Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Vibrational Circular Dichroism of Biopolymers

  • Timothy A. Keiderling
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_125-1

Synonyms

Definition

Vibrational circular dichroism is experimentally measured as the differential absorption of left and right circularly polarized light caused by excitation of molecular vibrational transitions in a chiral environment. In biopolymers, this can be used for secondary structure determinations and arises primarily from coupling of repeating (locally achiral) units in the polymer (e.g., amides in proteins, bases and phosphates in nucleic acids). It can also detect formation of some fibrils.

Basic Characteristics

Vibrational circular dichroism (VCD) is a manifestation of chirality or handedness of molecular vibrational transitions, which is expressed as ΔA = AL − ARand measured in the infrared (IR) region with purpose-built or modified FTIR spectrometers that encompass polarization sensitivity for detection of differential absorbance. The dominant use of VCD at present, which...

This is a preview of subscription content, log in to check access.

References

  1. Barron LD (2006) Structure and behaviour of biomolecules from Raman optical activity. Curr Opin Struct Biol 16:638–643CrossRefPubMedGoogle Scholar
  2. Baumruk V, Keiderling TA (1993) Vibrational circular dichroism of proteins in H2O solution. J Am Chem Soc 115:6939–6942CrossRefGoogle Scholar
  3. Baumruk V, Pancoska P, Keiderling TA (1996) Predictions of Secondary Structure using Statistical Analyses of Electronic and Vibrational Circular Dichroism and Fourier Transform Infrared Spectra of Proteins in H2O, J Molec Biol 259:774–91CrossRefPubMedGoogle Scholar
  4. Chi H, Lakhani A, Roy A, Nakaema M, Keiderling TA (2010) Experimental and Theoretical Spectroscopic Study of 310-Helical Peptides Using Isotopic Labeling to Evaluate Vibrational Coupling. J Phys Chem B 114:12744–12753Google Scholar
  5. Dukor RK, Keiderling TA (1991) Reassessment of the random coil conformation: vibrational CD study of proline oligopeptides and related polypeptides. Biopolymers 31:1747–1761CrossRefPubMedGoogle Scholar
  6. Haris PI (2000) Fourier transform infrared spectroscopic studies of peptides: potentials and pitfalls. In: Ram Singh RB (ed) Infrared analysis of peptides and proteins: principles and applications, ACS symposium series. ACS, Washington, DC, pp 54–95Google Scholar
  7. Huang R, Kubelka J, Barber-Armstrong W, Silva RAGD, Decatur SM, Keiderling TA (2004) Nature of vibrational coupling in helical peptides: an isotopic labeling study. J Am Chem Soc 126:2346–2354CrossRefPubMedGoogle Scholar
  8. Keiderling TA (2017) Mini review: sensing site specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides. Chirality 29:763CrossRefPubMedGoogle Scholar
  9. Keiderling TA, Lakhani A (2012) Chapter 22. Conformational studies of biopolymers, peptides, proteins, and nucleic acids. A role for vibrational circular dichroism. In: Berova N, Woody RW, Polavarapu P, Nakanishi K (eds) Comprehensive Chiroptical spectroscopy, vol 2. Wiley, New York, pp 707–758CrossRefGoogle Scholar
  10. Keiderling TA, Kubelka J, Hilario J (2006) Vibrational circular dichroism of biopolymers. Summary of methods and applications. In: Braiman M, Gregoriou V (eds) Vibrational spectroscopy of polymers and biological systems. Taylor & Francis, Atlanta, pp 253–324Google Scholar
  11. Kubelka J, Silva RAGD, Keiderling TA (2002) Discrimination between peptide 310- and α-helices. Theoretical analysis of the impact of α-methyl substitution on experimental spectra. J Am Chem Soc 124:5325–5332CrossRefPubMedGoogle Scholar
  12. Kubelka J, Bour P, Keiderling TA (2009) Quantum mechanical calculations of peptide vibrational force fields and spectral intensities. In: Barth A, Haris PI (eds) Biological and biomedical infrared spectroscopy, vol 2. Ios Press, Amsterdam, pp 178–223Google Scholar
  13. Kurouski D, Dukor RK, Lu X, Nafie LA, Lednev I (2012) Normal and reversed supramolecular chirality of insulin fibrils probed by vibrational circular dichroism at the protofilament level of fibril structure. Biophys J 103:522–531CrossRefPubMedPubMedCentralGoogle Scholar
  14. Melcerova A, Kessler J, Bour P, Kaminsky J (2016) Simulation of Raman optical activity of multi-component monosaccharide samples. Phys Chem Chem Phys 18:2130–2142CrossRefGoogle Scholar
  15. Nafie LA (2011) Vibrational optical activity: principles and applications. Wiley, New YorkCrossRefGoogle Scholar
  16. Pancoska P, Keiderling TA (1991) Statistical Analyses of Electronic and Vibrational Circular Dichroism for Secondary Structure Prediction of Selected Proteins. Biochemistry 30:6885–6895CrossRefPubMedGoogle Scholar
  17. Pancoska P, Bitto E, Janota V, Urbanova M, Gupta VP, Keiderling TA (1995) Comparison and limits of accuracy for statistical analyses of protein vibrational and electronic circular dichroism spectra in terms of correlations to and predictions of protein secondary structure. Protein Sci 4:1384–1401CrossRefPubMedPubMedCentralGoogle Scholar
  18. Silva RAGD, Kubelka J, Decatur SM, Bour P, Keiderling TA (2000) Site-specific conformational determination in thermal unfolding studies of helical peptides using vibrational circular dichroism with isotopic substitution. Proc Natl Acad Sci U S A 97:8318–8323CrossRefPubMedPubMedCentralGoogle Scholar
  19. Stephens PJ, Devlin FJ, Pan J-J (2008) The determination of the absolute configurations of chiral molecules using vibrational circular dichroism (VCD) spectroscopy. Chirality 20:643–663CrossRefPubMedGoogle Scholar
  20. Stephens PJ, Devlin FJ, Cheeseman JR (2012) VCD spectroscopy for organic chemists. CRC Press/Taylor & Francis, Boca RatonGoogle Scholar
  21. Zhang G, Babenko V, Dzwolak W, Keiderling TA (2015) Dimethyl sulfoxide induced destabilization and disassembly of various structural variants of insulin fibrils monitored by vibrational circular dichroism. Biochemistry 54:7193–7202CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Illinois at ChicagoChicagoUSA

Section editors and affiliations

  • Andreas Barth
    • 1
  1. 1.Department of Biochemistry and Biophysics, Arrhenius LaboratoriesStockholm UniversityStockholmSweden