Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Near-Infrared Spectroscopy in Biological Molecules and Tissues

  • Yukihiro Ozaki
  • Christian W. Huck
  • Mika Ishigaki
  • Daitaro Ishikawa
  • Akifumi Ikehata
  • Hideyuki Shinzawa
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_138-1

Synonyms

Definition

This chapter describes principle, instrumentation, analysis method (chemometrics) and biological applications of near-infrared (NIR) spectroscopy. Applications discussed include the studies of protein structure, denaturation and hydration, quantitative in vivo analysis of blood glucose, mapping brain function, and imaging.

Introduction

Near-infrared (NIR) spectroscopy is a spectroscopy in the region of 800–2500 nm (12500–4000 cm−1), being mainly concerned with absorption spectroscopy and diffuse reflectance spectroscopy (Siesler et al. 2002; Ozaki et al. 2007, 2017; Workman and Weyer 2007). NIR spectroscopy is relatively new in biophysics, but its application to biological materials stretched back nearly 50 years. In 1960s Norris et al. tried to...

This is a preview of subscription content, log in to check access.

References

  1. Burns DA, Ciurczak EW (eds) (2007) Handbook of Near-Infrared Analysis. CRC press, Boca RantonGoogle Scholar
  2. Gendrin C, Roggo Y, Collet C, Pharm J (2008) Pharmaceutical applications of vibrational chemical imaging and chemometrics: A review. Biomed Anal 48:533–553CrossRefGoogle Scholar
  3. Guo SJ, Wang L, Wang W, Fang YX, Wang EK (2007) Bifunctional Au@ Pt hybrid nanorods. J Colloid Interface Sci 315:363CrossRefPubMedGoogle Scholar
  4. Hawrysz DJ, Sevick-Muraca EM (2000) Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents1. Neoplasia 2:388CrossRefPubMedPubMedCentralGoogle Scholar
  5. Heise HM (2002) In: Siesler HW, Ozaki Y, Kawata S, Heise HM (eds) Near-infrared spectroscopy. Wiley-VCH, Weinheim, p 259Google Scholar
  6. Henn R, Kirchler CG, Grossgut M-E, Huck CW (2017) Comparison of sensitivity to artificial spectral errors and multivariate LOD in NIR spectroscopy–Determining the performance of miniaturizations on melamine in milk powder. Talanta 166:109–118CrossRefPubMedGoogle Scholar
  7. Hu Y, Zhang J, Sato H, Futami Y, Noda I, Ozaki Y (2006) C–H. . .O=C Hydrogen bonding and isothermal crystallization kinetics of poly (3-hydroxybutyrate) investigated by near-infrared spectroscopy. Macromolecules 39:3841CrossRefGoogle Scholar
  8. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115CrossRefGoogle Scholar
  9. Huck CW (2017) Miniaturized MIR and NIR sensors for medicinal plant quality control. Spectroscopy 32(8):8Google Scholar
  10. Ishigaki M, Kawasaki S, Ishikawa D, Ozaki Y (2016a) Near-infrared spectroscopy and imaging studies of fertilized fish eggs: in vivo monitoring of egg growth at the molecular level. Sci Rep 6:20066CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ishigaki M, Yasui Y, Puangchit P, Kawasaki S, Ozaki Y (2016b) In vivo monitoring of the growth of fertilized eggs of medaka fish (Oryzias latipes) by near-infrared spectroscopy and near-infrared imaging—a marked change in the relative content of weakly hydrogen-bonded water in egg yolk just before hatching. Molecules 21:1003CrossRefGoogle Scholar
  12. Ishikawa D, Murayama K, Awa K, Genkawa T, Komiyama M, Kazarian SG, Ozaki Y (2013) Application of a newly developed portable NIR imaging device to monitor the dissolution process of tablets. Anal Bioanal Chem 405:9401CrossRefPubMedGoogle Scholar
  13. Ishikawa D, Shinzawa H, Genkawa T, Kazarian SG, Ozaki Y (2014) Recent progress of near-infrared (NIR) imaging—development of novel instruments and their applicability for practical situations—. Anal Sci 30:143CrossRefPubMedGoogle Scholar
  14. Jiang J–H, Ozaki Y (2002) Self-modeling curve resolution (SMCR): principles, techniques, and applications. Appl Spectrosc Rev 37:321CrossRefGoogle Scholar
  15. Kim F, Song J-H, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316CrossRefPubMedGoogle Scholar
  16. Kirchler CG, Pezzei CK, Beć KB, Mayr S, Ishigaki M, Ozaki Y, Huck CW (2017) Critical evaluation of spectral information of benchtop vs. portable near-infrared spectrometers: quantum chemistry and two-dimensional correlation spectroscopy for a better understanding of PLS regression models of the rosmarinic acid content in Rosmarini folium. Analyst 142(3):455–464CrossRefPubMedGoogle Scholar
  17. Lutz OMD, Bonn GK, Rode BM, Huck CW (2014) Reproducible quantification of ethanol in gasoline via a customized mobile near-infrared spectrometer. Anal Chim Acta 826:61–68CrossRefPubMedGoogle Scholar
  18. Næs T, Isaksson T, Fearn T, Davies T (2002) A user-friendly guide to multivariate calibration and classification. NIR publications, ChichesterGoogle Scholar
  19. Noda I, Ozaki Y (2004) Two-dimensional correlation spectroscopy-application in vibrational spectroscopy and optical spectroscopy. Wiley, ChichesterCrossRefGoogle Scholar
  20. Ozaki Y, McClure WF, Christy AA (eds) (2007) Near-infrared spectroscopy in food science and technology. Wiley-Interscience, HobokenGoogle Scholar
  21. Ozaki Y, Huck CW, Bec KB (2017) In: Gupta VP (ed) Molecular and laser spectroscopy. Elsevier, Amsterdam, p 11CrossRefGoogle Scholar
  22. Pallua JD, Pezzei C, Zelger B, Schaefer G, Bittner LK, Huck-Pezzei VA, Schoenbichler SA, Hahn H, Kloss-Brandstaetter A, Kloss F, Bonn GK, Huck CW (2012) Fourier transform infrared imaging analysis in discrimination studies of squamous cell carcinoma. Analyst 137:3965–3974CrossRefPubMedGoogle Scholar
  23. Petter CH, Heigl N, Bakry R, Bonn GK, Ritsch A, Huck CW (2009) Quantification of low-density and high-density lipoproteins in human serum by material enhanced infrared spectroscopy (MEIRS). Curr Med Chem 16:8Google Scholar
  24. Pezzei C, Pallua JD, Schaefer G, Seifarth C, Huck-Pezzei V, Bittner LK, Klocker H, Bartsch G, Bonn GK, Huck CW (2010) Characterization of normal and malignant prostate tissue by Fourier transform infrared microspectroscopy. Mol BioSyst 6:2287–2295CrossRefPubMedGoogle Scholar
  25. Salzer R, Siesler HW (2009) Infrared and Raman spectroscopic imaging. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  26. Sasic S, Ozaki Y (2011) Raman, infrared, and near-infrared imaging. Wiley, New YorkGoogle Scholar
  27. Schönbichler SA, Bittner LKH, Weiss AKH, Griesser UJ, Pallua JD, Huck CW (2013) Comparison of NIR chemical imaging with conventional NIR, Raman and ATR-IR spectroscopy for quantification of furosemide crystal polymorphs in ternary powder mixtures. Eur J Pharm Biopharm 84(3):616CrossRefPubMedGoogle Scholar
  28. Shinzawa H, Awa K, Ozaki Y, Sato H (2009) Near-infrared imaging analysis of cellulose tablets by a band position shift. Appl Spectrosc 63:974CrossRefPubMedGoogle Scholar
  29. Siesler HW, Ozaki Y, Kawata S, Heise HM (eds) (2002) Near-infrared spectroscopy. Wiley-VCH, WeinheimGoogle Scholar
  30. Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2:26CrossRefPubMedPubMedCentralGoogle Scholar
  31. Workman J Jr, Weyer L (2007) Practical guide to near-infrared spectroscopy. CRC Press, Boca RatonGoogle Scholar
  32. Wu Y, Czarnik-Matusewicz B, Murayama K, Ozaki Y (2000) Two-dimensional near-infrared spectroscopy study of human serum albumin in aqueous solutions: using overtones and combination modes to monitor temperature-dependent changes in the secondary structure. J Phys Chem 104:5840CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  • Yukihiro Ozaki
    • 1
  • Christian W. Huck
    • 2
  • Mika Ishigaki
    • 1
  • Daitaro Ishikawa
    • 3
  • Akifumi Ikehata
    • 4
  • Hideyuki Shinzawa
    • 5
  1. 1.Department of Chemistry, School of Science and TechnologyKwansei Gakuin UniversitySandaJapan
  2. 2.Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and BiomedicineLeopold-Franzens UniversityInnsbruckAustria
  3. 3.Graduate School of AgricultureTohoku UniversitySendaiJapan
  4. 4.National Food Research Institute, National Agriculture and Food Research Organization (NARO)TsukubaJapan
  5. 5.Advanced Institute of Science and TechnologyTsukubaJapan

Section editors and affiliations

  • Andreas Barth
    • 1
  1. 1.Department of Biochemistry and Biophysics, Arrhenius LaboratoriesStockholm UniversityStockholmSweden