Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Machinery of DNA Replication

  • Nina Y. Yao
  • Michael E. O’DonnellEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_435-1

Introduction

The DNA genome must be duplicated with great precision before a cell divides in order to maintain the species. DNA replication is performed by numerous proteins that work together as a dynamic machine, referred to as a “replisome” (O’Donnell et al. 2013). The core components of replisome machines are present in cellular domains of life, Bacteria, Archaea, and Eukarya. These core replisome components are a helicase, DNA polymerases, RNA primase, the sliding clamp, and a clamp loader. The helicase of replisome machines is first assembled onto DNA at origins of replication by initiation proteins, after which the helicase couples ATP hydrolysis to unwind DNA and form replication forks, the Y-shaped DNA structure where the DNA strands are separated and duplicated (Bell and Labib 2016; O’Donnell et al. 2013). Primase associates with the helicase to generate short “RNA primers” that the DNA polymerases extend by matching complementary bases (i.e., dNTPs) to each separated...

This is a preview of subscription content, log in to check access.

References

  1. Barros T, Guenther J, Kelch B et al (2013) A structural role for the PHP domain in E. coli DNA polymerase III. BMC Struct Biol 13:8CrossRefGoogle Scholar
  2. Bell SD (2019) Initiating DNA replication: a matter of prime importance. Biochem Soc Trans 47:351CrossRefGoogle Scholar
  3. Bell SP, Labib K (2016) Chromosome duplication in Saccharomyces cerevisiae. Genetics 203:1027–1067CrossRefGoogle Scholar
  4. Benkovic SJ, Spiering MM (2017) Understanding DNA replication by the bacteriophage T4 replisome. J Biol Chem 292:18434–18442CrossRefGoogle Scholar
  5. Bhat KP, Cortez D (2018) RPA and RAD51: fork reversal, fork protection, and genome stability. Nat Struct Mol Biol 25:446–453CrossRefGoogle Scholar
  6. Bleichert F, Botchan MR, Berger JM (2017) Mechanisms for initiating cellular DNA replication. Science 355:eaah6317CrossRefGoogle Scholar
  7. Burgers PMJ, Kunkel TA (2017) Eukaryotic DNA replication fork. Annu Rev Biochem 86:417–438CrossRefGoogle Scholar
  8. Georgescu RE, Kurth I, O’Donnell ME (2011) Single-molecule studies reveal the function of a third polymerase in the replisome. Nat Struct Mol Biol 19:113–116CrossRefGoogle Scholar
  9. Georgescu R, Langston L, O’Donnell M (2015a) A proposal: evolution of PCNA’s role as a marker of newly replicated DNA. DNA Repair (Amst) 29:4–15CrossRefGoogle Scholar
  10. Georgescu RE, Schauer GD, Yao NY et al (2015b) Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. elife 4:e04988CrossRefGoogle Scholar
  11. Georgescu R, Yuan Z, Bai L et al (2017) Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. Proc Natl Acad Sci USA 114:E697–E706CrossRefGoogle Scholar
  12. Ilves I, Petojevic T, Pesavento JJ et al (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258CrossRefGoogle Scholar
  13. Itsathitphaisarn O, Wing RA, Eliason WK et al (2012) The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 151:267–277CrossRefGoogle Scholar
  14. Jeruzalmi D, O’Donnell M, Kuriyan J (2002) Clamp loaders and sliding clamps. Curr Opin Struct Biol 12:217–224CrossRefGoogle Scholar
  15. Kelch BA, Makino DL, O’Donnell M et al (2011) How a DNA polymerase clamp loader opens a sliding clamp. Science 334:1675–1680CrossRefGoogle Scholar
  16. Kelch BA, Makino DL, O’Donnell M, Kuriyan J (2012) Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol 10:34CrossRefGoogle Scholar
  17. Kong XP, Onrust R, O’Donnell M et al (1992) Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69:425–437CrossRefGoogle Scholar
  18. Kurth I, Georgescu RE, O’Donnell ME (2013) A solution to release twisted DNA during chromosome replication by coupled DNA polymerases. Nature 496:119–122CrossRefGoogle Scholar
  19. Lamers MH, Georgescu RE, Lee SG, O’Donnell M, Kuriyan J (2006) Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III. Cell 126:881–892CrossRefGoogle Scholar
  20. Langston LD, Zhang D, Yurieva O et al (2014) CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc Natl Acad Sci USA 111:15390–15395CrossRefGoogle Scholar
  21. Lewis JS, Jergic S, Dixon NE (2016) The E. coli DNA replication fork. Enzyme 39:31–88CrossRefGoogle Scholar
  22. Lyubimov AY, Strycharska M, Berger JM (2011) The nuts and bolts of ring-translocase structure and mechanism. Curr Opin Struct Biol 21:240–248CrossRefGoogle Scholar
  23. McInerney P, O’Donnell M (2004) Functional uncoupling of twin polymerases: mechanism of polymerase dissociation from a lagging-strand block. J Biol Chem 279:21543–21551CrossRefGoogle Scholar
  24. McInerney P, Johnson A, Katz F et al (2007) Characterization of a triple DNA polymerase replisome. Mol Cell 27:527–538CrossRefGoogle Scholar
  25. O’Donnell ME (1987) Accessory proteins bind a primed template and mediate rapid cycling of DNA polymerase III holoenzyme from Escherichia coli. J Biol Chem 262:16558–16565PubMedGoogle Scholar
  26. O’Donnell ME, Li H (2018) The ring-shaped hexameric helicases that function at DNA replication forks. Nat Struct Mol Biol 25:122–130CrossRefGoogle Scholar
  27. O’Donnell M, Langston L, Stillman B (2013) Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol 5:a010108PubMedPubMedCentralGoogle Scholar
  28. Pellegrini L, Costa A (2016) New insights into the mechanism of DNA duplication by the eukaryotic replisome. Trends Biochem Sci 41:859–871CrossRefGoogle Scholar
  29. Perera RL, Torella R, Klinge S et al (2013) Mechanism for priming DNA synthesis by yeast DNA polymerase alpha. University of CambridgeGoogle Scholar
  30. Podobnik M, McInerney P, O’Donnell M et al (2000) A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases. J Mol Biol 300:353–362CrossRefGoogle Scholar
  31. Pursell ZF, Kunkel TA (2008) DNA polymerase epsilon: a polymerase of unusual size (and complexity). Prog Nucleic Acid Res Mol Biol 82:101–145CrossRefGoogle Scholar
  32. Schauer GD, O’Donnell ME (2017) Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork. Proc Natl Acad Sci USA 114:675–680CrossRefGoogle Scholar
  33. Simon AC, Zhou JC, Perera RL et al (2014) A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome. Nature 510:293–297CrossRefGoogle Scholar
  34. Smith DJ, Whitehouse I (2012) Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 483:434–438CrossRefGoogle Scholar
  35. Stodola JL, Burgers PM (2016) Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale. Nat Struct Mol Biol 23:402CrossRefGoogle Scholar
  36. Stukenberg PT, Studwell-Vaughan PS, O’Donnell M (1991) Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme. J Biol Chem 266:11328–11334PubMedGoogle Scholar
  37. Sun J, Shi Y, Georgescu RE et al (2015) The architecture of a eukaryotic replisome. Nat Struct Mol Biol 22:976–982CrossRefGoogle Scholar
  38. Yang W, Gao Y (2018) Translesion and repair DNA polymerases: diverse structure and mechanism. Annu Rev Biochem 87:239–261CrossRefGoogle Scholar
  39. Yao NY, O’Donnell M (2008) Replisome dynamics and use of DNA trombone loops to bypass replication blocks. Mol BioSyst 4:1075–1084CrossRefGoogle Scholar
  40. Yao NY, O’Donnell ME (2016) Evolution of replication machines. Crit Rev Biochem Mol Biol 51:135–149CrossRefGoogle Scholar
  41. Yao N, Georgescu RE, Finkelstein J, O’Donnell M (2009) Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression. Proc Natl Acad Sci USA 106:13236–13241CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2019

Authors and Affiliations

  1. 1.Structural and Molecular Biology ProgramThe Rockefeller UniversityNew YorkUSA
  2. 2.Howard Hughes Medical InstituteThe Rockefeller UniversityNew YorkUSA