Clin N Am 13:677–690

    PubMed  Google Scholar 

  • Benoit DL, Lamontagne M, Greaves C et al (2005) Effect of Alpine ski boot cuff release on knee joint force during the backward fall. Res Sports Med 13:317–330

    PubMed  CAS  Google Scholar 

  • Berthier C, Blaineau S (1997) Supramolecular organization of the subsarcolemmal cytoskeleton of adult skeletal muscle fibers. A review. Biol Cell 89:413–434

    PubMed  CAS  Google Scholar 

  • Beyzadeoglu T, Akgun U, Tasdelen N et al (2012) Prediction of semitendinosus and gracilis autograft sizes for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 20:1293–1297

    PubMed  Google Scholar 

  • Bianchi S, Martinoli C, Abdelwahab IF (2005) Ultrasound of tendon tears. Part 1: general considerations and upper extremity. Skeletal Radiol 34:500–512

    PubMed  Google Scholar 

  • Bianchi S, Poletti PA, Martinoli C et al (2006) Ultrasound appearance of tendon tears. Part 2: lower extremity and myotendinous tears. Skeletal Radiol 35:63–77

    PubMed  Google Scholar 

  • Boon AJ, Smith J, Harper CM (2012) Ultrasound applications in electrodiagnosis. PM R 4:37–49

    PubMed  Google Scholar 

  • Brandsson S, Karlsson J, Sward L et al (2002) Kinematics and laxity of the knee joint after anterior cruciate ligament reconstruction: pre- and postoperative radiostereometric studies. Am J Sports Med 30:361–367

    PubMed  Google Scholar 

  • Braun HJ, Dragoo JL, Hargreaves BA et al (2013) Application of advanced magnetic resonance imaging techniques in evaluation of the lower extremity. Radiol Clin North Am 51:529–545

    PubMed  PubMed Central  Google Scholar 

  • Brughelli M, Cronin J (2007) Altering the length-tension relationship with eccentric exercise : implications for performance and injury. Sports Med 37:807–826

    PubMed  Google Scholar 

  • Chandrashekar N, Slauterbeck J, Hashemi J (2005) Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry: a cadaveric study. Am J Sports Med 33:1492–1498

    PubMed  Google Scholar 

  • Chandrashekar N, Mansouri H, Slauterbeck J et al (2006) Sex-based differences in the tensile properties of the human anterior cruciate ligament. J Biomech 39:2943–2950

    PubMed  Google Scholar 

  • Chang MJ, Chang CB, Choi JY, Won HH, Kim TK (2013) How useful is MRI in diagnosing isolated bundle ACL injuries? Clin Orthop Relat Res 471(10):3283–3290

    Google Scholar 

  • Chappell JD, Creighton RA, Giuliani C et al (2007) Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med 35:235–241

    PubMed  Google Scholar 

  • Charvet B, Ruggiero F, Le Guellec D (2012) The development of the myotendinous junction. A review. Muscles Ligaments Tendons J 2:53–63

    PubMed  PubMed Central  Google Scholar 

  • Datta V, Voci S (2012) Sonographic appearance of rotator cuff tears. Ultrasound Q 28:139–140

    PubMed  Google Scholar 

  • Decker MJ, Torry MR, Wyland DJ et al (2003) Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech (Bristol, Avon) 18:662–669

    Google Scholar 

  • del Cura JL (2008) Ultrasound-guided therapeutic procedures in the musculoskeletal system. Curr Probl Diagn Radiol 37:203–218

    PubMed  Google Scholar 

  • DeMorat G, Weinhold P, Blackburn T et al (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32:477–483

    PubMed  Google Scholar 

  • Dewan AK, Chhabra AB, Khanna AJ et al (2013) Magnetic resonance imaging of the hand and wrist: techniques and spectrum of disease: AAOS exhibit selection. J Bone Joint Surg Am 95:e68

    PubMed  Google Scholar 

  • Dix DJ, Eisenberg BR (1990) Myosin mRNA accumulation and myofibrillogenesis at the myotendinous junction of stretched muscle fibers. J Cell Biol 111:1885–1894

    PubMed  CAS  Google Scholar 

  • Domach MM (2010) Introduction to biomedical engineering, 2nd edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Domire ZJ, Boros RL, Hashemi J (2011) An examination of possible quadriceps force at the time of anterior cruciate ligament injury during landing: a simulation study. J Biomech 44:1630–1632

    PubMed  Google Scholar 

  • Edlich RF, Swainston EM, Dahlstrom JJ et al (2010) An injury prevention program to prevent gymnastic injuries in children and teenagers. J Environ Pathol Toxicol Oncol 29:13–15

    PubMed  Google Scholar 

  • Edman KA (2010) Contractile performance of striated muscle. Adv Exp Med Biol 682:7–40

    PubMed  CAS  Google Scholar 

  • Einarsson F, Runesson E, Karlsson J et al (2011) Muscle biopsies from the supraspinatus in retracted rotator cuff tears respond normally to passive mechanical testing: a pilot study. Knee Surg Sports Traumatol Arthrosc 19:503–507

    PubMed  Google Scholar 

  • Emery CA (2010) Injury prevention in paediatric sport-related injuries: a scientific approach. Br J Sports Med 44:64–69

    PubMed  CAS  Google Scholar 

  • Faryniarz DA, Bhargava M, Lajam C et al (2006) Quantitation of estrogen receptors and relaxin binding in human anterior cruciate ligament fibroblasts. In Vitro Cell Dev Biol Anim 42:176–181

    PubMed  CAS  Google Scholar 

  • Finch CF (2011) No longer lost in translation: the art and science of sports injury prevention implementation research. Br J Sports Med 45:1253–1257

    PubMed  Google Scholar 

  • Finni T, Hodgson JA, Lai AM et al (2003a) Nonuniform strain of human soleus aponeurosis-tendon complex during submaximal voluntary contractions in vivo. J Appl Physiol 95:829–837

    PubMed  Google Scholar 

  • Finni T, Ikegawa S, Lepola V et al (2003b) Comparison of force-velocity relationships of vastus lateralis muscle in isokinetic and in stretch-shortening cycle exercises. Acta Physiol Scand 177:483–491

    PubMed  CAS  Google Scholar 

  • Flavin MP, Dostaler SM, Simpson K et al (2006) Stages of development and injury patterns in the early years: a population-based analysis. BMC Public Health 6:187

    PubMed  PubMed Central  Google Scholar 

  • Freehafer AA, Peckham PH, Keith MW (1979) Determination of muscle-tendon unit properties during tendon transfer. J Hand Surg Am 4:331–339

    PubMed  CAS  Google Scholar 

  • Gans C, Gaunt AS (1991) Muscle architecture in relation to function. J Biomech 24(Suppl 1):53–65

    PubMed  Google Scholar 

  • Gilchrist J, Mandelbaum BR, Melancon H et al (2008) A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am J Sports Med 36:1476–1483

    PubMed  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    PubMed  CAS  Google Scholar 

  • Gyftopoulos S, O’Donnell J, Shah NP, Goss J, Babb J, Recht MP (2013) Correlation of MRI with arthroscopy for the evaluation of the subscapularis tendon: a musculoskeletal division’s experience. Skeletal Radiol 42(9):1269–1275

    Google Scholar 

  • Hawkins D, Metheny J (2001) Overuse injuries in youth sports: biomechanical considerations. Med Sci Sports Exerc 33:1701–1707

    PubMed  CAS  Google Scholar 

  • Herzog W (1988) The relation between the resultant moments at a joint and the moments measured by an isokinetic dynamometer. J Biomech 21:5–12

    PubMed  CAS  Google Scholar 

  • Herzog W, ter Keurs HE (1988) Force-length relation of in-vivo human rectus femoris muscles. Pflugers Arch 411:642–647

    PubMed  CAS  Google Scholar 

  • Herzog W, Leonard TR, Renaud JM et al (1992) Force-length properties and functional demands of cat gastrocnemius, soleus and plantaris muscles. J Biomech 25:1329–1335

    PubMed  CAS  Google Scholar 

  • Hewett TE, Stroupe AL, Nance TA et al (1996) Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med 24:765–773

    PubMed  CAS  Google Scholar 

  • Hewett TE, Myer GD, Ford KR et al (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33:492–501

    PubMed  Google Scholar 

  • Heybeli N, Yesildag A, Oyar O et al (2002) Diagnostic ultrasound treatment increases the bone fracture-healing rate in an internally fixed rat femoral osteotomy model. J Ultrasound Med 21:1357–1363

    PubMed  Google Scholar 

  • Hioki S, Fukubayashi T, Ikeda K et al (2003) Effect of harvesting the hamstrings tendon for anterior cruciate ligament reconstruction on the morphology and movement of the hamstrings muscle: a novel MRI technique. Knee Surg Sports Traumatol Arthrosc 11:223–227

    PubMed  Google Scholar 

  • Huijing PA (1985) Architecture of the human gastrocnemius muscle and some functional consequences. Acta Anat (Basel) 123:101–107

    CAS  Google Scholar 

  • Huijing PA (1998) Muscle, the motor of movement: properties in function, experiment and modelling. J Electromyogr Kinesiol 8:61–77

    PubMed  CAS  Google Scholar 

  • Huijing PA (2003) Muscular force transmission necessitates a multilevel integrative approach to the analysis of function of skeletal muscle. Exerc Sport Sci Rev 31:167–175

    PubMed  Google Scholar 

  • Huijing PA (2007) Epimuscular myofascial force transmission between antagonistic and synergistic muscles can explain movement limitation in spastic paresis. J Electromyogr Kinesiol 17:708–724

    PubMed  Google Scholar 

  • Huijing PA (2009) Epimuscular myofascial force transmission: a historical review and implications for new research. International society of biomechanics Muybridge award lecture, Taipei, 2007. J Biomech 42:9–21

    PubMed  Google Scholar 

  • Huijing PA, van de Langenberg RW, Meesters JJ et al (2007) Extramuscular myofascial force transmission also occurs between synergistic muscles and antagonistic muscles. J Electromyogr Kinesiol 17:680–689

    PubMed  Google Scholar 

  • Huijing PA, Yaman A, Ozturk C et al (2011) Effects of knee joint angle on global and local strains within human triceps surae muscle: MRI analysis indicating in vivo myofascial force transmission between synergistic muscles. Surg Radiol Anat 33:869–879

    PubMed  PubMed Central  Google Scholar 

  • Jaspers RT, Brunner R, Riede UN et al (2005) Healing of the aponeurosis during recovery from aponeurotomy: morphological and histological adaptation and related changes in mechanical properties. J Orthop Res 23:266–273

    PubMed  CAS  Google Scholar 

  • Kalebo P, Karlsson J, Sward L et al (1992) Ultrasonography of chronic tendon injuries in the groin. Am J Sports Med 20:634–639

    PubMed  CAS  Google Scholar 

  • Karahan M, Ateş F, Başçı O, et al (2010) Is myofascial force transmission compensating for the harvested hamstrings in anterior cruciate ligament reconstruction? In: International conference on orthopaedic surgery, biomechanics and clinical applications Brunel, West London

    Google Scholar 

  • Kartus J, Lindahl S, Kohler K et al (1999) Serial magnetic resonance imaging of the donor site after harvesting the central third of the patellar tendon. A prospective study of 37 patients after arthroscopic anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 7:20–24

    PubMed  CAS  Google Scholar 

  • Kawakami Y, Nakazawa K, Fujimoto T et al (1994) Specific tension of elbow flexor and extensor muscles based on magnetic resonance imaging. Eur J Appl Physiol Occup Physiol 68:139–147

    PubMed  CAS  Google Scholar 

  • Kijowski R, De Smet AA (2006) The role of ultrasound in the evaluation of sports medicine injuries of the upper extremity. Clin Sports Med 25:569–590, viii

    PubMed  Google Scholar 

  • Komi PV, Fukashiro S, Järvinen M (1992) Biomechanical loading of Achilles tendon during normal locomotion. Clin Sports Med 11:521–531

    PubMed  CAS  Google Scholar 

  • Kreulen M, Smeulders MJ, Hage JJ et al (2003) Biomechanical effects of dissecting flexor carpi ulnaris. J Bone Joint Surg Br 85:856–859

    PubMed  CAS  Google Scholar 

  • Krosshaug T, Nakamae A, Boden BP et al (2007) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35:359–367

    PubMed  Google Scholar 

  • Le Corroller T, Bauones S, Acid S et al (2013) Anatomical study of the dorsal cutaneous branch of the ulnar nerve using ultrasound. Eur Radiol 23:2246–2251

    PubMed  Google Scholar 

  • Lee JC, Healy J (2004) Sonography of lower limb muscle injury. AJR Am J Roentgenol 182:341–351

    PubMed  Google Scholar 

  • Lee HD, Finni T, Hodgson JA et al (2006) Soleus aponeurosis strain distribution following chronic unloading in humans: an in vivo MR phase-contrast study. J Appl Physiol 100:2004–2011

    PubMed  Google Scholar 

  • Lento PH, Primack S (2008) Advances and utility of diagnostic ultrasound in musculoskeletal medicine. Curr Rev Musculoskelet Med 1:24–31

    PubMed  PubMed Central  Google Scholar 

  • Lieber RL (1993) Skeletal muscle architecture: implications for muscle function and surgical tendon transfer. J Hand Ther 6:105–113

    PubMed  CAS  Google Scholar 

  • Lipscomb AB, Johnston RK, Snyder RB et al (1982) Evaluation of hamstring strength following use of semitendinosus and gracilis tendons to reconstruct the anterior cruciate ligament. Am J Sports Med 10:340–342

    PubMed  CAS  Google Scholar 

  • Louis LJ (2008) Musculoskeletal ultrasound intervention: principles and advances. Radiol Clin North Am 46:515–533, vi

    PubMed  Google Scholar 

  • MacIntosh BR, Herzog W, Suter E et al (1993) Human skeletal muscle fibre types and force: velocity properties. Eur J Appl Physiol Occup Physiol 67:499–506

    PubMed  CAS  Google Scholar 

  • Madihally SV (2010) Principles of biomedical engineering. Artech House, Boston

    Google Scholar 

  • Maganaris CN (2003) Force-length characteristics of the in vivo human gastrocnemius muscle. Clin Anat 16:215–223

    PubMed  Google Scholar 

  • Maganaris CN, Baltzopoulos V, Sargeant AJ (1998) In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. J Physiol 512(Pt 2):603–614

    PubMed  CAS  PubMed Central  Google Scholar 

  • Markolf KL, Burchfield DM, Shapiro MM et al (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13:930–935

    PubMed  CAS  Google Scholar 

  • McBain K, Shrier I, Shultz R et al (2012a) Prevention of sport injury II: a systematic review of clinical science research. Br J Sports Med 46:174–179

    PubMed  Google Scholar 

  • McBain K, Shrier I, Shultz R et al (2012b) Prevention of sports injury I: a systematic review of applied biomechanics and physiology outcomes research. Br J Sports Med 46:169–173

    PubMed  Google Scholar 

  • McLean SG, Huang X, Su A et al (2004) Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin Biomech (Bristol, Avon) 19:828–838

    Google Scholar 

  • Mejia EA, Noyes FR, Grood ES (2002) Posterior cruciate ligament femoral insertion site characteristics. Importance for reconstructive procedures. Am J Sports Med 30:643–651

    PubMed  Google Scholar 

  • Morvan G, Vuillemin V, Guerini H (2012) Interventional musculoskeletal ultrasonography of the lower limb. Diagn Interv Imaging 93:652–664

    PubMed  CAS  Google Scholar 

  • Naclerio F, Faigenbaum AD, Larumbe E et al (2013) Effects of a low volume injury prevention program on the hamstring torque angle relationship. Res Sports Med 21:253–263

    PubMed  Google Scholar 

  • Nakabayashi A, Kamei N, Sunagawa T et al (2013) In vivo bioluminescence imaging of magnetically targeted bone marrow-derived mesenchymal stem cells in skeletal muscle injury model. J Orthop Res 31:754–759

    PubMed  CAS  Google Scholar 

  • Narici MV, Landoni L, Minetti AE (1992) Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur J Appl Physiol Occup Physiol 65:438–444

    PubMed  CAS  Google Scholar 

  • Narici MV, Binzoni T, Hiltbrand E et al (1996) In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol 496(Pt 1):287–297

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nazarenko A, Beltran LS, Bencardino JT (2013) Imaging evaluation of traumatic ligamentous injuries of the ankle and foot. Radiol Clin North Am 51:455–478

    PubMed  Google Scholar 

  • Ohkoshi Y, Inoue C, Yamane S et al (1998) Changes in muscle strength properties caused by harvesting of autogenous semitendinosus tendon for reconstruction of contralateral anterior cruciate ligament. Arthroscopy 14:580–584

    PubMed  CAS  Google Scholar 

  • Olsen L, Scanlan A, MacKay M et al (2004) Strategies for prevention of soccer related injuries: a systematic review. Br J Sports Med 38:89–94

    PubMed  CAS  PubMed Central  Google Scholar 

  • Olubaniyi BO, Bhatnagar G, Vardhanabhuti V et al (2013) Comprehensive musculoskeletal sonographic evaluation of the hand and wrist. J Ultrasound Med 32:901–914

    PubMed  Google Scholar 

  • Ouellette H, Thomas BJ, Nelson E et al (2006) MR imaging of rectus femoris origin injuries. Skeletal Radiol 35:665–672

    PubMed  Google Scholar 

  • Ozcakar L, Carl AB, Tok F, et al (2013) The utility of musculoskeletal ultrasound in rehabilitation settings. Am J Phys Med Rehabil. [Epub ahead of print]

    Google Scholar 

  • Ozturk C, McVeigh ER (2000) Four-dimensional B-spline based motion analysis of tagged MR images: introduction and in vivo validation. Phys Med Biol 45:1683–1702

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pai DR, Thapa M (2013) Musculoskeletal ultrasound of the upper extremity in children. Pediatr Radiol 43(Suppl 1):S48–S54

    PubMed  Google Scholar 

  • Pamuk U, Corekci AA, Arpak A, et al (2013) Quantification using MRI analyses shows complex and widespread mechanical effects of kinesio taping within a whole limb. In: International society of biomechanics, Natal

    Google Scholar 

  • Pollard CD, Sigward SM, Ota S et al (2006) The influence of in-season injury prevention training on lower-extremity kinematics during landing in female soccer players. Clin J Sport Med 16:223–227

    PubMed  Google Scholar 

  • Pollard CD, Sigward SM, Powers CM (2007) Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med 17:38–42

    PubMed  Google Scholar 

  • Rappeport ED, Mehta S, Wieslander SB et al (1996) MR imaging before arthroscopy in knee joint disorders? Acta Radiol 37:602–609

    PubMed  CAS  Google Scholar 

  • Raza K, Lee CY, Pilling D et al (2003) Ultrasound guidance allows accurate needle placement and aspiration from small joints in patients with early inflammatory arthritis. Rheumatology (Oxford) 42:976–979

    CAS  Google Scholar 

  • Rogan S, Wust D, Schwitter T et al (2013) Static stretching of the hamstring muscle for injury prevention in football codes: a systematic review. Asian J Sports Med 4:1–9

    PubMed  PubMed Central  Google Scholar 

  • Rowbotham EL, Grainger AJ (2011) Ultrasound-guided intervention around the hip joint. AJR Am J Roentgenol 197:W122–W127

    PubMed  Google Scholar 

  • Rutherford OM, Jones DA (1992) Measurement of fibre pennation using ultrasound in the human quadriceps in vivo. Eur J Appl Physiol Occup Physiol 65:433–437

    PubMed  CAS  Google Scholar 

  • Shultz SJ, Levine BJ, Nguyen AD et al (2010) A comparison of cyclic variations in anterior knee laxity, genu recurvatum, and general joint laxity across the menstrual cycle. J Orthop Res 28:1411–1417

    PubMed  PubMed Central  Google Scholar 

  • Silder A, Heiderscheit BC, Thelen DG et al (2008) MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skeletal Radiol 37:1101–1109

    PubMed  PubMed Central  Google Scholar 

  • Smeulders MJ, Kreulen M, Hage JJ, et al (2004) Intraoperative measurement of force-length relationship of human forearm muscle. Clin Orthop Relat Res 418:237–241

    Google Scholar 

  • Stojanovic MD, Ostojic SM (2011) Stretching and injury prevention in football: current perspectives. Res Sports Med 19:73–91

    PubMed  Google Scholar 

  • Su F, Hilton JF, Nardo L et al (2013) Cartilage morphology and T1rho and T2 quantification in ACL-reconstructed knees: a 2-year follow-up. Osteoarthritis Cartilage 21:1058–1067

    PubMed  CAS  PubMed Central  Google Scholar 

  • Suter E, Herzog W, Sokolosky J et al (1993) Muscle fiber type distribution as estimated by Cybex testing and by muscle biopsy. Med Sci Sports Exerc 25:363–370

    PubMed  CAS  Google Scholar 

  • Takebayashi S, Takasawa H, Banzai Y et al (1995) Sonographic findings in muscle strain injury: clinical and MR imaging correlation. J Ultrasound Med 14:899–905

    PubMed  CAS  Google Scholar 

  • Tashman S, Collon D, Anderson K et al (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32:975–983

    PubMed  Google Scholar 

  • Tidball JG (1984) Myotendinous junction: morphological changes and mechanical failure associated with muscle cell atrophy. Exp Mol Pathol 40:1–12

    PubMed  CAS  Google Scholar 

  • Tidball JG (1991) Force transmission across muscle cell membranes. J Biomech 24(Suppl 1):43–52

    PubMed  Google Scholar 

  • Tok F, Ozcakar L, De Muynck M et al (2012) Musculoskeletal ultrasound for sports injuries. Eur J Phys Rehabil Med 48:651–663; quiz 707

    PubMed  CAS  Google Scholar 

  • Trotter JA (1993) Functional morphology of force transmission in skeletal muscle. A brief review. Acta Anat (Basel) 146:205–222

    CAS  Google Scholar 

  • Trotter JA, Purslow PP (1992) Functional morphology of the endomysium in series fibered muscles. J Morphol 212:109–122

    PubMed  CAS  Google Scholar 

  • van Drongelen S, Boninger ML, Impink BG et al (2007) Ultrasound imaging of acute biceps tendon changes after wheelchair sports. Arch Phys Med Rehabil 88:381–385

    PubMed  Google Scholar 

  • Verrall GM, Slavotinek JP, Barnes PG et al (2001) Clinical risk factors for hamstring muscle strain injury: a prospective study with correlation of injury by magnetic resonance imaging. Br J Sports Med 35:435–439; discussion 440

    PubMed  CAS  PubMed Central  Google Scholar 

  • Willems ME, Huijing PA (1994) Heterogeneity of mean sarcomere length in different fibres: effects on length range of active force production in rat muscle. Eur J Appl Physiol Occup Physiol 68:489–496

    PubMed  CAS  Google Scholar 

  • Williams S, Whatman C, Hume PA et al (2012) Kinesio taping in treatment and prevention of sports injuries: a meta-analysis of the evidence for its effectiveness. Sports Med 42:153–164

    PubMed  Google Scholar 

  • Winter SL, Challis JH (2008) Reconstruction of the human gastrocnemius force-length curve in vivo: part 1-model-based validation of method. J Appl Biomech 24:197–206

    PubMed  Google Scholar 

  • Withrow TJ, Huston LJ, Wojtys EM et al (2006) The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clin Biomech (Bristol, Avon) 21:977–983

    Google Scholar 

  • Yaman A, Ozturk C, Huijing PA et al (2013) MRI assessment of mechanical interactions between human lower leg muscles in vivo. J Biomech Eng 135:91003

    PubMed  Google Scholar 

  • Yilgor C, Atay OA, Ergen B et al (2014) Comparison of magnetic resonance imaging findings with arthroscopic findings in discoid meniscus. Knee Surg Sports Traumatol Arthrosc 22:268–273

    PubMed  Google Scholar 

  • Yoo JH, Lim BO, Ha M et al (2010) A meta-analysis of the effect of neuromuscular training on the prevention of the anterior cruciate ligament injury in female athletes. Knee Surg Sports Traumatol Arthrosc 18:824–830

    PubMed  Google Scholar 

  • Yucesoy CA (2010) Epimuscular myofascial force transmission implies novel principles for muscular mechanics. Exerc Sport Sci Rev 38:128–134

    PubMed  Google Scholar 

  • Yucesoy CA, Huijing PA (2009) Assessment by finite element modeling indicates that surgical intramuscular aponeurotomy performed closer to the tendon enhances intended acute effects in extramuscularly connected muscle. J Biomech Eng 131:021012

    PubMed  Google Scholar 

  • Yucesoy CA, Huijing PA (2012) Specifically tailored use of the finite element method to study muscular mechanics within the context of fascial integrity: the linked fiber-matrix mesh model. Inter J Multiscale Comput Eng 10:155–170

    Google Scholar 

  • Yucesoy CA, Koopman BH, Huijing PA et al (2002) Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model. J Biomech 35:1253–1262

    PubMed  Google Scholar 

  • Yucesoy CA, Koopman BH, Baan GC et al (2003a) Effects of inter- and extramuscular myofascial force transmission on adjacent synergistic muscles: assessment by experiments and finite-element modeling. J Biomech 36:1797–1811

    PubMed  Google Scholar 

  • Yucesoy CA, Koopman BH, Baan GC et al (2003b) Extramuscular myofascial force transmission: experiments and finite element modeling. Arch Physiol Biochem 111:377–388

    PubMed  CAS  Google Scholar 

  • Yucesoy CA, Maas H, Koopman BH et al (2006) Mechanisms causing effects of muscle position on proximo-distal muscle force differences in extra-muscular myofascial force transmission. Med Eng Phys 28:214–226

    PubMed  Google Scholar 

  • Yucesoy CA, Koopman BH, Grootenboer HJ et al (2007) Finite element modeling of aponeurotomy: altered intramuscular myofascial force transmission yields complex sarcomere length distributions determining acute effects. Biomech Model Mechanobiol 6:227–243

    PubMed  Google Scholar 

  • Yucesoy CA, Koopman BH, Grootenboer HJ et al (2008) Extramuscular myofascial force transmission alters substantially the acute effects of surgical aponeurotomy: assessment by finite element modeling. Biomech Model Mechanobiol 7:175–189

    PubMed  Google Scholar 

  • Yucesoy CA, Ates F, Akgun U et al (2010) Measurement of human gracilis muscle isometric forces as a function of knee angle, intraoperatively. J Biomech 43:2665–2671

    PubMed  Google Scholar 

  • Zeiss J, Saddemi SR, Ebraheim NA (1992) MR imaging of the quadriceps tendon: normal layered configuration and its importance in cases of tendon rupture. AJR Am J Roentgenol 159:1031–1034

    PubMed  CAS  Google Scholar 

  • Zhou H, Novotny JE (2007) Cine phase contrast MRI to measure continuum Lagrangian finite strain fields in contracting skeletal muscle. J Magn Reson Imaging 25:175–184

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filiz Ateş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ateş, F., Heybeli, N., Yucesoy, C.A. (2014). Biomedical Engineering and Orthopedic Sports Medicine. In: Doral, M., Karlsson, J. (eds) Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36801-1_270-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36801-1_270-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36801-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics