Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Structural Impact of Single Nucleotide Variations (SNVs)

  • Andrew C. R. Martin
  • Anja Baresic
  • Nouf S. Al-Numair
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_430-1

Synonyms

Introduction

The simplest form of mutation is a single DNA base change, frequently, though somewhat inaccurately, referred to as a “single-nucleotide polymorphism” (SNP). Strictly, this term should only be applied to single base changes that are observed in at least 1% of a “normal” population, and the term “single-nucleotide variation” (SNV) should be used for the more general case. Thus SNVs may, or may not, have an impact on phenotype, and this impact may be inherited in a Mendelian fashion. “Penetrance” is defined as the percentage of individuals having a particular SNV who show the associated phenotype. Mutations inherited in a Mendelian fashion, whether dominant or recessive, have 100% penetrance, but SNVs may also exhibit “partial penetrance”...

This is a preview of subscription content, log in to check access.

References

  1. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 76. Chapter 7: Unit7.20. PMID: 23315928Google Scholar
  2. Alderson TR, Lee JH, Charlier C, Ying J, Bax A (2017) Propensity for cis-proline formation in unfolded proteins. Chembiochem 19:37–42. PMID: 29064600CrossRefGoogle Scholar
  3. Al-Numair NS, Martin ACR (2013) The SAAP pipeline and database: tools to analyze the impact and predict the pathogenicity of mutations. BMC Genomics, (ISMB 2012 SNP-SIG Special Issue) 14(Suppl 3):S4. PMID: 23819919Google Scholar
  4. Baresic A, Martin ACR (2011) Compensated pathogenic deviations. BioMolecular Concepts 2:281–292. PMID: 25962036CrossRefGoogle Scholar
  5. De Baets G, Van Durme J, Reumers J, Maurer-Stroh S, Vanhee P, Dopazo J, Schymkowitz J, Rousseau F (2012) SNPeffect 4.0: on-line prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Res 40:D935–D939. PMID: 22075996CrossRefGoogle Scholar
  6. DePristo MA, Weinreich DM, Hartl DL (2005) Missense meanderings in sequence space: a biophysical view of protein evolution. Nat Rev Genet 6:678–687. PMID: 16074985CrossRefGoogle Scholar
  7. Ferrer-Costa C, Orozco M, de la Cruz X (2004) Sequence-based prediction of pathological mutations. Proteins 57:811–819. PMID: 15390262CrossRefGoogle Scholar
  8. Hecht M, Bromberg Y, Rost B (2015) Better prediction of functional effects for sequence variant. BMC Genomics 16(Suppl 8):S1. PMID: 26110438CrossRefGoogle Scholar
  9. McDonald IK, Thornton JM (1994) Satisfying hydrogen-bonding potential in proteins. J Mol Biol 238:777–793. PMID: 8182748CrossRefGoogle Scholar
  10. Pal D, Chakrabarti P (1999) Cis peptide bonds in proteins: residues involved, their conformations, interactions and locations. J Mol Biol 294:271–288. PMID: 10556045CrossRefGoogle Scholar
  11. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, Day IN, Gaunt TR (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34:57–65. PMID: 23033316CrossRefGoogle Scholar
  12. Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40(Web server issue):W452–W457. PMID: 22689647CrossRefGoogle Scholar
  13. Stitziel NO, Binkowski TA, Tseng YY, Kasif S, Liang J (2004) topoSNP: a topographic database of non-synonymous single nucleotide polymorphisms with and without known disease association. Nucleic Acids Res 32(suppl 1):D520–D522. PMID: 14681472CrossRefGoogle Scholar
  14. Uzun A, Leslin CM, Abyzov A, Ilyin V (2007) Structure SNP (StSNP): a web server for mapping and modeling nsSNPs on protein structures with linkage to metabolic pathways. Nucleic Acids Res 35(Web Server issue):W384–W392. PMID: 17537826CrossRefGoogle Scholar
  15. Weiss M, Jabs A, Hilgenfeld R (1998) Peptide bonds revisited. Nat Struct Biol 5:676. PMID: 9699627CrossRefGoogle Scholar
  16. Yates CM, Filippis I, Kelley LA, Sternberg MJE (2014) SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features. J Mol Biol 426:2692–2701. PMID: 24810707CrossRefGoogle Scholar
  17. Yip YL, Scheib H, Diemand AV, Gattiker A, Famiglietti LM, Gasteiger E, Bairoch A (2004) The Swiss-Prot variant page and the ModSNP database: a resource for sequence and structure information on human protein variants. Hum Mutat 23:464–470. PMID: 15108278CrossRefGoogle Scholar
  18. Yue P, Melamud E, Moult J (2006) SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinf 7:166. PMID: 16551372CrossRefGoogle Scholar
  19. Zondlo NJ (2013) Aromatic-proline interactions: electronically tunable CH/π interactions. Acc Chem Res 46:1039–1049. PMID: 23148796CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  • Andrew C. R. Martin
    • 1
  • Anja Baresic
    • 1
    • 2
  • Nouf S. Al-Numair
    • 1
    • 3
  1. 1.Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
  2. 2.Computational Regulatory Genomics GroupMRC London Institute of Medical SciencesLondonUK
  3. 3.Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia

Section editors and affiliations

  • Franca Fraternali

There are no affiliations available