CIRP Encyclopedia of Production Engineering

Living Edition
| Editors: The International Academy for Production Engineering, Sami Chatti, Tullio Tolio

Groove Milling

Living reference work entry



Groove milling or slot milling is a machining operation where a milling cutter removes material on 180° of its circumference. The direction of feed is generally perpendicular to the rotational axis of the milling cutter. If the face of the tool has cutting edges along the whole radius (normally one cutting edge crosses the rotational axis of the cutter), the tool can be used for drilling operations and it is possible to machine pockets.

Theory and Application


Groove milling is necessary for various applications. For a keyed joint, for example, it is necessary to produce keyseats, which are slots or pockets. Cooling fins may also be produced by groove milling.

In some cases the resulting dimensions and forms are very important; in other cases the resulting surface finish is more important. For economic reasons the results do not have to be as good as possible, but only as good as necessary. For achieving this, it is essential to...

This is a preview of subscription content, log in to check access.


  1. Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, CambridgeGoogle Scholar
  2. Beitz W, Dubbel H, Küttner K-H (1995) Dubbel – Taschenbuch für den Maschinenbau [Handbook of mechanical engineering], 18th edn. Deutschland, Berlin (in German)Google Scholar
  3. Bronstein IN, Semendjajew KA, Musiol G, Mühlig H (1995) Taschenbuch der Mathematik [Handbook of mathematics], 2nd edn. Verlag Harri Deutsch, Thun, Frankfurt am Main (in German)Google Scholar
  4. Gey C (2002) Prozessauslegung für das Flankenfräsen von Titan [Process design for the flank milling of titanium]. Berichte aus dem IFW. Fortschritt-Berichte VDI Reihe 2 Nr. 625. Universität, IFW, Dr.-Ing, Hannover. Dissertation (in German)Google Scholar
  5. Hann V (1983) Kinetik des Schaftfräsens [Kinetics of end milling]. Berichte aus dem WZL. Fortschritt-Berichte VDI Reihe 2 Nr. 66. Aachen, Laboratorium für Werkzeugmaschinen und Betriebslehre der RWTH Aachen. Dr.-Ing. Dissertation (in German)Google Scholar
  6. Kline WA, DeVor RE, Lindberg JR (1982) The prediction of cutting forces in end milling with application to cornering cuts. Int J Mach Tools Des Res 22(1):7–22CrossRefGoogle Scholar
  7. Klobasa I (2007) Analytische Berechnung der Flankengestalt beim Nutenfräsen [Analytical calculation of the flank shape in slot milling]. Berichte aus dem IFW Band 06/2007. Hrsg. B. Denkena, Hannover : PZH Produktionstechnisches Zentrum GmbH. Hannover, Universität, IFW, Dr.-Ing Dissertation (in German)Google Scholar
  8. Schröder K-H (1974) Ursachen der Fertigungsungenauigkeiten und deren Auswirkungen beim Schaftfräsen [Causes of manufacturing inaccuracies and their effects on end milling]. Aachen, RWTH, Laboratorium für Werkzeugmaschinen und Betriebslehre. Dr.-Ing. Dissertation (in German)Google Scholar
  9. Tönshoff HK, Denkena B (2004) Spanen: grundlagen [Cutting: fundamentals], 2nd edn. Springer, Berlin (in German)Google Scholar

Authors and Affiliations

  1. 1.Renewables CertificationDNV GLHamburgGermany

Section editors and affiliations

  • Garret O'Donnell
    • 1
  1. 1.Trinity College DublinDublinIreland