Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Single Fluorophore Photobleaching

  • Qinsi Zheng
  • Avik Kumar Pati
  • Scott C. BlanchardEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_482-1


Photobleaching describes any process that leads to the permanent loss of fluorescence from light-emitting fluorescent species, including organic dye molecules, semiconductor particles such as quantum dots, and fluorescent proteins upon exposure to photons or light. As such processes terminate the flux of photons emanating from a fluorophore, photobleaching serves as a key limiting factor in applications relying on light emission from a fluorophore. Such applications include medical imaging technologies, diagnostics (Diaspro et al. 2006), dye-sensitized solar cells (Grätzel 2003), and light-emitting diodes (Xu et al. 2016).

Basic Characteristics

Photobleaching is caused by photochemical damage of the fluorophore species. Such processes are enhanced by prolonged and intense illumination and are related directly to the probability of photoinduced reactions with solvent and intramolecular reactions of the fluorophore itself that can occur during cycles of photon absorption and...

This is a preview of subscription content, log in to check access.


  1. Altman RB, Terry DS et al (2012) Cyanine fluorophore derivatives with enhanced photostability. Nat Methods 9(1):68–71CrossRefGoogle Scholar
  2. Campos LA, Liu J et al (2011) A photoprotection strategy for microsecond-resolution single-molecule fluorescence spectroscopy. Nat Methods 8(2):143–146CrossRefPubMedGoogle Scholar
  3. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018CrossRefPubMedGoogle Scholar
  4. Cho SJ, Maysinger D et al (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23(4):1974–1980CrossRefPubMedGoogle Scholar
  5. Diaspro A, Chirico G et al (2006) Photobleaching. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer, New York, pp 690–702CrossRefGoogle Scholar
  6. Eggeling C, Volkmer A et al (2005) Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. ChemPhysChem 6(5):791–804CrossRefPubMedGoogle Scholar
  7. Funabiki K, Yagi K et al (2016) Rational molecular design and synthesis of highly thermo- and photostable near-infrared-absorbing heptamethine cyanine dyes with the use of fluorine atoms. Chem Eur J 22(35):12282–12285CrossRefPubMedGoogle Scholar
  8. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev 4(2):145–153CrossRefGoogle Scholar
  9. Greenbaum L, Rothmann C et al (2000) Green fluorescent protein photobleaching: a model for protein damage by endogenous and exogenous singlet oxygen. Biol Chem 381(12):1251–1258CrossRefPubMedGoogle Scholar
  10. Grimm JB, English BP et al (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 12(3):244–250CrossRefPubMedPubMedCentralGoogle Scholar
  11. Juette MF, Terry DS et al (2014) The bright future of single-molecule fluorescence imaging. Curr Opin Chem Biol 20:103–111CrossRefPubMedGoogle Scholar
  12. Lakowicz J (2006) Principles of fluorescence spectroscopy. Springer Science + Business Media, LLC, New YorkCrossRefGoogle Scholar
  13. Levitus M, Ranjit S (2011) Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments. Q Rev Biophys 44(01):123–151CrossRefPubMedGoogle Scholar
  14. Nani RR, Kelley JA et al (2015) Reactive species involved in the regioselective photooxidation of heptamethine cyanines. Chem Sci 6(11):6556–6563CrossRefPubMedPubMedCentralGoogle Scholar
  15. Remington SJ (2006) Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16(6):714–721CrossRefPubMedGoogle Scholar
  16. van Sark WGJHM, Frederix PLTM et al (2001) Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. J Phys Chem B 105(35):8281–8284CrossRefGoogle Scholar
  17. Xu R-P, Li Y-Q et al (2016) Recent advances in flexible organic light-emitting diodes. J Mater Chem C 4(39):9116–9142CrossRefGoogle Scholar
  18. Zheng Q, Jockusch S et al (2012) On the mechanisms of cyanine fluorophore photostabilization. J Phys Chem Lett 3(16):2200–2203CrossRefPubMedPubMedCentralGoogle Scholar
  19. Zheng Q, Juette MJ et al (2014) Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev 43(4):1044–1056CrossRefPubMedPubMedCentralGoogle Scholar
  20. Zheng Q, Jockusch S et al (2016) Intra-molecular triplet energy transfer is a general approach to improve organic fluorophore photostability. Photochem Photobiol Sci 15(2):196–203CrossRefPubMedPubMedCentralGoogle Scholar
  21. Zheng Q, Jockusch S et al (2017) Electronic tuning of self-healing fluorophores for live-cell and single-molecule imaging. Chem Sci 8(1):755–762CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  • Qinsi Zheng
    • 1
  • Avik Kumar Pati
    • 2
  • Scott C. Blanchard
    • 1
    • 2
    Email author
  1. 1.Tri-Institutional Program in Chemical BiologyWeill Cornell MedicineNew YorkUSA
  2. 2.Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkUSA

Section editors and affiliations

  • Nils G. Walter
    • 1
  1. 1.Department of ChemistryThe University of MichiganAnn ArborUSA