Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Software Tools for Biological Structural Analysis Using Small-Angle X-Ray Solution Scattering

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_293-1


Small-angle scattering of X-rays (SAXS) is a powerful method for the low-resolution structural analysis of biological macromolecules in solution. The technique provides three-dimensional low-resolution structures, using ab initio and rigid body modelling, and allows a researcher to assess the oligomeric state of proteins and protein complexes. In addition, SAXS is a powerful tool for structure validation and the quantitative analysis of flexible systems and is highly complementary to the high-resolution methods of X-ray crystallography (see “Macromolecular Crystallography”) and NMR (see “NMR”). At present, SAXS analysis methods allow one to perform automated and rapid characterization of protein solutions in terms of low-resolution models, quaternary structures, and oligomeric composition. A brief overview of software tools available for the analysis of proteins in solution using SAXS is presented here.

Primary Data Reduction and Processing

The scattering patterns from...
This is a preview of subscription content, log in to check access.


  1. Chen PC, Hub JS (2014) Validating solution ensembles from molecular dynamics simulation by wide-angle X-ray scattering data. Biophys J 107:435–447CrossRefGoogle Scholar
  2. Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New YorkCrossRefGoogle Scholar
  3. Forster F, Webb B, Krukenberg KA, Tsuruta H, Agard DA, Sali A (2008) Integration of small-angle X-ray scattering data into structural modeling of proteins and their assemblies. J Mol Biol 382:1089–1106CrossRefGoogle Scholar
  4. Franke D, Jeffries CM, Svergun DI (2015) Correlation map, a goodness-of-fit test for one-dimensional X-ray scattering spectra. Nat Methods 12:419–422CrossRefGoogle Scholar
  5. Franke D, Petoukhov MV, Konarev PV, Pankovich A, Tuukkanen A, Mertens HDT, Kikhney AG, Hajizadeh NR, Franklin JM, Jeffries CM, Svergun DI (2017) ATSAS 2.8, a comprehensive data analysis suite for small angle scattering from macromolecular solutions. J Appl Crystallogr 50:1212–1225CrossRefGoogle Scholar
  6. Herranz-Trillo F, Groenning M, van Maarschalkerweerd A, Tauler R, Vestergaard B, Bernadó P (2017) Structural analysis of multi-component amyloid systems by chemometric SAXS data decomposition. Structure 25:5–15CrossRefGoogle Scholar
  7. Hopkins JB, Gillilan RE, Skou S (2017) BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Crystallogr 50:1545–1553CrossRefGoogle Scholar
  8. Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology – expanding the frontier while avoiding the pitfalls. Protein Sci 19:642–657CrossRefGoogle Scholar
  9. Konarev PV, Svergun DI (2015) A posteriori determination of the useful data range for small-angle scattering experiments on dilute monodisperse systems. IUCrJ 2:352–360CrossRefGoogle Scholar
  10. Konarev PV, Svergun DI (2018) Direct shape determination of intermediates in evolving macromolecular solutions from small-angle scattering data. IUCrJ 5:402–409CrossRefGoogle Scholar
  11. Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Crystallogr 39:277–286CrossRefGoogle Scholar
  12. Panjkovich A, Svergun DI (2016) Deciphering conformational transitions of proteins by small angle X-ray scattering and normal mode analysis. Phys Chem Chem Phys 18:5707–5719CrossRefGoogle Scholar
  13. Perkins SJ, Okemefuna AI, Fernando AN, Bonner A, Gilbert HE, Furtado PB (2008) X-ray and neutron scattering data and their constrained molecular modelling. Methods Cell Biol 84:375–423CrossRefGoogle Scholar
  14. Petoukhov MV, Svergun DI (2015) Ambiguity assessment of small-angle scattering curves from monodisperse systems. Acta Crystallogr D Biol Crystallogr 71:1051–1058CrossRefGoogle Scholar
  15. Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HDT, Konarev PV, Svergun DI (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 45:342–350CrossRefGoogle Scholar
  16. Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285CrossRefGoogle Scholar
  17. Saxton WO, Baumeister W (1982) The correlation averaging of a regularly arranged bacterial cell envelope protein. J Microsc 127:127–138CrossRefGoogle Scholar
  18. Svergun DI, Koch MHJ, Timmins PA, May RP (2013) Small angle X-ray and neutron scattering from solutions of biological macromolecules. Oxford University Press, OxfordCrossRefGoogle Scholar
  19. Trewhella J, Duff AP, Durand D, Gabel F, Guss JM, Hendrickson WA, Hura GL, Jacques DA, Kirby NM, Kwan AH, Perez J, Pollack L, Ryan TM, Sali A, Schneidman-Duhovny D, Schwede T, Svergun DI, Sugiyama M, Tainer JA, Vachette P, Westbrook J, Whitten AE (2017) 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update. Acta Crystallogr D Struct Biol 73:710–728CrossRefGoogle Scholar
  20. Tria G, Mertens HD, Kachala M, Svergun DI (2015) Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ 2:207–217CrossRefGoogle Scholar
  21. Tuukkanen AT, Kleywegt GJ, Svergun DI (2016) Resolution of ab initio shapes determined from small-angle scattering. IUCrJ 3:440–447CrossRefGoogle Scholar
  22. Valentini E, Kikhney AG, Previtali G, Jeffries CM, Svergun DI (2015) SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res 43:357–363CrossRefGoogle Scholar
  23. Webb B, Sali A (2014) Protein structure modeling with MODELLER. Methods Mol Biol 1137:1–15CrossRefGoogle Scholar
  24. Yang SC, Park S, Makowski L, Roux B (2009) A rapid coarse residue-based computational method for X-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes. Biophys J 96:4449–4463CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.European Molecular Biology LaboratoryHamburg OutstationHamburgGermany
  2. 2.A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Center “Crystallography and photonics” of Russian Academy of SciencesMoscowRussia
  3. 3.National Research Center “Kurchatov Institute”MoscowRussia

Section editors and affiliations

  • Stephen E. Harding
    • 1
  • Mary K. Phillips-Jones
    • 2
  1. 1.School of Biosciences, NCMH LaboratoryUniversity of NottinghamSutton BoningtonUK
  2. 2.National Centre for Macromolecular HydrodynamicsUniversity of NottinghamSutton BoningtonUnited Kingdom