Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Supported Lipid Bilayers

  • Burkhard BechingerEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_566-1



Supported lipid bilayers are used in many biophysical investigations as well as in analytical devices. They are mechanically stable with defined properties, and they can be interfaced with means to monitor electric, mechanical, or diffusion-related properties (“ Lipid Lateral Diffusion”). Furthermore, supported lipid bilayers have been designed to exhibit well-defined shapes and curvature, which can be planar, spherical, or cylindrical depending on the nature of the support. They have been prepared as single bilayer deposits (Brian and McConnell 1984) or as stacks of lipid bilayers where only the outermost membranes are in contact with the solid support (Fig. 1) (Powers and Clark 1975). In the latter case, the mechanical alignment of the membrane in direct contact with the mechanical support is transmitted throughout the stack through the interaction between subsequent bilayers (Fig. 1e) (Aisenbrey et al. 2010). Supported lipid membranes come in many...
This is a preview of subscription content, log in to check access.


  1. Aisenbrey C, Bertani P, Bechinger B (2010) Solid-state NMR investigations of membrane-associated antimicrobial peptides. In: Guiliani A, Rinaldi AC (eds) Antimicrobial peptides. Humana Press/Springer, New York, pp 209–343CrossRefGoogle Scholar
  2. Alessandrini A, Facci P (2014) Phase transitions in supported lipid bilayers studied by AFM. Soft Matter 10:7145–7164CrossRefGoogle Scholar
  3. Arkin IT (2006) Isotope-edited IR spectroscopy for the study of membrane proteins. Curr Opin Chem Biol 10:394–401CrossRefGoogle Scholar
  4. Auge S, Mazarguil H, Tropis M, Milon A (1997) Preparation of oriented lipid bilayer on ultrathin polymers for solid-state nmr analyses of peptide-membrane interactions. J Magn Reson 124:455–458CrossRefGoogle Scholar
  5. Bally M, Bailey K, Sugihara K, Grieshaber D, Voros J, Stadler B (2010) Liposome and lipid bilayer arrays towards biosensing applications. Small 6:2481–2497CrossRefGoogle Scholar
  6. Bechinger B, Resende JM, Aisenbrey C (2011) The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: established concepts and novel developments. Biophys Chem 153:115–125CrossRefGoogle Scholar
  7. Brian AA, McConnell HM (1984) Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci U S A 81:6159–6163CrossRefGoogle Scholar
  8. Butler KS, Durfee PN, Theron C, Ashley CE, Carnes EC, Brinker CJ (2016) Protocells: modular mesoporous silica nanoparticle-supported lipid bilayers for drug delivery. Small 12:2173–2185CrossRefGoogle Scholar
  9. Clifton LA, Holt SA, Hughes AV, Daulton EL, Arunmanee W, Heinrich F, Khalid S, Jefferies D, Charlton TR, Webster JRP, Kinane CJ, Lakey JH (2015) An accurate in vitro model of the E. coli envelope. Angew Chem 127:12120–12123CrossRefGoogle Scholar
  10. Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528CrossRefGoogle Scholar
  11. del Rio Martinez JM, Zaitseva E, Petersen S, Baaken G, Behrends JC (2015) Automated formation of lipid membrane microarrays for ionic single-molecule sensing with protein nanopores. Small 11:119–125CrossRefGoogle Scholar
  12. Hardy GJ, Nayak R, Zauscher S (2013) Model cell membranes: techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Curr Opin Colloid Interface Sci 18:448–458CrossRefGoogle Scholar
  13. Hartman KL, Kim S, Kim K, Nam JM (2015) Supported lipid bilayers as dynamic platforms for tethered particles. Nanoscale 7:66–76CrossRefGoogle Scholar
  14. Ivanov D, Dubreuil N, Raussens V, Ruysschaert JM, Goormaghtigh E (2004) Evaluation of the ordering of membranes in multilayer stacks built on an ATR-FTIR germanium crystal with atomic force microscopy: the case of the H(+), K(+)-ATPase-containing gastric tubulovesicle membranes. Biophys J 87:1307–1315CrossRefGoogle Scholar
  15. Janshoff A, Steinem C (2015) Mechanics of lipid bilayers: what do we learn from pore-spanning membranes? Biochim Biophys Acta 1853:2977–2983CrossRefGoogle Scholar
  16. Kam LC (2009) Capturing the nanoscale complexity of cellular membranes in supported lipid bilayers. J Struct Biol 168:3–10CrossRefGoogle Scholar
  17. Kiessling V, Wan C, Tamm LK (2009) Domain coupling in asymmetric lipid bilayers. Biochim Biophys Acta 1788:64–71CrossRefGoogle Scholar
  18. Kiessling V, Yang ST, Tamm LK (2015) Supported lipid bilayers as models for studying membrane domains. Curr Top Membr 75:1–23CrossRefGoogle Scholar
  19. Kocer A, Tauk L, Dejardin P (2012) Nanopore sensors: from hybrid to abiotic systems. Biosens Bioelectron 38:1–10CrossRefGoogle Scholar
  20. Li E, Merzlyakov M, Lin J, Searson P, Hristova K (2009) Utility of surface-supported bilayers in studies of transmembrane helix dimerization. J Struct Biol 168:53–60CrossRefGoogle Scholar
  21. Lind TK, Cardenas M (2016) Understanding the formation of supported lipid bilayers via vesicle fusion-A case that exemplifies the need for the complementary method approach (Review). Biointerphases 11:020801CrossRefGoogle Scholar
  22. Loose M, Schwille P (2009) Biomimetic membrane systems to study cellular organization. J Struct Biol 168:143–151CrossRefGoogle Scholar
  23. Martin I, Goormaghtigh E, Ruysschaert JM (2003) Attenuated total reflection IR spectroscopy as a tool to investigate the orientation and tertiary structure changes in fusion proteins. Biochim Biophys Acta 1614:97–103CrossRefGoogle Scholar
  24. Naumann RL, Knoll W (2008) Protein tethered lipid bilayer: an alternative mimic of the biological membrane. Biointerphases 3:FA101CrossRefGoogle Scholar
  25. Oliver AE, Parikh AN (2010) Templating membrane assembly, structure, and dynamics using engineered interfaces. Biochim Biophys Acta 1798:839–850CrossRefGoogle Scholar
  26. Pace HP, Hannestad JK, Armonious A, Adamo M, Agnarsson B, Gunnarsson A, Micciulla S, Sjövall P, Gerelli Y, Höök F (2018) Structure and composition of native membrane derived polymer-supported lipid bilayers. Anal Chem 90:13065–13072CrossRefGoogle Scholar
  27. Perez JB, Segura JM, Abankwa D, Piguet J, Martinez KL, Vogel H (2006) Monitoring the diffusion of single heterotrimeric G proteins in supported cell-membrane sheets reveals their partitioning into microdomains. J Mol Biol 363:918–930CrossRefGoogle Scholar
  28. Picas L, Milhiet PE, Hernandez-Borrell J (2012) Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chem Phys Lipids 165:845–860CrossRefGoogle Scholar
  29. Powers L, Clark NA (1975) Preparation of large monodomain phospholipid bilayer smectic liquid crystals. Proc Natl Acad Sci U S A 72:840–843CrossRefGoogle Scholar
  30. Reimhult E, Kumar K (2008) Membrane biosensor platforms using nano- and microporous supports. Trends Biotechnol 26:82–89CrossRefGoogle Scholar
  31. Richter RP, Berat R, Brisson AR (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22:3497–3505CrossRefGoogle Scholar
  32. Salnikov E, Rosay M, Pawsey S, Ouari O, Tordo P, Bechinger B (2010) Solid-state NMR spectroscopy of oriented membrane polypeptides at 100 K with signal enhancement by dynamic nuclear polarization. J Am Chem Soc 132:5940–5941CrossRefGoogle Scholar
  33. Salnikov E, Sarrouj H, Reiter C, Aisenbrey C, Purea A, Aussenac F, Ouari O, Tordo P, Fedoenko I, Engelke F, Bechinger B (2015) Solid-state NMR/dynamic nuclear polarization of planar supported lipid bilayers. J Phys Chem B 119:14574–14583CrossRefGoogle Scholar
  34. Salnikov ES, Aisenbrey C, Aussenac F, Ouari O, Sarrouj H, Reiter C, Tordo P, Engelke F, Bechinger B (2016) Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by dynamic nuclear polarization/solid-state NMR spectroscopy. Sci Rep 6:20895CrossRefGoogle Scholar
  35. Schmidt C, Mayer M, Vogel H (2000) A chip-based biosensor for the functional analysis of single ion channels. Angew Chem Int Ed Engl 39:3137–3140CrossRefGoogle Scholar
  36. Sezgin E, Schwille P (2012) Model membrane platforms to study protein-membrane interactions. Mol Membr Biol 29:144–154CrossRefGoogle Scholar
  37. Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437:656–663CrossRefGoogle Scholar
  38. Tayebi L, Ma Y, Vashaee D, Chen G, Sinha SK, Parikh AN (2012) Long-range inter-layer alignment of intra-layer domains in stacked lipid bilayers. Nat Mater 11:1074–1080CrossRefGoogle Scholar
  39. van Weerd J, Karperien M, Jonkheijm P (2015) Supported lipid bilayers for the generation of dynamic cell-material interfaces. Adv Healthc Mater 4:2743–2779CrossRefGoogle Scholar
  40. Yu CH, Groves JT (2010) Engineering supported membranes for cell biology. Med Biol Eng Comput 48:955–963CrossRefGoogle Scholar
  41. Zagnoni M (2012) Miniaturised technologies for the development of artificial lipid bilayer systems. Lab Chip 12:1026–1039CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2019

Authors and Affiliations

  1. 1.Institut de Chimie, Université de Strasbourg/CNRS, UMR7177StrasbourgFrance

Section editors and affiliations

  • John Seddon
    • 1
  1. 1.Membrane Biophysics Platform, Department of Chemistry and Institute of Chemical BiologyImperial College LondonLondonUK