Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Membrane Transport Proteins: The Amino Acid-Polyamine-Organocation (APC) Superfamily

  • Alexander D. Cameron
  • Scott M. Jackson
  • Antonio N. Calabrese
  • Oliver Beckstein
  • Peter J. F. HendersonEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_772-1

Definition

The proteins listed below belong to the amino acid-polyamine-organocation (APC) superfamily as defined by Wong et al. (2012) and Vastermark and Saier (2014). Structurally, this superfamily can be divided into two groups: the LeuT superfamily (Krishnamurthy et al. 2009), also known as the five-helix inverted repeat (5HIR) transporter superfamily (Adelman et al. 2011), and transporters with a seven-helix inverted repeat. These latter transporters are more distantly related.

Introduction

The general transport reactions of this superfamily (Fig. 1) can be represented as follows:
  • Substrate (out) + nH+ (out) → Substrate (in) + nH+ (in)

  • Substrate (out) + nNa+ (out) → Substrate (in) + nNa+ (in)

  • Substrate-1 (out) + Substrate-2 (in) → Substrate-1 (in) + Substrate-2 (out)

  • Substrate-(out) ↔ Substrate-(in)

This is a preview of subscription content, log in to check access.

References

  1. Abramson J, Wright EM (2009) Structure and function of Na+-symporters with inverted repeats. Curr Opin Struct Biol 19:425–432CrossRefGoogle Scholar
  2. Adelman JL, Dale AL, Zwier MC, Bhatt D, Chong LT, Zuckerman DM, Grabe M (2011) Simulations of the alternating access mechanism of the sodium symporter Mhp1. Biophys J 101:2399–2407CrossRefGoogle Scholar
  3. Alguel Y, Amillis S, Leung J, Lambrinidis G, Capaldi S, Scull NJ, Craven G, Iwata S, Armstrong A, Mikros E, Diallinas G, Cameron AD, Byrne B (2016) Structure of eukaryotic purine/H(+) symporter UapA suggests a role for homodimerization in transport activity. Nat Commun 7:11336CrossRefGoogle Scholar
  4. Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, Abe Y, Hino T, Ikeda-Suno C, Kuma H, Kang D, Murata T, Hamakubo T, Cameron A, Kobayashi T, Hamasaki N, Iwata S (2015) Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 350(6261):680–684CrossRefGoogle Scholar
  5. Boudker O, Verdon G (2010) Structural perspectives on secondary active transporters. Trends Pharmacol Sci 31:418–426CrossRefGoogle Scholar
  6. Calabrese AN, Jackson SM, Jones LN, Beckstein O, Heinkel F, Gsponer J, Sans M, Kokkinidou M, Pearson AR, Radford SE, Ashcroft AE, Henderson PJF, Topological dissection of the membrane transport protein Mhp1 derived from cysteine accessibility and mass spectrometry (2017) Anal Chem 89:8844–8852CrossRefGoogle Scholar
  7. Chang AB, Lin R, Studley WK, Tran CV, Saier MH Jr (2004) Phylogeny as a guide to structure and function of membrane transport proteins. Mol Membr Biol 21:171–181CrossRefGoogle Scholar
  8. Coleman JA, Green EM, Gouaux E (2016) X-ray structures and mechanism of the human serotonin transporter. Nature 532(7599):334–339CrossRefGoogle Scholar
  9. Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+-sugar symport. Science 321:810–814CrossRefGoogle Scholar
  10. Fang Y, Jayaram H, Shane T, Kolmakova-Partensky L, Wu F, Williams C, Xiong Y, Miller C (2009) Structure of a prokaryotic virtual proton pump at 3.2 a resolution. Nature 460:1040–1043CrossRefGoogle Scholar
  11. Forrest LR, Rudnick G (2009) The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology 24:377–386CrossRefGoogle Scholar
  12. Gao X, Lu F, Zhou L, Dang S, Sun L, Li X, Wang J, Shi Y (2009) Structure and mechanism of an amino acid antiporter. Science 324:1565–1568CrossRefGoogle Scholar
  13. Geertsma ER, Chang YN, Shaik FR, Neldner Y, Pardon E, Steyaert J, Dutzler R (2015) Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 22(10):803–808CrossRefGoogle Scholar
  14. Kowalczyk L, Ratera M, Paladino A, Bartoccioni P, Errasti-Murugarren EV, Portella G, Bial S, Zorzano A, Fita I, Orozco M, Carpena X, Vázquez-Ibar JL, Palacín M (2011) Molecular basis of substrate-induced permeation by an amino acid antiporter. Proc Natl Acad Sci USA 108:3935–3940CrossRefGoogle Scholar
  15. Krishnamurthy H, Gouaux E (2012) X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481:469–474CrossRefGoogle Scholar
  16. Krishnamurthy H, Piscitelli CL, Gouaux E (2009) Unlocking the molecular secrets of sodium-coupled transporters. Nature 459:347–355CrossRefGoogle Scholar
  17. Lolkema JS, Slotbloom DJ (2005) Sequence and hydropathy profile analysis of two classes of secondary transporters. Mol Membr Biol 22:177–189CrossRefGoogle Scholar
  18. Lu F, Li S, Jiang Y, Jiang J, Fan H, Lu G, Deng D, Dang S, Zhang X, Wang J, Yan N (2011) Structure and mechanism of the uracil transporter UraA. Nature 472:243–246CrossRefGoogle Scholar
  19. Penmatsa A, Wang KH, Gouaux E (2015) X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nat Struct Mol Biol 22(6):506–508CrossRefGoogle Scholar
  20. Perez C, Koshy C, Yilditz O, Ziegler C (2012) Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 490:126–130CrossRefGoogle Scholar
  21. Ren Q, Chen K, Paulsen IT (2007) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35:D274–D279CrossRefGoogle Scholar
  22. Ressl S, Terwisscha van Scheltinga AC, Vonrhein C, Ott V, Ziegler C (2009) Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458:47–52CrossRefGoogle Scholar
  23. Saier MH, Tran CV, Barabote RD (2006) TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res 34(Database issue):D181–D186CrossRefGoogle Scholar
  24. Saier MH, Yen MR, Noto K, Tamang DG, Elkan C (2009) The transporter classification database: recent advances. Nucleic Acids Res 37:D274–D278CrossRefGoogle Scholar
  25. Schulze S, Köster S, Geldmacher U, Terwisscha van Scheltinga AC, Kühlbrandt W (2010) Structural basis of Na(+)-independent and cooperative substrate/product antiport in CaiT. Nature 467:233–236CrossRefGoogle Scholar
  26. Shaffer PL, Goehring A, Shankaranarayanan A, Gouaux E (2009) Structure and mechanism of a Na+-independent amino acid transporter. Science 325:1010–1014CrossRefGoogle Scholar
  27. Shimamura T, Weyand S, Beckstein O, Rutherford NG, Hadden JM, Sharples D, Sansom MPS, Iwata S, Henderson PJF, Cameron AD (2010) Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter, Mhp1. Science 328:470–473CrossRefGoogle Scholar
  28. Simmons KJ, Jackson SM, Brueckner F, Patching SG, Beckstein O, Ivanova E, GengT WS, Drew D, Lanigan J, Sharples DJ, Sansom MS, Iwata S, Fishwick CW, Johnson AP, Cameron AD, Henderson PJ (2014) Molecular mechanism of ligand recognition by membrane transport protein, Mhp1. EMBO J 33:1831–1844CrossRefGoogle Scholar
  29. Tang L, Bai L, Wang W-H, Jiang T (2010) Crystal structure of the carnitine transporter and insights into the antiport mechanism. Nat Struct Mol Biol 17:492–496CrossRefGoogle Scholar
  30. Vastermark A, Saier MH Jr (2014) Evolutionary relationship between 5+5 and 7+7 inverted repeat folds within the amino acid-polyamine-organocation superfamily. Proteins 82:336–346CrossRefGoogle Scholar
  31. Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O’Reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PCJ, Iwata S, Henderson PJF, Cameron AD (2008) Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322:709–713CrossRefGoogle Scholar
  32. Weyand S, Ma P, Beckstein O, Baldwin J, Jackson S, Suzuki S, Shimamura T, Sansom MSP, Iwata S, Cameron AD, Baldwin SA, Henderson PJF (2010) The nucleobase-cation-symport-1 family of membrane transport proteins. In: Messerschmidt A (ed) Handbook of metalloproteins. Wiley, Chichester, pp 848–864Google Scholar
  33. Weyand S, Shimamura T, Beckstein O, Sansom MPS, Iwata S, Henderson PJF, Cameron AD (2011) The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1. J Synchrotron Radiat 18:20–23CrossRefGoogle Scholar
  34. Wong FH, Chen JS, Reddy V, Day JL, Shlykov MA, Wakabayashi ST, Saier MH Jr (2012) The amino acid-polyamine-organocation superfamily. J Mol Microbiol Biotechnol 22(2):105–113CrossRefGoogle Scholar
  35. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2019

Authors and Affiliations

  • Alexander D. Cameron
    • 1
  • Scott M. Jackson
    • 2
  • Antonio N. Calabrese
    • 3
  • Oliver Beckstein
    • 4
  • Peter J. F. Henderson
    • 3
    Email author
  1. 1.School of Life SciencesUniversity of WarwickCoventryUK
  2. 2.Institute of Molecular Biology and Biophysics ETH ZurichZurichSwitzerland
  3. 3.Astbury Centre for Structural Molecular Biology and School of BioMedical SciencesUniversity of LeedsLeedsUK
  4. 4.Center for Biological Physics and Department of PhysicsArizona State UniversityTempeUSA

Section editors and affiliations

  • Peter J. F. Henderson
    • 1
  1. 1.Astbury Centre for Structural Molecular Biology and School of BioMedical SciencesUniversity of LeedsLeedsUK