Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Nucleic Acid NMR: Introduction

  • Masato KatahiraEmail author
  • Tsukasa Mashima
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_302-1




Nucleic acid NMR is the study of the DNA/RNA structure in solution with the NMR method.


NMR is a powerful tool to study the DNA/RNA structure in solution. It should be reminded that there are many examples in which the structure of a certain DNA/RNA in solution is quite different from that in crystal. This entry describes how the DNA/RNA structure can be determined by the NMR method. In addition to the established ways of the analysis, recent progresses and tips are also documented.

Firstly, three different ways of the DNA/RNA preparation are described. Secondly, the method of the resonance assignment, that is, the crucial step for the NMR analysis, is explained. Thirdly, the way to identify the mode of the base pair, that is, the key information to construct the structure, is described. Fourthly, the methods to derive various structural restraints are explained. Fifthly, the way to determine the structure by calculation by means of structural...

This is a preview of subscription content, log in to check access.


  1. Barnwal RP, Yang F et al (2017) Applications of NMR to structure determination of RNAs large and small. Arch Biochem Biophys 628:42–56CrossRefPubMedPubMedCentralGoogle Scholar
  2. Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39:5355–5365CrossRefPubMedGoogle Scholar
  3. Bax A, Kontaxis G et al (2001) Dipolar couplings in macromolecular structure determination. Methods Enzymol 339:127–174CrossRefPubMedGoogle Scholar
  4. Clore GM (2015) Practical aspects of paramagnetic relaxation enhancements in biological macromolecules. Methods Enzymol 564:485–497CrossRefPubMedGoogle Scholar
  5. Cromsigt J, van Buuren B et al (2001) Resonance assignment and structure determination for RNA. Methods Enzymol 338:371–399CrossRefPubMedGoogle Scholar
  6. da Silva MW (2007) NMR methods for studying quadruplex nucleic acids. Methods 43:264–277CrossRefGoogle Scholar
  7. Dominguez C, Schubert M et al (2011) Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 58:1–61CrossRefPubMedGoogle Scholar
  8. Duss O, Maris C et al (2010) A fast, efficient and sequence-independent method for flexible multiple segmental isotope labeling of RNA using ribozyme and RNase H cleavage. Nucleic Acids Res 38:e188CrossRefPubMedPubMedCentralGoogle Scholar
  9. Duss O, Konte ND et al (2015) Cut and paste RNA for nuclear magnetic resonance, paramagnetic resonance enhancement, and electron paramagnetic resonance structural studies. Methods Enzymol 565:537–562CrossRefGoogle Scholar
  10. Feigon J, Butcher SE et al (2001) Solution nuclear magnetic resonance probing of cation binding sites on nucleic acids. Methods Enzymol 338:400–443CrossRefPubMedGoogle Scholar
  11. Furtig B, Richter C et al (2003) NMR spectroscopy of RNA. Chembiochem 4:936–962CrossRefPubMedGoogle Scholar
  12. Furukawa A, Nagata T et al (2009) Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G. EMBO J 28:440–451CrossRefPubMedPubMedCentralGoogle Scholar
  13. Furukawa A, Sugase K et al (2014) Quantitative analysis of the location- and sequence-dependent deamination by APOBEC3G using real-time NMR. Angew Chem Int Ed 53:2349–2352CrossRefGoogle Scholar
  14. Grzesiek S, Cordier F et al (2001) Scalar couplings across hydrogen bonds. Methods Enzymol 338:111–133CrossRefPubMedGoogle Scholar
  15. Inomata A, Ohno H et al (2009) High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458:106–109CrossRefPubMedGoogle Scholar
  16. Keane SC, Heng X et al (2015) Structure of the HIV-1 RNA packaging signal. Science 348:917–921CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lukavsky PJ, Puglisi JD (2005) Structure determination of large biological RNAs. Methods Enzymol 394:399–416CrossRefPubMedGoogle Scholar
  18. Mashima T, Matsugami A et al (2009) Unique quadruplex structure and interaction of an RNA aptamer against bovine prion protein. Nucleic Acids Res 37:6249–6258CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mashima T, Nishikawa F et al (2012) Anti-prion activity of an RNA aptamer and its structural basis. Nucleic Acids Res 41:1355–1362CrossRefPubMedPubMedCentralGoogle Scholar
  20. Matsugami A, Ouhashi K et al (2001) An intramolecular quadruplex of (GGA)4 triplet repeat DNA with a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad, and its dimeric interaction. J Mol Biol 313:255–269CrossRefPubMedGoogle Scholar
  21. Matsugami A, Ohyama T et al (2008) Unexpected a-form formation of 4′-thioDNA in solution, revealed by NMR, and the implications as to the mechanism of nuclease resistance. Nucleic Acids Res 36:1805–1812CrossRefPubMedPubMedCentralGoogle Scholar
  22. McCallum SA, Pardi A (2003) Refined solution structure of the iron-responsive element RNA using residual dipolar couplings. J Mol Biol 326:1037–1050CrossRefPubMedGoogle Scholar
  23. Miyazaki Y, Irobalieva RN et al (2010) Structure of a conserved retroviral RNA packaging element by NMR spectroscopy and cryo-electron tomography. J Mol Biol 404:751–772CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nakano S, Mashima T et al (2011) Structural aspects for the recognition of ATP by ribonucleotide receptors. J Am Chem Soc 133:4567–4579CrossRefPubMedGoogle Scholar
  25. Ogino S, Kubo S et al (2009) Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O. J Am Chem Soc 131:10834–10835CrossRefPubMedGoogle Scholar
  26. Otting G (2010) Protein NMR using paramagnetic ions. Annu Rev Biophys 39:387–405CrossRefPubMedGoogle Scholar
  27. Phan AT, Patel DJ (2002) A site-specific low-enrichment 15N, 13C isotope-labelling approach to unambiguous NMR spectral assignments in nucleic acids. J Am Chem Soc 124:1160–1161CrossRefPubMedGoogle Scholar
  28. Ramos A, Varani G (1998) A new method to detect long-range protein-RNA contacts: NMR detection of electron-proton relaxation induced by nitroxide spin-labeled RNA. J Am Chem Soc 120:10992–10993CrossRefGoogle Scholar
  29. Sotoya H, Matsugami A et al (2004) Method for direct discrimination of intra- and intermolecular hydrogen bonds, and characterization of the G(:A):G(:A):G(:A):G heptad, with scalar couplings across hydrogen bonds. Nucleic Acids Res 32:51113–51118CrossRefGoogle Scholar
  30. Varani G, Aboul-ela F et al (1996) NMR investigation of RNA structure. Prog Nucl Magn Reson Spectrosc 29:51–127CrossRefGoogle Scholar
  31. Werner MH, Gupta V et al (2001) Uniform 13C/15N-labeling of DNA by tandem repeat amplification. Methods Enzymol 338:283–304CrossRefPubMedGoogle Scholar
  32. Yamaoki Y, Kiyoishi A et al (2018) The first successful observation of in-cell NMR signals of DNA and RNA in living human cells. Phys Chem Chem Phys 20:2982–2985CrossRefPubMedGoogle Scholar
  33. Zimmer DP, Crothers DM (1995) NMR of enzymatically synthesized uniformly 13C, 15N-labeled DNA oligonucleotides. Proc Natl Acad Sci U S A 92:3091–3095CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc 122:3791–3792CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  1. 1.Kyoto University, Institute of Advanced EnergyKyotoJapan

Section editors and affiliations

  • Mitsu Ikura

There are no affiliations available