Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Protein Secondary Structure Prediction in 2018

  • Edda Kloppmann
  • Jonas ReebEmail author
  • Peter Hönigschmid
  • Burkhard Rost
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_429-1

Synonyms

Definition

Protein secondary structure prediction aims at the prediction of secondary structure on the residue level from sequence information alone. Predicted are commonly alpha-helices and beta-strands, i.e., the most prevalent regular secondary structure segments. On the opposite side of regular secondary structure are irregular or disordered regions often referred to as loops, random coils, or disorder.

Introduction

Fifteen years ago, science leaped when putting up the almost entire blueprint for human life. Now that the parts are known, can this blueprint be used as a manual to understand how the machine works? “Like with every proper manual, usually we do not find the information we need and in the rare cases that we do, we do not understand the answer” jokes Anna Tramontano (La Sapienza, Rome, 1957–2017). Every year since, new surprising findings...

This is a preview of subscription content, log in to check access.

References

  1. Adamczak R, Porollo A, Meller J (2005) Combining prediction of secondary structure and solvent accessibility in proteins. Proteins 59(3):467–475.  https://doi.org/10.1002/prot.20441CrossRefPubMedGoogle Scholar
  2. Altschul S (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402.  https://doi.org/10.1093/nar/25.17.3389CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andreeva A, Howorth D, Chothia C, Kulesha E, Murzin AG (2014) SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res 42(D1):310–314.  https://doi.org/10.1093/nar/gkt1242CrossRefGoogle Scholar
  4. Astbury WT (1933) The X-ray interpretation of fibre structure. J Soc Dye Colour 49(6):168CrossRefGoogle Scholar
  5. Baker MS, Ahn SB, Mohamedali A, Islam MT, Cantor D, Verhaert PD, Fanayan S, Sharma S, Nice EC, Connor M, Ranganathan S (2017) Accelerating the search for the missing proteins in the human proteome. Nat Commun 8(May 2016):14271–14271.  https://doi.org/10.1038/ncomms14271CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bau D, Martin AJ, Mooney C, Vullo A, Walsh I, Pollastri G (2006) Distill: a suite of web servers for the prediction of one-, two- and three-dimensional structural features of proteins. BMC Bioinformatics 7:402.  https://doi.org/10.1186/1471-2105-7-402CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242CrossRefGoogle Scholar
  8. Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 41(Web Server issue):349–357.  https://doi.org/10.1093/nar/gkt381CrossRefGoogle Scholar
  9. Dunker AK, Obradovic Z (2001) The protein trinity – linking function and disorder. Nat Biotechnol 19(9):805–806.  https://doi.org/10.1038/nbt0901-805CrossRefPubMedGoogle Scholar
  10. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18(6):756–764.  https://doi.org/10.1016/j.sbi.2008.10.002CrossRefPubMedGoogle Scholar
  11. Eisenberg D (2003) The discovery of the alpha-helix and beta-sheet, the principal structural features of proteins. Proc Natl Acad Sci USA 100(20):11207–11210.  https://doi.org/10.1073/pnas.2034522100CrossRefPubMedGoogle Scholar
  12. Eyrich VA, Przybylski D, Koh IY, Grana O, Pazos F, Valencia A, Rost B (2003) CAFASP3 in the spotlight of EVA. Proteins 53(Suppl 6):548–560.  https://doi.org/10.1002/prot.10534CrossRefPubMedGoogle Scholar
  13. Faraggi E, Zhang T, Yang Y, Kurgan L, Zhou Y (2012) SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J Comput Chem 33(3):259–267.  https://doi.org/10.1002/jcc.21968CrossRefPubMedGoogle Scholar
  14. Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120(1):97–120CrossRefGoogle Scholar
  15. Garnier J, Gibrat JF, Robson B (1996) GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266:540–553CrossRefGoogle Scholar
  16. Gibrat JF, Garnier J, Robson B (1987) Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J Mol Biol 198(3):425–443.  https://doi.org/10.1016/0022-2836(87)90292-0CrossRefPubMedGoogle Scholar
  17. Heffernan R, Paliwal K, Lyons J, Dehzangi A, Sharma A, Wang J, Sattar A, Yang Y, Zhou Y (2015) Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning. Sci Rep 5(May):11476–11476.  https://doi.org/10.1038/srep11476CrossRefPubMedPubMedCentralGoogle Scholar
  18. Heffernan R, Yang Y, Paliwal K, Zhou Y (2017) Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility. Bioinformatics 33(18):2842–2849.  https://doi.org/10.1093/bioinformatics/btx218CrossRefPubMedGoogle Scholar
  19. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292(2):195–202.  https://doi.org/10.1006/jmbi.1999.3091CrossRefGoogle Scholar
  20. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637.  https://doi.org/10.1002/bip.360221211CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC (1960) Structure of myoglobin: a three-dimensional Fourier synthesis at 2 A. resolution. Nature 185(4711):422–427CrossRefGoogle Scholar
  22. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37(Database):D387–D392.  https://doi.org/10.1093/nar/gkn750CrossRefPubMedGoogle Scholar
  23. Levitt M, Greer J (1977) Automatic identification of secondary structure in globular proteins. J Mol Biol 114(2):181–239CrossRefGoogle Scholar
  24. Marti-Renom MA, Madhusudhan MS, Fiser A, Rost B, Sali A (2002) Reliability of assessment of protein structure prediction methods. Structure 10(3):435–440CrossRefGoogle Scholar
  25. Mirabello C, Pollastri G (2013) Porter, PaleAle 4.0: high-accuracy prediction of protein secondary structure and relative solvent accessibility. Bioinformatics 29(16):2056–2058.  https://doi.org/10.1093/bioinformatics/btt344CrossRefPubMedGoogle Scholar
  26. Pauling L, Corey RB (1950) Two hydrogen-bonded spiral configurations of the polypeptide chain. J Am Chem Soc 72(11):5349–5349.  https://doi.org/10.1021/ja01167a545CrossRefGoogle Scholar
  27. Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North AC (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185(4711):416–422CrossRefGoogle Scholar
  28. Prudden J, Perry JJ, Arvai AS, Tainer JA, Boddy MN (2009) Molecular mimicry of SUMO promotes DNA repair. Nat Struct Mol Biol 16(5):509–516.  https://doi.org/10.1038/nsmb.1582CrossRefPubMedPubMedCentralGoogle Scholar
  29. Przybylski D, Rost B (2002) Alignments grow, secondary structure prediction improves. Proteins 46(2):197–205CrossRefGoogle Scholar
  30. Przybylski D, Rost B (2004) Improving fold recognition without folds. J Mol Biol 341(1):255–269.  https://doi.org/10.1016/j.jmb.2004.05.041CrossRefPubMedGoogle Scholar
  31. Remmert M, Biegert A, Hauser A, Söding J (2012) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9(2):173–175CrossRefGoogle Scholar
  32. Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, Di Costanzo L, Duarte JM, Dutta S, Feng Z, Green RK, Goodsell DS, Hudson B, Kalro T, Lowe R, Peisach E, Randle C, Rose AS, Shao C, Tao YP, Valasatava Y, Voigt M, Westbrook JD, Woo J, Yang H, Young JY, Zardecki C, Berman HM, Burley SK (2017) The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 45(D1):D271–D281.  https://doi.org/10.1093/nar/gkw1000CrossRefPubMedGoogle Scholar
  33. Rost B (1996) PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 266:525–539CrossRefGoogle Scholar
  34. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12(2):85–94CrossRefGoogle Scholar
  35. Rost B (2005) How to use protein 1D structure predicted by PROFphd. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 875–901CrossRefGoogle Scholar
  36. Rost B, Schneider R, Sander C (1993) Progress in protein structure prediction? Trends Biochem Sci 18(4):120–123CrossRefGoogle Scholar
  37. Rychlewski L, Fischer D (2005) LiveBench-8: the large-scale, continuous assessment of automated protein structure prediction. Protein Sci 14(1):240–245.  https://doi.org/10.1110/ps.04888805CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schlessinger A, Schaefer C, Vicedo E, Schmidberger M, Punta M, Rost B (2011) Protein disorder – a breakthrough invention of evolution? Curr Opin Struct Biol 21(3):412–418.  https://doi.org/10.1016/j.sbi.2011.03.014CrossRefPubMedGoogle Scholar
  39. Sillitoe I, Lewis TE, Cuff A, Das S, Ashford P, Dawson NL, Furnham N, Laskowski RA, Lee D, Lees JG, Lehtinen S, Studer RA, Thornton J, Orengo CA (2015) CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res 43(D1):D376–D381.  https://doi.org/10.1093/nar/gku947CrossRefPubMedGoogle Scholar
  40. Sormanni P, Camilloni C, Fariselli P, Vendruscolo M (2015) The s2D method: simultaneous sequence-based prediction of the statistical populations of ordered and disordered regions in proteins. J Mol Biol 427(4):982–996.  https://doi.org/10.1016/j.jmb.2014.12.007CrossRefPubMedGoogle Scholar
  41. Szent-Györgyi AG, Cohen C (1957) Role of proline in polypeptide cahin configuration of proteins. Science 126:697CrossRefGoogle Scholar
  42. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–D169.  https://doi.org/10.1093/nar/gkw1099CrossRefGoogle Scholar
  43. Wang S, Li W, Liu S, Xu J (2016) RaptorX-Property: a web server for protein structure property prediction. Nucleic Acids Res 44:W430–W435.  https://doi.org/10.1093/nar/gkw306CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wiederstein M, Gruber M, Frank K, Melo F, Sippl MJ (2014) Structure-based characterization of multiprotein complexes. Structure 22(7):1063–1070.  https://doi.org/10.1016/j.str.2014.05.005CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T, Hönigschmid P, Schafferhans A, Roos M, Bernhofer M, Richter L, Ashkenazy H, Punta M, Schlessinger A, Bromberg Y, Schneider R, Vriend G, Sander C, Ben-Tal N, Rost B (2014) PredictProtein-an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 42(Web Server issue):W337–W343.  https://doi.org/10.1093/nar/gku366CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zhang H, Zhang T, Chen K, Kedarisetti KD, Mizianty MJ, Bao Q, Stach W, Kurgan L (2011) Critical assessment of high-throughput standalone methods for secondary structure prediction. Brief Bioinform 12(6):672–688.  https://doi.org/10.1093/bib/bbq088CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2019

Authors and Affiliations

  • Edda Kloppmann
    • 1
  • Jonas Reeb
    • 1
    Email author
  • Peter Hönigschmid
    • 2
  • Burkhard Rost
    • 1
  1. 1.Technische Universität MünchenGarchingGermany
  2. 2.Technische Universität München, Wissenschaftszentrum WeihenstephanFreisingGermany

Section editors and affiliations

  • Franca Fraternali

There are no affiliations available