Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Mechanosensitivity of Ion Channels

  • Charles G. Cranfield
  • Anna Kloda
  • Yury A. Nikolaev
  • Adam D. Martinac
  • Pietro Ridone
  • Navid Bavi
  • Omid Bavi
  • Evgeny Petrov
  • Andrew R. Battle
  • Takeshi Nomura
  • Paul R. Rohde
  • Yoshitaka Nakayama
  • Kadla R. Rosholm
  • Charles D. Cox
  • Matthew A. Baker
  • Boris Martinac
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_376-1

Synonyms

Definition

Mechanosensitive ion channels are molecular transducers of physical forces. They respond to mechanical stresses including shear, compressive, and tensile forces. These forces are either transmitted to the channel via the surrounding lipid bilayer or via molecular tethers. Mechanosensitive ion channels are essential components of numerous mechanosensory systems including hearing, touch, and blood pressure control. Multidisciplinary studies on mechanosensitive ion channel proteins have contributed considerably to understanding of their structure, function, and mechanisms of mechanosensory transduction.

Introduction

The first mechanosensitive (MS) channels were reported in embryonic chick skeletal muscle (Guharay and Sachs 1984) and frog muscle (Brehm et al. 1984). Over the last 30 years, this type of ion channel has been...
This is a preview of subscription content, log in to check access.

References

  1. Anishkin A, Sukharev S (2004) Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys J 86:2883–2895CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aryal P, Jarerattanachat V, Clausen MV, Schewe M, Mcclenaghan C, Argent L, Conrad LJ, Dong YY, Pike AC, Carpenter EP (2017) Bilayer-mediated structural transitions control mechanosensitivity of the TREK-2 K2P channel. Structure 25:708–718.e2CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bavi N, Cortes DM, Cox CD, Rohde PR, Liu W, Deitmer JW, Bavi O, Strop P, Hill AP, Rees D, Corry B, Perozo E, Martinac B (2016) The role of MscL amphipathic N terminus indicates a blueprint for bilayer-mediated gating of mechanosensitive channels. Nat Commun 7:11984CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bidhendi AJ, Korhonen RK (2012) A finite element study of micropipette aspiration of single cells: effect of compressibility. Comput Math Methods Med 2012:192618PubMedGoogle Scholar
  5. Brehm P, Kullberg R, Moody-Corbett F (1984) Properties of non-junctional acetylcholine receptor channels on innervated muscle of Xenopus laevis. J Physiol 350:631–648CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V, Rohde PR, Ng CA, Sachs F, Gottlieb PA, Martinac B (2016) Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat Commun 7:10366CrossRefPubMedPubMedCentralGoogle Scholar
  7. Delcour AH, Martinac B, Adler J, Kung C (1989) Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J 56:631–636CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dimitrova A, Walko M, Hashemi Shabestari M, Kumar P, Huber M, Kocer A (2016) In situ, reversible gating of a mechanosensitive ion channel through protein-lipid interactions. Front Physiol 7:409CrossRefPubMedPubMedCentralGoogle Scholar
  9. Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth F (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100CrossRefPubMedGoogle Scholar
  11. Leptihn S, Castell OK, Cronin B, Lee E-H, Gross LC, Marshall DP, Thompson JR, Holden M, Wallace MI (2013) Constructing droplet interface bilayers from the contact of aqueous droplets in oil. Nat Protoc 8:1048CrossRefPubMedGoogle Scholar
  12. Martinac B (2007) 3.5 billion years of mechanosensory transduction: structure and function of mechanosensitive channels in prokaryotes. Curr Top Membr 58:25–57CrossRefGoogle Scholar
  13. Martinac B, Cox CD (2017) Mechanosensory transduction: focus on ion channels. In: Comprehensive biophysics. Elsevier, New YorkGoogle Scholar
  14. Martinac B, Rohde PR, Battle AR, Petrov E, Pal P, Foo AF, Vasquez V, Huynh T, Kloda A (2010) Studying mechanosensitive ion channels using liposomes. Methods Mol Biol 606:31–53CrossRefPubMedGoogle Scholar
  15. Martinac AD, Bavi N, Bavi O, Martinac B (2017) Pulling MscL open via N-terminal and TM1 helices: a computational study towards engineering an MscL nanovalve. PLoS One 12:e0183822CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mchaourab HS, Perozo E (2002) Determination of protein folds and conformational dynamics using spin-labeling EPR spectroscopy. In: Berliner LJ, Eaton GR, Eaton SS (eds) Distance measurements in biological systems by EPR. Springer US, BostonGoogle Scholar
  17. Neu CP, Genin GM (2014) Handbook of imaging in biological mechanics. CRC Press Boca Raton, FloridaGoogle Scholar
  18. Nomura T, Cranfield CG, Deplazes E, Owen DM, Macmillan A, Battle AR, Constantine M, Sokabe M, Martinac B (2012) Differential effects of lipids and lyso-lipids on the mechanosensitivity of the mechanosensitive channels MscL and MscS. Proc Natl Acad Sci U S A 109:8770–8775CrossRefPubMedPubMedCentralGoogle Scholar
  19. Petrov E, Rohde PR, Martinac B (2011) Flying-patch patch-clamp study of G22E-MscL mutant under high hydrostatic pressure. Biophys J 100:1635–1641CrossRefPubMedPubMedCentralGoogle Scholar
  20. Petrov E, Menon G, Rohde PR, Battle AR, Martinac B, Solioz M (2018) Xenon-inhibition of the MscL mechano-sensitive channel and the CopB copper ATPase under different conditions suggests direct effects on these proteins. PLoS ONE 13(6): e0198110Google Scholar
  21. Ranade SS, Syeda R, Patapoutian A (2015) Mechanically activated ion channels. Neuron 87:1162–1179CrossRefPubMedPubMedCentralGoogle Scholar
  22. Rosholm KR, Baker MA, Ridone P, Nakayama Y, Rohde PR, Cuello LG, Lee LK, Martinac B (2017) Activation of the mechanosensitive ion channel MscL by mechanical stimulation of supported Droplet-Hydrogel bilayers. Sci Rep 7:45180CrossRefPubMedPubMedCentralGoogle Scholar
  23. Syeda R, Florendo MN, Cox CD, Kefauver JM, Santos JS, Martinac B, Patapoutian A (2016) Piezo1 channels are inherently mechanosensitive. Cell Rep 17:1739–1746CrossRefPubMedPubMedCentralGoogle Scholar
  24. Trick JL, Chelvaniththilan S, Klesse G, Aryal P, Wallace EJ, Tucker SJ, Sansom MSP (2016) Functional annotation of ion channel structures by molecular simulation. Structure 24:2207–2216CrossRefPubMedPubMedCentralGoogle Scholar
  25. Vasquez V, Sotomayor M, Cordero-Morales J, Schulten K, Perozo E (2008) A structural mechanism for MscS gating in lipid bilayers. Science 321:1210–1214CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  • Charles G. Cranfield
    • 1
    • 2
  • Anna Kloda
    • 3
  • Yury A. Nikolaev
    • 2
  • Adam D. Martinac
    • 4
  • Pietro Ridone
    • 2
    • 5
  • Navid Bavi
    • 6
    • 7
  • Omid Bavi
    • 8
  • Evgeny Petrov
    • 9
  • Andrew R. Battle
    • 10
  • Takeshi Nomura
    • 11
  • Paul R. Rohde
    • 2
  • Yoshitaka Nakayama
    • 2
  • Kadla R. Rosholm
    • 12
  • Charles D. Cox
    • 2
    • 5
  • Matthew A. Baker
    • 13
  • Boris Martinac
    • 2
    • 5
  1. 1.School of Life ScienceUniversity of Technology SydneyUltimoAustralia
  2. 2.Molecular Cardiology and Biophysics DivisionVictor Chang Cardiac Research InstituteDarlinghurst (Sydney)Australia
  3. 3.Department of Physiology and Pharmacology, School of Biomedical SciencesUniversity of QueenslandBrisbaneAustralia
  4. 4.Neuroscience Research AustraliaRandwickAustralia
  5. 5.St Vincent’s Clinical SchoolThe University of New South WalesSydneyAustralia
  6. 6.Institute for Biophysical DynamicsUniversity of ChicagoChicagoUSA
  7. 7.Department of Physiology and EMBL Australia Node for Single Molecule ScienceUniversity of New South WalesSydneyAustralia
  8. 8.Department of Mechanical and Aerospace EngineeringShiraz University of TechnologyShirazIran
  9. 9.Laboratory of Biochemistry and Molecular BiologyTomsk State UniversityTomskRussia
  10. 10.School of Biomedical SciencesQueensland University of TechnologyBrisbaneAustralia
  11. 11.Department of Physical Therapy, Faculty of RehabilitationKyushu Nutrition Welfare UniversityKitakyushuJapan
  12. 12.Sophion Bioscience A/SBallerupDenmark
  13. 13.School of Biotechnology and Biomolecular ScienceUniversity of New South WalesSydneyAustralia