Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Reconstitution of Ion Channels from Intracellular Membranes and Bacteria Not Amenable to Conventional Electrophysiological Techniques

  • Alan WilliamsEmail author
  • N. Lowri Thomas
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_372-1


Reconstitution should be defined as the process of re-introduction of a purified membrane protein into an artificial phospholipid membrane. However, in practice this term is applied to the transfer of either a purified protein or a vesicle of native membrane, containing ion channels, into an artificial membrane system that permits the characterization of channel function.


Why Reconstitute?

Over the last 50 years classical macroscopic and single channel electrophysiological approaches have facilitated enormous progress in our understanding of the identity and function of ion channels (Hille 2001). The vast majority of channels studied using these approaches are present in the surface membranes of cells; however, ion channels are also present in a number of intracellular membrane systems and organelles (Szewczyk and Just 2010). Some of these can be investigated using conventional electrophysiological approaches following the isolation and manipulation of nuclei...

This is a preview of subscription content, log in to check access.


  1. Andersson M, Jackman J et al (2011) Vesicle and bilayer formation of diphytanoylphosphotidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers’ electrical stability. Colloids Surf B: Biointerfaces 82:550–561CrossRefGoogle Scholar
  2. Barriga HMG, Booth P et al (2014) Droplet interface bilayer reconstitution and activity measurement of the mechanosensitive channel of large conductance from Escherichia coli. J R Soc Interface 11:20140404CrossRefGoogle Scholar
  3. Bayley H, Cronin B et al (2008) Droplet interface bilayers. Mol BioSyst 4:1191–1208CrossRefGoogle Scholar
  4. Bezprozvanny I (2005) The inositol 1,4,5-trisphosphate receptors. Cell Calcium 38:261–272CrossRefGoogle Scholar
  5. Castell OK, Berridge J et al (2012) Quantification of membrane protein inhibition by optical ion flux in a droplet interface bilayer array. Angew Chem Int Ed 51:3134–3138CrossRefGoogle Scholar
  6. Cortes DM, Cuello LG et al (2001) Molecular architecture of full-length KcsA. Role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol 117:165–180CrossRefGoogle Scholar
  7. Criado M, Keller BU (1987) A membrane fusion strategy for single-channel recordings of membranes usually non-accessible to patch-clamp pipette electrodes. FEBS Lett 224:172–176CrossRefGoogle Scholar
  8. Delcour AH, Martinac B et al (1989) Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J 56:631–636CrossRefGoogle Scholar
  9. Favre I, Sun YM et al (1999) Reconstitution of native and cloned channels into planar bilayers. Methods Enzymol 294:287–304CrossRefGoogle Scholar
  10. Foskett JK, White C et al (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658CrossRefGoogle Scholar
  11. Funakoshi K, Suzuki H et al (2006) Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal Chem 78:8169–8174CrossRefGoogle Scholar
  12. Gibb AJ (1995) Patch-clamp recording. In: Ashley RH (ed) Ion channels – a practical approach. Oxford University Press, OxfordGoogle Scholar
  13. Gross LCM, Castell OK et al (2011) Dynamic and reversible control of 2D membrane protein concentration in a droplet interface bilayer. Nano Lett 11:3324–3328CrossRefGoogle Scholar
  14. Heron AJ, Thompson JR et al (2007) Direct detection of membrane channels from gels using water-in-oil droplet bilayers. J Am Chem Soc 129:16042–16047CrossRefGoogle Scholar
  15. Heron AJ, Thompson JR et al (2009) Simultaneous measurement of ionic current and fluorescence from single protein pores. J Am Chem Soc 131:1652–1653CrossRefGoogle Scholar
  16. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Inc, SunderlandGoogle Scholar
  17. Jung SH, Choi S et al (2012) Storable droplet interface lipid bilayers for cell-free ion channel studies. Bioprocess Biosyst Eng 35:241–246CrossRefGoogle Scholar
  18. Kapoor R, Kim JH, et al (2008) Preparation of artificial bilayers for electrophysiological experiments. JoVE 20. http://www.jove.com/index/Details.stp?ID=1033
  19. Leptihn S, Thompson JR et al (2011) In Vitro reconstitution of eukaryotic ion channels using droplet interface bilayers. J Am Chem Soc 133:9370–9375CrossRefGoogle Scholar
  20. Leptihn S, Castell OK et al (2013) Constructing droplet interface bilayers from the contact of aqueous droplets in oil. Nat Protoc 8:1048–1057CrossRefGoogle Scholar
  21. MacKinnon R (2003) Potassium channels. FEBS Lett 555:62–65CrossRefGoogle Scholar
  22. Malmstadt N, Nash MA et al (2006) Automated formation of lipid bilayer membranes in a microfluidic device. Nano Lett 6:1961–1965CrossRefGoogle Scholar
  23. Miller C (1978) Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties. J Membr Biol 40:1–23CrossRefGoogle Scholar
  24. Nimigean CM (2006) A radioactive uptake assay to measure ion transport across ion channel-containing liposomes. Nat Protoc 1:1207–1212CrossRefGoogle Scholar
  25. Portonovo SA, Salazar CS et al (2013) hERG drug response measured in droplet bilayers. Biomed Microdevices 15:255–259CrossRefGoogle Scholar
  26. Sansom MSP, Shrivastava IH et al (2002) Potassium channels: structures, models, simulations. Biochim Biophys Acta 1565:294–307CrossRefGoogle Scholar
  27. Seddon AM, Curnow P et al (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117CrossRefGoogle Scholar
  28. Smith JS, Coronado R et al (1985) Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature 316:446–449CrossRefGoogle Scholar
  29. Syeda R, Holden MA et al (2008) Screening blockers against a potassium channel with a droplet interface bilayer array. J Am Chem Soc 130:15543–15548CrossRefGoogle Scholar
  30. Szewczyk A, Just W (2010) Intracellular ion channels. FEBS Lett 584:1941–2166CrossRefGoogle Scholar
  31. Tank DW, Miller C et al (1982) Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax. Proc Natl Acad Sci 79:7749–7753CrossRefGoogle Scholar
  32. Thompson JR, Heron AJ et al (2007) Enhanced stability and fluidity in droplet on hydrogel bilayers for measuring membrane protein diffusion. Nano Lett 7:3875–3878CrossRefGoogle Scholar
  33. Williams AJ (1994) An introduction to the methods available for ion channel reconstitution. In: Ogden D (ed) Microelectrode techniques – the plymouth workshop handbook. The Company of Biologists Limited, CambridgeGoogle Scholar
  34. Williams AJ (1995) The measurement of the function of ion channels reconstituted into artificial membranes. In: Ashley RH (ed) Ion channels – a practical approach. Oxford University Press, OxfordGoogle Scholar
  35. Zhou HX, Rivas G et al (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2019

Authors and Affiliations

  1. 1.Molecular Cardiology, Institute of Life SciencesSwansea University Medical SchoolSwanseaUK
  2. 2.School of Pharmacy & Pharmaceutical SciencesCardiff UniversityCardiffUK