Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Droplet Networks, from Lipid Bilayers to Synthetic Tissues

  • Michael J. BoothEmail author
  • Vanessa Restrepo Schild
  • Florence G. Downs
  • Hagan Bayley
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_567-1


An aqueous droplet in a solution of lipid in oil acquires a lipid monolayer coat. When two such droplets are brought together, they adhere through the formation of a droplet interface bilayer (DIB) (Fig. 1a). A high contact angle at the interface (Fig. 1a) indicates a strong interaction between the droplets (Thiam et al. 2012). DIBs in droplet pairs were first developed as a means to simplify and miniaturize planar bilayer experiments in which transmembrane channels and pores are characterized by ionic current recording (Bayley et al. 2008). They have additional technical advantages, for example, bilayers with lipid asymmetry can be formed reliably (Hwang et al. 2008). Droplet-hydrogel bilayers (DHB) allow the simultaneous recording of current and fluorescence (Weatherill and Wallace 2015).
This is a preview of subscription content, log in to check access.


  1. Aghdaei S, Sandison ME, Zagnoni M et al (2008) Formation of artificial lipid bilayers using droplet dielectrophoresis. Lab Chip 8:1617–1620CrossRefGoogle Scholar
  2. Bai Y, He X, Liu D et al (2010) A double droplet trap system for studying mass transport across a droplet-droplet interface. Lab Chip 10:1281–1285CrossRefGoogle Scholar
  3. Barlow NE, Smpokou E, Friddin MS et al (2017) Engineering plant membranes using droplet interface bilayers. Biomicrofluidics 11:24107CrossRefGoogle Scholar
  4. Baxani DK, Morgan AJ, Jamieson WD et al (2016) Bilayer networks within a hydrogel shell: a robust chassis for artificial cells and a platform for membrane studies. Angew Chem Int Ed Engl 55:14240–14245CrossRefGoogle Scholar
  5. Bayley H, Cronin B, Heron A et al (2008) Droplet interface bilayers. Mol BioSyst 4:1191–1208CrossRefGoogle Scholar
  6. Bayoumi M, Bayley H, Maglia G, Sapra KT (2017) Multi-compartment encapsulation of droplets and droplet networks in hydrogel as a model for artificial cells. Sci Rep 7:45167CrossRefGoogle Scholar
  7. Booth MJ, Restrepo Schild V, Graham AD et al (2016) Light-activated communication in synthetic tissues. Sci Adv 2:e1600056CrossRefGoogle Scholar
  8. Booth MJ, Restrepo Schild V, Box SJ, Bayley H (2017a) Light-patterning of synthetic tissues with single droplet resolution. Sci Rep 7:9315CrossRefGoogle Scholar
  9. Booth MJ, Restrepo Schild V, Downs FG, Bayley H (2017b) Functional aqueous droplet networks. Mol BioSyst 13:1658–1691CrossRefGoogle Scholar
  10. Boreyko JB, Polizos G, Datskos PG et al (2014) Air-stable droplet interface bilayers on oil-infused surfaces. Proc Natl Acad Sci U S A 111:7588–7593CrossRefGoogle Scholar
  11. Carreras P, Law RV, Brooks N et al (2014) Microfluidic generation of droplet interface bilayer networks incorporating real-time size sorting in linear and non-linear configurations. Biomicrofluidics 8:54113CrossRefGoogle Scholar
  12. Carreras P, Elani Y, Law RV et al (2015) A microfluidic platform for size-dependent generation of droplet interface bilayer networks on rails. Biomicrofluidics 9:64121CrossRefGoogle Scholar
  13. Castell OK, Berridge J, Wallace MI (2012) Quantification of membrane protein inhibition by optical ion flux in a droplet interface bilayer array. Angew Chem Int Ed Engl 51:3134–3138CrossRefGoogle Scholar
  14. Challita EJ, Najem JS, Freeman EC, Leo DJ (2017) A 3D printing method for droplet-based biomolecular materials. In: Proceedings of SPIE 10167, nanosensors, biosensors, Info-Tech sensors 3D systems, Portland, Oregon, vol 10167Google Scholar
  15. Czekalska MA, Kaminski TS, Jakiela S et al (2015) A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings. Lab Chip 15:541–548CrossRefGoogle Scholar
  16. Deng NN, Yelleswarapu M, Huck WT (2016) Monodisperse uni- and multicompartment liposomes. J Am Chem Soc 138:7584–7591CrossRefGoogle Scholar
  17. Devaux PF (1991) Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30:1163–1173CrossRefGoogle Scholar
  18. Ding W, Palaiokostas M, Wang W, Orsi M (2015) Effects of lipid composition on bilayer membranes quantified by all-atom molecular dynamics. J Phys Chem B 119:15263–15274CrossRefGoogle Scholar
  19. Dixit SS, Kim H, Vasilyev A et al (2010) Light-driven formation and rupture of droplet bilayers. Langmuir 26:6193–6200CrossRefGoogle Scholar
  20. Dixit SS, Pincus A, Guo B, Faris GW (2012) Droplet shape analysis and permeability studies in droplet lipid bilayers. Langmuir 28:7442–7451CrossRefGoogle Scholar
  21. Elani Y, deMello AJ, Niu X, Ces O (2012) Novel technologies for the formation of 2-D and 3-D droplet interface bilayer networks. Lab Chip 12:3514–3520CrossRefGoogle Scholar
  22. Elani Y, Gee A, Law RV, Ces O (2013) Engineering multi-compartment vesicle networks. Chem Sci 4:3332–3338CrossRefGoogle Scholar
  23. Elani Y, Law RV, Ces O (2014) Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat Commun 5:5305CrossRefGoogle Scholar
  24. Elani Y, Law RV, Ces O (2015) Protein synthesis in artificial cells: using compartmentalisation for spatial organisation in vesicle bioreactors. Phys Chem Chem Phys 17:15534–15537CrossRefGoogle Scholar
  25. Elani Y, Solvas XC, Edel JB et al (2016) Microfluidic generation of encapsulated droplet interface bilayer networks (multisomes) and their use as cell-like reactors. Chem Commun 52:5961–5964CrossRefGoogle Scholar
  26. El-Arabi AM, Salazar CS, Schmidt JJ (2012) Ion channel drug potency assay with an artificial bilayer chip. Lab Chip 12:2409–2413CrossRefGoogle Scholar
  27. Findlay HE, Harris NJ, Booth PJ (2016) In vitro synthesis of a Major Facilitator Transporter for specific active transport across Droplet Interface Bilayers. Sci Rep 6:39349CrossRefGoogle Scholar
  28. Friddin MS, Bolognesi G, Elani Y et al (2016) Optically assembled droplet interface bilayer (OptiDIB) networks from cell-sized microdroplets. Soft Matter 12:7731–7734CrossRefGoogle Scholar
  29. Graham AD, Olof SN, Burke MJ et al (2017) High-resolution patterned cellular constructs by droplet-based 3D printing. Sci Rep 7:7004CrossRefGoogle Scholar
  30. Guzowski J, Gizynski K, Gorecki J, Garstecki P (2016) Microfluidic platform for reproducible self-assembly of chemically communicating droplet networks with predesigned number and type of the communicating compartments. Lab Chip 16:764–772CrossRefGoogle Scholar
  31. Helm CA, Israelachvili JN, McGuiggan PM (1992) Role of hydrophobic forces in bilayer adhesion and fusion. Biochemistry 31:1794–1805CrossRefGoogle Scholar
  32. Holden MA, Needham D, Bayley H (2007) Functional bionetworks from nanoliter water droplets. J Am Chem Soc 129:8650–8655CrossRefGoogle Scholar
  33. Hwang WL, Holden MA, White S, Bayley H (2007) Electrical behavior of droplet interface bilayer networks: experimental analysis and modeling. J Am Chem Soc 129:11854–11864CrossRefGoogle Scholar
  34. Hwang WL, Chen M, Cronin B et al (2008) Asymmetric droplet interface bilayers. J Am Chem Soc 130:5878–5879CrossRefGoogle Scholar
  35. Jones G, King PH, Morgan H et al (2015) Autonomous droplet architectures. Artif Life 21:195–204CrossRefGoogle Scholar
  36. Kim S, Turker MS, Chi EY et al (1983) Preparation of multivesicular liposomes. Biochim Biophys Acta 728:339–348CrossRefGoogle Scholar
  37. King PH, Jones G, Morgan H et al (2014) Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds. Lab Chip 14:722–729CrossRefGoogle Scholar
  38. Kong L, Almond A, Bayley H, Davis BG (2016) Chemical polyglycosylation and nanolitre detection enables single-molecule recapitulation of bacterial sugar export. Nat Chem 8:461–469CrossRefGoogle Scholar
  39. Lein M, deRonde BM, Sgolastra F et al (2015) Protein transport across membranes: comparison between lysine and guanidinium-rich carriers. Biochim Biophys Acta 1848:2980–2984CrossRefGoogle Scholar
  40. Maglia G, Heron AJ, Hwang WL et al (2009) Droplet networks with incorporated protein diodes show collective properties. Nat Nanotechnol 4:437–440CrossRefGoogle Scholar
  41. Maglia G, Heron AJ, Stoddart D et al (2010) Analysis of single nucleic acid molecules with protein nanopores. Methods Enzymol 475:591–623CrossRefGoogle Scholar
  42. Mantri S, Sapra KT, Cheley S et al (2013) An engineered dimeric protein pore that spans adjacent lipid bilayers. Nat Commun 4:1725CrossRefGoogle Scholar
  43. Poulin P, Bibette J (1998) Adhesion of water droplets in organic solvent. Langmuir 14:6341–6343CrossRefGoogle Scholar
  44. Poulos JL, Nelson WC, Jeon TJ et al (2009) Electrowetting on dielectric-based microfluidics for integrated lipid bilayer formation and measurement. Appl Phys Lett 95:13706CrossRefGoogle Scholar
  45. Punnamaraju S, You H, Steckl AJ (2012) Triggered release of molecules across droplet interface bilayer lipid membranes using photopolymerizable lipids. Langmuir 28:7657–7664CrossRefGoogle Scholar
  46. Restrepo Schild V, Booth MJ, Box SJ et al (2017) Light-patterned current generation in a droplet bilayer array. Sci Rep 7:46585CrossRefGoogle Scholar
  47. Sapra KT, Bayley H (2012) Lipid-coated hydrogel shapes as components of electrical circuits and mechanical devices. Sci Rep 2:848CrossRefGoogle Scholar
  48. Sarles SA, Leo DJ (2010a) Regulated attachment method for reconstituting lipid bilayers of prescribed size within flexible substrates. Anal Chem 82:959–966CrossRefGoogle Scholar
  49. Sarles SA, Leo DJ (2010b) Physical encapsulation of droplet interface bilayers for durable, portable biomolecular networks. Lab Chip 10:710–717CrossRefGoogle Scholar
  50. Sarles SA, Stiltner LJ, Williams CB, Leo DJ (2010) Bilayer formation between lipid-encased hydrogels contained in solid substrates. ACS Appl Mater Interfaces 2:3654–3663CrossRefGoogle Scholar
  51. Schlicht B, Zagnoni M (2015) Droplet-interface-bilayer assays in microfluidic passive networks. Sci Rep 5:9951CrossRefGoogle Scholar
  52. Stanley CE, Elvira KS, Niu XZ et al (2010) A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation. Chem Commun 46:1620–1622CrossRefGoogle Scholar
  53. Syeda R, Holden MA, Hwang WL, Bayley H (2008) Screening blockers against a potassium channel with a droplet interface bilayer array. J Am Chem Soc 130:15543–15548CrossRefGoogle Scholar
  54. Tamaddoni N, Sarles SA (2016) Toward cell-inspired materials that feel: measurements and modeling of mechanotransduction in droplet-based, multi-membrane arrays. Bioinspir Biomim 11:36008CrossRefGoogle Scholar
  55. Tamaddoni N, Freeman EC, Sarles SA (2015) Sensitivity and directionality of lipid bilayer mechanotransduction studied using a revised, highly durable membrane-based hair cell sensor. Smart Mater Struct 24:65014CrossRefGoogle Scholar
  56. Tamaddoni N, Taylor G, Hepburn T et al (2016) Reversible, voltage-activated formation of biomimetic membranes between triblock copolymer-coated aqueous droplets in good solvents. Soft Matter 12:5096–5109CrossRefGoogle Scholar
  57. Taylor GJ, Sarles SA (2015) Heating-enabled formation of droplet interface bilayers using Escherichia coli total lipid extract. Langmuir 31:325–337CrossRefGoogle Scholar
  58. Thiam AR, Bremond N, Bibette J (2011) Adhesive emulsion bilayers under an electric field: from unzipping to fusion. Phys Rev Lett 107:68301CrossRefGoogle Scholar
  59. Thiam AR, Bremond N, Bibette J (2012) From stability to permeability of adhesive emulsion bilayers. Langmuir 28:6291–6298CrossRefGoogle Scholar
  60. Thutupalli S, Herminghaus S (2013) Tuning active emulsion dynamics via surfactants and topology. Eur Phys J E Soft Matter 36:91CrossRefGoogle Scholar
  61. Tonooka T, Sato K, Osaki T et al (2014) Lipid bilayers on a picoliter microdroplet array for rapid fluorescence detection of membrane transport. Small 10:3275–3282CrossRefGoogle Scholar
  62. Tsuji Y, Kawano R, Osaki T et al (2013) Droplet split-and-contact method for high-throughput transmembrane electrical recording. Anal Chem 85:10913–10919CrossRefGoogle Scholar
  63. Venkatesan GA, Sarles SA (2016) Droplet immobilization within a polymeric organogel improves lipid bilayer durability and portability. Lab Chip 16:2116–2125CrossRefGoogle Scholar
  64. Villar G, Heron AJ, Bayley H (2011) Formation of droplet networks that function in aqueous environments. Nat Nanotechnol 6:803–808CrossRefGoogle Scholar
  65. Villar G, Graham AD, Bayley H (2013) A tissue-like printed material. Science 340:48–52CrossRefGoogle Scholar
  66. Wauer T, Gerlach H, Mantri S et al (2014) Construction and manipulation of functional three-dimensional droplet networks. ACS Nano 8:771–779CrossRefGoogle Scholar
  67. Weatherill EE, Wallace MI (2015) Combining single-molecule imaging and single-channel electrophysiology. J Mol Biol 427:146–157CrossRefGoogle Scholar
  68. Wood C, Williams C, Waldron GJ (2004) Patch clamping by numbers. Drug Discov Today 9:434–441CrossRefGoogle Scholar
  69. Yasuga H, Kawano R, Takinoue M, et al (2013) Droplet-box: a platform for biological-nanopore-based logical operation using lipid-coated droplet network. In: 17th International conference on miniaturized Systems for Chemistry and life Sciences MicroTAS 2013, Freiburg, Germany, vol 3, pp 1914–1916Google Scholar
  70. Yasuga H, Kawano R, Takinoue M et al (2016) Logic gate operation by DNA translocation through biological nanopores. PLoS One 11:e0149667CrossRefGoogle Scholar
  71. Zagnoni M, Cooper JM (2010) A microdroplet-based shift register. Lab Chip 10:3069–3073CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2019

Authors and Affiliations

  • Michael J. Booth
    • 1
    Email author
  • Vanessa Restrepo Schild
    • 1
  • Florence G. Downs
    • 1
  • Hagan Bayley
    • 1
  1. 1.Department of ChemistryChemistry Research Laboratory, University of OxfordOxfordUK

Section editors and affiliations

  • John Seddon
    • 1
  1. 1.Membrane Biophysics Platform, Department of Chemistry and Institute of Chemical BiologyImperial College LondonLondonUK