Ion Beam Machining
Synonyms
Definition
Ion beam machining (IBM) is an important nonconventional manufacturing technology used in micro-/nanofabrication, using a stream of accelerated ions by electrical means in a vacuum chamber to remove, add, or modify the atoms on the surface of the object. Mainly resulting from the energetic collision cascade, the ion beam removed or sputtered atoms from the workpiece by transferring sufficient ions’ energy and momentum to target atoms, and parts of the ions will finally implant into the substrate after losing energy (Machine Tool 2016; https://en.wikipedia.org/wiki/Ion_beam). IBM usually can be functional classified to ion sputtering/etching (remove material), ion sputter coating/ion-induced deposition (add material), and ion implantation (implant modification) (https://en.wikipedia.org/wiki/Ion_beam; Hellborg et al. 2009...
References
- Allen DM, Shore P, Evans RW, Fanara C, O’Brien W, Marson S, O’Neill W (2009) Ion beam, focused ion beam, and plasma discharge machining. CIRP Ann Manuf Technol 58(2):647–662CrossRefGoogle Scholar
- Cui A, Li W, Shen TH, Yao Y, Fenton JC, Peng Y, Liu Z, Zhang J, Gu C (2013) Thermally induced shape modification of free-standing nanostructures for advanced functionalities. Sci Rep 3:2429CrossRefGoogle Scholar
- Fang F, Xu Z (2015) State-of-the-art for nanomanufacturing using ion beam technology. In: Handbook of manufacturing engineering and technology. Springer, London, pp 1279–1315Google Scholar
- Fang FZ, Xu ZW, Hu XT, Wang CT, Luo XG, Fu YQ (2010) Nano-photomask fabrication using focused ion beam direct writing. CIRP Ann Manuf Technol 59(1):543–546CrossRefGoogle Scholar
- Fang FZ, Chen YH, Zhang XD, Hu XT, Zhang GX (2011) Nanometric cutting of single crystal silicon surfaces modified by ion implantation. CIRP Ann Manuf Technol 60(1):527–530CrossRefGoogle Scholar
- Hellborg R, Whitlow HJ, Zhang Y (2009) Ion beams in nanoscience and technology. Springer Science & Business Media, HeidelbergGoogle Scholar
- Hrnčíř T, Lopour F, Zadražil M, Delobbe A, Salord O, Sudraud P (2012) Novel plasma FIB/SEM for high speed failure analysis and real time imaging of large volume removal. In: ISTFA: conference proceedings from the 38th international symposium for testing and failure analysis, 2012, p 26Google Scholar
- Hu X, Xu Z, Li K, Fang F, Wang L (2015) Fabrication of a Au–polystyrene sphere substrate with three-dimensional nanofeatures for surface-enhanced Raman spectroscopy. Appl Surf Sci 355:1168–1174CrossRefGoogle Scholar
- Kempshall BW, Schwarz SM, Prenitzer BI, Giannuzzi LA, Irwin RB, Stevie FA (2001) Ion channeling effects on the focused ion beam milling of Cu. J Vac Sci Technol B 19(3):749–754CrossRefGoogle Scholar
- Lehtinen O, Kotakoski J, Krasheninnikov AV, Tolvanen A, Nordlund K, Keinonen J (2010) Effects of ion bombardment on a two-dimensional target: atomistic simulations of graphene irradiation. Phys Rev B 81(15):153401CrossRefGoogle Scholar
- Libertino S, La Magna A (2009) Damage formation and evolution in ion-implanted crystalline Si. In: Materials science with ion beams. Springer, Berlin/Heidelberg, pp 147–212CrossRefGoogle Scholar
- Machine Tool (2016) In Encyclopædia Britannica. Retrieved from https://www.britannica.com/technology/machine-tool/Electrical-discharge-machining-EDM
- Melli M, Polyakov A, Gargas D, Huynh C, Scipioni L, Bao W, Weber-Bargioni A (2013) Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography. Nano Lett 13(6):2687–2691CrossRefGoogle Scholar
- Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11(4):287CrossRefGoogle Scholar
- Smith R, Harrison DE Jr, Garrison BJ (1989) keV particle bombardment of semiconductors: a molecular-dynamics simulation. Phys Rev B 40(1):93CrossRefGoogle Scholar
- Sun J, Luo X, Ritchie J, Hrncir T (2012) A predictive divergence compensation approach for the fabrication of three-dimensional microstructures using focused ion beam machining. Proc Inst Mech Eng B J Eng Manuf 226(2):229–238CrossRefGoogle Scholar
- Tong Z, Luo X (2015) Investigation of focused ion beam induced damage in single crystal diamond tools. Appl Surf Sci 347:727–735CrossRefGoogle Scholar
- Tseng AA (2004) Recent developments in micromilling using focused ion beam technology. J Micromech Microeng 14(4):R15CrossRefGoogle Scholar
- Volkert CA, Minor AM (2007) Focused ion beam microscopy and micromachining. MRS Bull 32(05):389–399CrossRefGoogle Scholar
- Xiao YJ, Fang FZ, Xu ZW, Hu XT (2015) Annealing recovery of nanoscale silicon surface damage caused by Ga focused ion beam. Appl Surf Sci 343:56–69CrossRefGoogle Scholar
- Xie X, Li S (2015) Ion beam figuring technology. In: Handbook of manufacturing engineering and technology. Springer, London, pp 1343–1390Google Scholar
- Xu ZW, Fang FZ, Fu YQ, Zhang SJ, Han T, Li JM (2009) Fabrication of micro/nano-structures using focused ion beam implantation and XeF2 gas-assisted etching. J Micromech Microeng 19(5):054003CrossRefGoogle Scholar
- Xu ZW, Fang FZ, Zhang SJ, Zhang XD, Hu XT, Fu YQ, Li L (2010) Fabrication of micro DOE using micro tools shaped with focused ion beam. Opt Express 18(8):8025–8032CrossRefGoogle Scholar
- Xu Z, Fang F, Gao H, Zhu Y, Wu W, Weckenmann A (2012) Nano fabrication of star structure for precision metrology developed by focused ion beam direct writing. CIRP Ann Manuf Technol 61(1):511–514CrossRefGoogle Scholar
- Xu ZW, Fang F, Zeng G (2015) Focused ion beam nanofabrication technology. In: Handbook of manufacturing engineering and technology. Springer, London, pp 1391–1423Google Scholar
- Ziegler JF (2004) SRIM-2003. Nucl Instrum Methods Phys Res, Sect B 219:1027–1036CrossRefGoogle Scholar