Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

X-Ray Scattering from Lipid Membranes

  • Georg PabstEmail author
  • Frederick A. Heberle
  • John Katsaras
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_554-1



X-ray scattering probes positional correlations on molecular to supramolecular length scales. Here, we focus on its application to lipid membranes.


Understanding the function of biological membranes is intimately coupled to determining their structure and their related dynamics. Lipid membranes, that is, biological membranes devoid of protein and carbohydrate networks, are highly useful models in understanding certain aspects of biological membranes. Dispersed in an aqueous solution, membrane lipids form structures which are highly dependent on their molecular chemistry (shape), as well as on the properties of their surrounding solution (e.g., pH, ionic strength, hydration, temperature, and pressure). X-ray techniques offer a probe-free and noninvasive toolset to study positional correlations of lipid aggregates on different length scales. These positional correlations may either originate from...

This is a preview of subscription content, log in to check access.


  1. Als-Nielsen J, Jacquemain D, Kjaer K et al (1994) Principles and applications of grazing incidence X-ray and neutron scattering from ordered molecular monolayers at the air-water interface. Phys Rep 246:251–313CrossRefGoogle Scholar
  2. Belička M, Weitzer A, Pabst G (2017) High-resolution structure of coexisting nanoscopic and microscopic lipid domains. Soft Matter 13:1823–1833CrossRefPubMedGoogle Scholar
  3. Boulgaropoulos B, Amenitsch H, Laggner P, Pabst G (2010) Implication of sphingomyelin/ceramide molar ratio on the biological activity of sphingomyelinase. Biophys J 99:499–506CrossRefPubMedPubMedCentralGoogle Scholar
  4. Eicher B, Heberle FA, Marquardt D, Rechberger GN, Katsaras J, Pabst G (2017) Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles. J Appl Crystallogr 50:419–429CrossRefPubMedPubMedCentralGoogle Scholar
  5. Heberle FA, Pabst G (2017) Complex biomembrane mimetics on the sub-nanometer scale. Biophys Rev 9:353–373CrossRefPubMedPubMedCentralGoogle Scholar
  6. Heberle FA, Pan J, Standaert RF, Drazba P, Kučerka N, Katsaras J (2012) Model-based approaches for the determination of lipid bilayer structure from small-angle neutron and X-ray scattering data. Eur Biophys J 41:875–880CrossRefPubMedGoogle Scholar
  7. Heberle FA, Marquardt D, Doktorova M, Geier B, Standaert RF, Heftberger P, Kollmitzer B, Nickels JD, Dick RA, Feigenson GW, Katsaras J, London E, Pabst G (2016) Subnanometer structure of an asymmetric model membrane: interleaflet coupling influences domain properties. Langmuir 32:5195–5200CrossRefPubMedPubMedCentralGoogle Scholar
  8. Karmakar S (2005) Structure and phase behaviour of lipid – cholesterol membranes. PhD thesis, Jawaharlal Nehru University, IndiaGoogle Scholar
  9. Katsaras J (1998) Adsorbed to a rigid substrate, DMPC multibilayers attain full hydration in all mesophases. Biophys J 75:2157–2162CrossRefPubMedPubMedCentralGoogle Scholar
  10. Katsaras J, Raghunathan VA (2000) Aligned lipid-water systems. In: Katsaras J, Gutberlet T (eds) Lipid bilayers. Structure and interactions. Springer, Berlin, pp 25–46Google Scholar
  11. Kollmitzer B, Heftberger P, RappoltM PG (2013) Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter 9:10877–10884CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kučerka N, Nagle JF, Sachs JN, Feller SE, Pencer J, Jackson AJ, Katsaras J (2008) Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys J 95:2356–2367CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lyatskaya Y, Liu Y, Tristram-Nagle S, Katsaras J, Nagle JF (2000) Method for obtaining structure and interactions from oriented lipid bilayers. Phys Rev E 63:011907CrossRefGoogle Scholar
  14. Marsh D (2013) Handbook of lipid bilayers, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  15. Mills TT, Toombes GES, Tristram-Nagle S, Smilgies DM, Feigenson GW, Nagle JF (2008a) Order parameters and areas in fluid-phase oriented lipid membranes using wide angle X-ray scattering. Biophys J 95:669–681CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mills TT, Tristram-Nagle S, Heberle FA, Morales NF, Zhao J, Wu J, Toombes GES, Nagle JF, Feigenson GW (2008b) Liquid-liquid domains in bilayers detected by wide angle X-ray scattering. Biophys J 95:682–690CrossRefPubMedPubMedCentralGoogle Scholar
  17. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195CrossRefPubMedPubMedCentralGoogle Scholar
  18. Nickel B (2008) Nanostructure of supported lipid bilayers in water. Biointerfaces 3:FC40–FC46Google Scholar
  19. Nickels JD, Chatterjee S, Stanley CB, Qian S, Cheng X, Myles DA, Standaert RF, Elkins JG, Katsaras J (2017) The in vivo structure of biological membranes and evidence for lipid domains. PLoS Biol 15:e2002214CrossRefPubMedPubMedCentralGoogle Scholar
  20. Pabst G, Kučerka N, Nieh MP, Rheinstadter MC, Katsaras J (2010) Applications of neutron and X-ray scattering to the study of biologically relevant model membranes. Chem Phys Lipids 163:460–479CrossRefPubMedGoogle Scholar
  21. Pabst G, Zweytick D, Prassl R, Lohner K (2012) Use of X-ray scattering to aid the design and delivery of membrane-active drugs. Eur Biophys J 41:915–929CrossRefPubMedGoogle Scholar
  22. Parsegian VA, Rand RP (1995) Interaction in membrane assemblies. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics. Elsevier, Amsterdam, pp 643–690Google Scholar
  23. Rappolt M (2013) Formation of curved membranes and membrane fusion processes studied by synchrotron X-ray-scattering techniques. In: Iglic A, Genova J (eds) Advances in planar lipid bilayers and liposomes: a tribute to marin D. Mitov. Elsevier, Amsterdam, pp 29–54Google Scholar
  24. Salditt T (2005) Thermal fluctuations and stability of solid-supported lipid membranes. J Phys Condens Matter 17:R287–R314CrossRefGoogle Scholar
  25. Tardieu A, Luzzati V, Reman FC (1973) Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol 75:711–733CrossRefPubMedGoogle Scholar
  26. Uhríková D, Pullmanová P (2014) Structural diversity of DNA-phospholipid aggregates. In: Pabst G, Kučerka N, Nieh M-P, Katsaras J (eds) Liposomes, lipid bilayers and model membranes. CRC Press, Boca Raton, pp 247–269CrossRefGoogle Scholar
  27. Uppamoochikkal P, Tristram-Nagle S, Nagle JF (2010) Orientation of tie-lines in the phase diagram of DOPC:DPPC:cholesterol model biomembranes. Langmuir 26:17363–17368CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  • Georg Pabst
    • 1
    • 2
    Email author
  • Frederick A. Heberle
    • 3
    • 4
  • John Katsaras
    • 3
    • 4
    • 5
  1. 1.Institute of Molecular BiosciencesUniversity of Graz, Biophysics Division, NAWI GrazGrazAustria
  2. 2.BioTechMed-GrazGrazAustria
  3. 3.Large Scale Structures GroupOak Ridge National LaboratoryOak RidgeUSA
  4. 4.The Bredesen Center for Interdisciplinary Research and Graduate EducationUniversity of TennesseeKnoxvilleUSA
  5. 5.Department of Physics and AstronomyUniversity of TennesseeKnoxvilleUSA

Section editors and affiliations

  • John M. Seddon
    • 1
  1. 1.Membrane Biophysics Platform, Department of Chemistry and Institute of Chemical BiologyImperial College LondonLondonUK