Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Structure, Substrate Recognition, and Mechanism of the Na+-Hydantoin Membrane Transport Protein, Mhp1

  • Scott M. Jackson
  • Ekaterina Ivanova
  • Antonio N. Calabrese
  • Anna Polyakova
  • David J. Sharples
  • Tatsuro Shimamura
  • Florian Brueckner
  • Katie J. Simmons
  • Michelle Sahai
  • Homa Majd
  • Edmund Kunji
  • Irshad Ahmad
  • Simone Weyand
  • Shun’ichi Suzuki
  • Alison E. Ashcroft
  • Maria Kokkinidou
  • Arwen Pearson
  • Oliver Beckstein
  • Stephen A. Baldwin
  • So Iwata
  • Alexander D. Cameron
  • Peter J. F. Henderson
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_10091-1

Synonyms

Definition

Mhp1 is a member of the nucleobase cation symporter-1 (NCS-1) family designated A.2.39.5 (Saier et al. 2006, 2009; Ren and Paulsen 2010). The substrates for Mhp1are hydantoins substituted with aromatic groups at the 5-position. The wild-type protein contains 489 amino acids (Suzuki and Henderson 2006), modestly modified in a genetic construct at the N-terminus and C-terminus, where a (His) 6 tag is incorporated to facilitate amplified expression, purification, and crystallization (Suzuki and Henderson 2006; Shimamura et al. 2008). The transport reaction of Mhp1 is:
$$ \mathrm{Hydantoin}\ \left(\mathrm{out}\right)+{\mathrm{Na}}^{+}\ \left(\mathrm{out}\right)\to \mathrm{Hydantoin}\...
This is a preview of subscription content, log in to check access.

References

  1. Abramson J, Wright EM (2009) Structure and function of Na+-symporters with inverted repeats. Curr Opin Struct Biol 19:425–432CrossRefGoogle Scholar
  2. Adelman JL, Dale AL, Zwier MC, Bhatt D, Chong LT, Zuckerman DM, Grabe M (2011) Simulations of the alternating access mechanism of the sodium symporter Mhp1. Biophys J 101:2399–2407CrossRefGoogle Scholar
  3. Boudker O, Verdon G (2010) Structural perspectives on secondary active transporters. Trends Pharmacol Sci 31:418–426CrossRefGoogle Scholar
  4. Calabrese AN, Jackson SM, Jones LN, Beckstein O, Heinkel F, Gsponer J, Sans M, Kokkinidou M, Pearson AR, Radford SE, Ashcroft AE, Henderson PJF (2017) Topological dissection of the membrane transport protein Mhp1 derived from cysteine accessibility and mass spectrometry. Anal Chem 89:8844–8852CrossRefGoogle Scholar
  5. Claxton DP, Kazmier K, Mishra S, Mchaourab HS (2015) Navigating membrane protein structure, dynamics, and energy landscapes using spin labeling and EPR spectroscopy. Methods Enzymol 564:349–387CrossRefGoogle Scholar
  6. Cameron AD, Beckstein O, Henderson PJF (2012) Membrane transport proteins: the five-helix inverted repeat superfamily. Encyclopaedia of Biophysics (Roberts GK, Watts A eds) 3:1481–1485Google Scholar
  7. de Koning H, Diallinas G (2000) Nucleobase transporters. Mol Membr Biol 17:75–94CrossRefGoogle Scholar
  8. Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+-sugar symport. Science 321:810–814CrossRefGoogle Scholar
  9. Forrest LR, Rudnick G (2009) The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology 24:377–386CrossRefGoogle Scholar
  10. Forrest LR, Kraemer R, Ziegler C (2011) The structural basis of secondary active transport mechanisms. Biochim Biophys Acta 1807:167–188CrossRefGoogle Scholar
  11. Girke C, Daumann M, Niopek-Witz S, Mohlmann T (2014) Nucleobase and nucleoside transport and integration into plant metabolism. Front Plant Sci 5:443CrossRefGoogle Scholar
  12. Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:969–970CrossRefGoogle Scholar
  13. Javier Las Heras-Vázquez F, Clemente-Jiménez JM, Martínez-Rodríguez S, Rodríguez-Vico F (2009) Hydantoin racemase: the key enzyme for the production of optically pure α-amino acids, Chap 12. In: Fessner W-D, Anthonsen T (eds) Modern biocatalysis: stereoselective and environmentally friendly reactions. Wiley-VCH, WeinheimGoogle Scholar
  14. Kazmier K, Sharma S, Islam SM, Roux B, Mchaourab HS (2014) Conformational cycle and ion coupling mechanism of the Na+/hydantoin transporter Mhp1. Proc Natl Acad Sci U S A 111:14752–14757CrossRefGoogle Scholar
  15. Krishnamurthy H, Gouaux E (2012) X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481(7382):469–474CrossRefGoogle Scholar
  16. Krishnamurthy H, Piscitelli CL, Gouaux E (2009) Unlocking the molecular secrets of sodium-coupled transporters. Nature 459:347–355CrossRefGoogle Scholar
  17. Krypotou E, Kosti V, Amillis S, Myrianthopoulos V, Mikros E, Diallinas G (2012) Modeling, substrate docking, and mutational analysis identify residues essential for the function and specificity of a eukaryotic purine-cytosine NCS1 transporter. J Biol Chem 287(44):36792–36803CrossRefGoogle Scholar
  18. Krypotou E, Evangelidis T, Bobonis J, Pittis AA, Gabaldon T, Scazzocchio C, Mikros E, Diallinas G (2015a) Origin, diversification and substrate specificity in the family of NCS1/FUR transporters. Mol Microbiol 96(5):927–950CrossRefGoogle Scholar
  19. Krypotou E, Scazzocchio C, Diallinas G (2015b) Functional characterization of NAT/NCS2 proteins of Aspergillus brasiliensis reveals a genuine xanthine-uric acid transporter and an intrinsically misfolded polypeptide. Fungal Genet Biol 75:56–63CrossRefGoogle Scholar
  20. Mourad GS, Tippmann-Crosby J, Hunt KA, Gicheru Y, Bade K, Mansfield TA, Schultes NP (2012) Genetic and molecular characterization reveals a unique nucleobase cation symporter 1 in Arabidopsis. FEBS Lett 586(9):1370–1378CrossRefGoogle Scholar
  21. Rapp M, Schein J, Hunt KA, Nalam V, Mourad GS, Schultes NP (2016) The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility. Protoplasma 253(2):611–623CrossRefGoogle Scholar
  22. Ren Q, Paulsen IT (2010) Transport DB. http://www.membranetransport.org/. Accessed 1 May 2012
  23. Saier MH, Tran CV, Barabote RD (2006) TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res 34(Database issue):D181–D186CrossRefGoogle Scholar
  24. Saier MH Jr, Yen MR, Noto K, Tamang DG, Elkan C (2009) The transporter classification database: recent advances. Nucleic Acids Res 37:D274–D278CrossRefGoogle Scholar
  25. Sanguinetti M, Amillis S, Pantano S, Scazzocchio C, Ramon A (2014) Modelling and mutational analysis of Aspergillus nidulans UreA, a member of the subfamily of urea/H(+) transporters in fungi and plants. Open Biol 4(6):140070CrossRefGoogle Scholar
  26. Schein JR, Hunt KA, Minton JA, Schultes NP, Mourad GS (2013) The nucleobase cation symporter 1 of Chlamydomonas reinhardtii and that of the evolutionarily distant Arabidopsis thaliana display parallel function and establish a plant-specific solute transport profile. Plant Physiol Biochem 70:52–60CrossRefGoogle Scholar
  27. Shimamura T, Yajima S, O’Reilly J, Rutherford NG, Henderson PJF, Iwata S (2008) Crystallization of the hydantoin transporter Mhp1 from Microbacterium liquefaciens. Acta Crystallogr F64:1172–1174Google Scholar
  28. Shimamura T, Weyand S, Beckstein O, Rutherford NG, Hadden JM, Sharples D, Sansom MPS, Iwata S, Henderson PJF, Cameron AD (2010) Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter, Mhp1. Science 328:470–473CrossRefGoogle Scholar
  29. Simmons KJ, Jackson SM, Brueckner F, Patching SG, Beckstein O, Ivanova E, Geng T, Weyand S, Drew D, Lanigan J, Sharples DJ, Sansom MS, Iwata S, Fishwick CW, Johnson AP, Cameron AD, Henderson PJ (2014) Molecular mechanism of ligand recognition by membrane transport protein, Mhp1. EMBO J 33:1831–1844CrossRefGoogle Scholar
  30. Song HD, Zhu F (2015) Conformational changes in two inter-helical loops of Mhp1 membrane transporter. PLoS One 10(7):e0133388CrossRefGoogle Scholar
  31. Suzuki S, Henderson PJF (2006) The hydantoin transport protein from Microbacterium liquefaciens. J Bacteriol 188:3329–3336CrossRefGoogle Scholar
  32. Suzuki S, Takenaka Y, Onishi N, Yokozeki K (2005) Molecular cloning and expression of the hyu genes of Microbacterium liquefaciens responsible for the conversion of 5-substituted hydantoins to alpha amino acids, in Escherichia coli. Biosci Biotechnol Biochem 69:1473–1482CrossRefGoogle Scholar
  33. Vastermak A, Wollwage S, Houle ME, Rio R, Saier MH Jr (2014) Expansion of the APC superfamily of secondary carriers. Proteins 82:2797–2811CrossRefGoogle Scholar
  34. Watanabe A, Choe S, Chaptal V, Rosenberg JM, Wright EM, Grabe M, Abramson J (2010) The mechanism of sodium and substrate release from the binding pocket of vSGLT. Nature 468:988–991CrossRefGoogle Scholar
  35. Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O’Reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PCJ, Iwata S, Henderson PJF, Cameron AD (2008) Molecular basis of the alternating access model of membrane transport: structure of a nucleobase-cation-symport-1 family transporter. Science 322:709–713CrossRefGoogle Scholar
  36. Weyand S, Ma P, Beckstein O, Baldwin J, Jackson S, Suzuki S, Shimamura T, Sansom MSP, Iwata S, Cameron AD, Baldwin SA, Henderson PJF (2010) The nucleobase-cation-symport-1 family of membrane transport proteins. In: Messerschmidt A (ed) Handbook of metalloproteins. Wiley, Chichester, pp 848–864Google Scholar
  37. Weyand S, Shimamura T, Beckstein O, Sansom MPS, Iwata S, Henderson PJF, Cameron AD (2011) The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1. J Synchrotron Radiat 18:20–23CrossRefGoogle Scholar
  38. Witz S, Panwar P, Schober M, Deppe J, Pasha FA, Lemieux MJ, Mohlmann T (2014) Structure-function relationship of a plant NCS1 member – homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis. PLoS One 9(3):pe91343CrossRefGoogle Scholar
  39. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437: 215–223CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies’ Association (EBSA) 2019

Authors and Affiliations

  • Scott M. Jackson
    • 1
  • Ekaterina Ivanova
    • 2
  • Antonio N. Calabrese
    • 2
  • Anna Polyakova
    • 2
  • David J. Sharples
    • 2
  • Tatsuro Shimamura
    • 3
    • 4
  • Florian Brueckner
    • 4
    • 5
  • Katie J. Simmons
    • 2
  • Michelle Sahai
    • 6
  • Homa Majd
    • 6
  • Edmund Kunji
    • 7
  • Irshad Ahmad
    • 2
  • Simone Weyand
    • 4
  • Shun’ichi Suzuki
    • 8
  • Alison E. Ashcroft
    • 2
  • Maria Kokkinidou
    • 9
  • Arwen Pearson
    • 2
    • 9
  • Oliver Beckstein
    • 10
  • Stephen A. Baldwin
    • 2
  • So Iwata
    • 3
    • 4
  • Alexander D. Cameron
    • 4
    • 11
  • Peter J. F. Henderson
    • 2
  1. 1.Astbury Centre for Structural Molecular Biology, School of BioMedical SciencesUniversity of LeedsLeedsUK
  2. 2.Astbury Centre for Structural Molecular Biology, Institute of Membrane and Systems BiologyUniversity of LeedsLeedsUK
  3. 3.Department of Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
  4. 4.Membrane Protein LaboratoryDiamond Light Source, Harwell Science and Innovation CampusDidcotUK
  5. 5.Formycon AGLudwig-Maximilians Universität MünchenMunichGermany
  6. 6.Biomedical SciencesUniversity of Roehampton, Whitelands CollegeLondonUK
  7. 7.Mitochondrial Biology UnitUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUK
  8. 8.Ajinomoto Co. Inc.Kawasaki, KanagawaJapan
  9. 9.Hamburg Centre for Ultrafast ImagingUniversität HamburgHamburgGermany
  10. 10.Department of PhysicsArizona State UniversityTempeUSA
  11. 11.School of Life SciencesUniversity of WarwickCoventryUK

Section editors and affiliations

  • Peter J. F. Henderson
    • 1
  1. 1.Astbury Centre for Structural Molecular Biology and School of BioMedical SciencesUniversity of LeedsLeedsUK