Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Structural Aspects of UapA the H+-Xanthine/Uric Acid Transporter from Aspergillus nidulans

  • Yilmaz Alguel
  • Sotiris Amillis
  • Euan Pyle
  • Argyris Politis
  • Emmanuel Mikros
  • Alexander D. Cameron
  • George Diallinas
  • Bernadette Byrne
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_10089-1

Definition

UapA is a member of the nucleobase ascorbate transporter (NAT) family, also known as the nucleobase-cation-symport-2 (NCS-2) family, designated A.2.40 in the Transporter Classification Database (TCDB) (Saier et al. 2006, 2009, 2016). See also Kourkoulou et al., Nucleobase-Ascorbate-Transporter (NAT) Family this volume. UapA is a H+-dependent symporter responsible for uptake of the purines, xanthine and uric acid. The wild-type protein contains 574 residues (Diallinas and Scazzocchio 1989). A modified construct containing a single point mutation (G411V) and lacking the N-terminal 11 amino acids termed UapAG411VΔ1−11 (Leung et al. 2013) was used for recombinant expression, isolation, crystallization, and structure determination. This protein binds xanthine (Leung et al. 2013) and effectively traffics to the membrane but is transport inactive (Koukaki et al. 2005). The purified UapAG411VΔ1−11 protein is sufficiently stable for crystallization (Alguel et al. 2016) and analysis...

This is a preview of subscription content, log in to check access.

References

  1. Alguel Y, Amillis S, Leung J, Lambrinidis G, Capaldi S, Scull NJ, Craven G, Iwata S, Armstrong A, Mikros E, Diallinas G, Cameron AD, Byrne B (2016) Structure of eukaryotic purine/H(+) symporter UapA suggests a role for homodimerization in transport activity. Nat Commun 7:11336.  https://doi.org/10.1038/ncomms11336CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amillis S, Kosti V, Pantazopoulou A, Mikros E, Diallinas G (2011) Mutational analysis and modeling reveal functionally critical residues in transmembrane segments 1 and 3 of the UapA transporter. J Mol Biol 411:567–580.  https://doi.org/10.1016/j.jmb.2011.06.024CrossRefPubMedGoogle Scholar
  3. Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, Abe Y, Hino T, Ikeda-Suno C, Kuma H, Kang D, Murata T, Hamakubo T, Cameron AD, Kobayashi T, Hamasaki N, Iwata S (2015) Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 350:680–684.  https://doi.org/10.1126/science.aaa4335CrossRefPubMedGoogle Scholar
  4. Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445:387–393.  https://doi.org/10.1038/nature05455CrossRefPubMedGoogle Scholar
  5. Chang Y-N, Geertsma ER (2017) The novel class of seven transmembrane segment inverted repeat carriers. Biol Chem 398:165–173PubMedGoogle Scholar
  6. Diallinas G, Scazzocchio C (1989) A gene coding for the uric acid-xanthine permease of Aspergillus nidulans: inactivational cloning, characterization, and sequence of a cis-acting mutation. Genetics 122:341–350PubMedPubMedCentralGoogle Scholar
  7. Geertsma ER, Chang Y-N, Shaik FR, Neldner Y, Pardon E, Steyaert J, Dutzler R (2015) Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 22:803–808.  https://doi.org/10.1038/nsmb.3091CrossRefPubMedGoogle Scholar
  8. Gupta K, Donlan JAC, Hopper JTS, Uzdavinys P, Landreh M, Struwe WB, Drew D, Baldwin AJ, Stansfeld PJ, Robinson CV (2017) The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 1–15.  https://doi.org/10.1038/nature20820
  9. Hirschi M, Johnson ZL, Lee S-Y (2017) Visualizing multistep elevator-like transitions of a nucleoside transporter. Nature 459:347.  https://doi.org/10.1016/bs.mie.2014.11.048CrossRefGoogle Scholar
  10. Kosti V, Papageorgiou I, Diallinas G (2010) Dynamic elements at both cytoplasmically and extracellularly facing sides of the UapA transporter selectively control the accessibility of substrates to their translocation pathway. J Mol Biol 397:1132–1143.  https://doi.org/10.1016/j.jmb.2010.02.037CrossRefPubMedGoogle Scholar
  11. Kosti V, Lambrinidis G, Myrianthopoulos V, Diallinas G, Mikros E (2012) Identification of the substrate recognition and transport pathway in a eukaryotic member of the nucleobase-ascorbate transporter (NAT) family. PLoS One 7:e41939.  https://doi.org/10.1371/journal.pone.0041939.s003CrossRefPubMedPubMedCentralGoogle Scholar
  12. Koukaki M, Vlanti A, Goudela S, Pantazopoulou A, Gioule H, Tournaviti S, Diallinas G (2005) The nucleobase-ascorbate transporter (NAT) signature motif in UapA defines the function of the purine translocation pathway. J Mol Biol 350:499–513.  https://doi.org/10.1016/j.jmb.2005.04.076CrossRefPubMedGoogle Scholar
  13. Krishnamurthy H, Gouaux E (2012) X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481:469–474.  https://doi.org/10.1038/nature10737CrossRefPubMedPubMedCentralGoogle Scholar
  14. Leung J, Cameron AD, Diallinas G, Byrne B (2013) Stabilizing the heterologously expressed uric acid-xanthine transporter UapA from the lower eukaryote Aspergillus nidulans. Mol Membr Biol 30:32–42.  https://doi.org/10.3109/09687688.2012.690572CrossRefPubMedGoogle Scholar
  15. Lu F, Li S, Jiang Y, Jiang J, Fan H, Lu G, Deng D, Dang S, Zhang X, Wang J, Yan N (2011) Structure and mechanism of the uracil transporter UraA. Nature 472:243–246.  https://doi.org/10.1038/nature09885CrossRefPubMedGoogle Scholar
  16. Papageorgiou I, Gournas C, Vlanti A, Amillis S, Pantazopoulou A, Diallinas G (2008) Specific interdomain synergy in the UapA transporter determines its unique specificity for uric acid among NAT carriers. J Mol Biol 382:1121–1135.  https://doi.org/10.1016/j.jmb.2008.08.005CrossRefPubMedGoogle Scholar
  17. Perez C, Koshy C, Yildiz Ö, Ziegler C (2012) Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 490:126–130.  https://doi.org/10.1038/nature11403CrossRefPubMedGoogle Scholar
  18. Pyle E, Kalli AC, Amillis S, Hall Z, Hanyaloglu AC, Diallinas G, Byrne B, Politis A (2018) Mass spectrometry reveals that formation of functional dimers of the eukaryotic transporter UapA is lipid dependent. Cell Chem Biol  https://doi.org/10.1016/j.chembiol.2018.03.011
  19. Saier MH, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186.  https://doi.org/10.1093/nar/gkj001CrossRefPubMedGoogle Scholar
  20. Saier MH, Yen MR, Noto K, Tamang DG, Elkan C (2009) The Transporter Classification Database: recent advances. Nucleic Acids Res 37:D274–D278.  https://doi.org/10.1093/nar/gkn862CrossRefPubMedGoogle Scholar
  21. Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G (2016) The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res 44:D372–D379.  https://doi.org/10.1093/nar/gkv1103CrossRefPubMedGoogle Scholar
  22. Shimamura T, Weyand S, Beckstein O, Rutherford NG, Hadden JM, Sharples D, Sansom MSP, Iwata S, Henderson PJF, Cameron AD (2010) Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328:470–473.  https://doi.org/10.1126/science.1186303CrossRefPubMedPubMedCentralGoogle Scholar
  23. Thurtle-Schmidt BH, Stroud RM (2016) Structure of Bor1 supports an elevator transport mechanism for SLC4 anion exchangers. Proc Natl Acad Sci U S A.  https://doi.org/10.1073/pnas.1612603113
  24. Vastermark A, Saier MH (2014) Evolutionary relationship between 5+5 and 7+7 inverted repeat folds within the amino acid-polyamine-organocation superfamily. Proteins 82:336–346.  https://doi.org/10.1002/prot.24401CrossRefPubMedGoogle Scholar
  25. Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O’Reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PCJ, Iwata S, Henderson PJF, Cameron AD (2008) Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322:709–713.  https://doi.org/10.1126/science.1164440CrossRefPubMedPubMedCentralGoogle Scholar
  26. Yu X, Yang G, Yan C, Baylon JL, Jiang J, Fan H, Lu G, Hasegawa K, Okumura H, Wang T, Tajkhorshid E, Li S, Yan N (2017) Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res 27:1020–1033.  https://doi.org/10.1038/cr.2017.83CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Biophysical Societies’ Association (EBSA) 2018

Authors and Affiliations

  • Yilmaz Alguel
    • 1
  • Sotiris Amillis
    • 2
  • Euan Pyle
    • 1
    • 3
  • Argyris Politis
    • 3
  • Emmanuel Mikros
    • 4
  • Alexander D. Cameron
    • 5
  • George Diallinas
    • 2
  • Bernadette Byrne
    • 1
  1. 1.Department of Life SciencesImperial College LondonLondonUK
  2. 2.Department of BiologyNational and Kapodistrian University of AthensAthensGreece
  3. 3.Department of ChemistryKing’s College LondonLondonUK
  4. 4.Faculty of PharmacyUniversity of AthensAthensGreece
  5. 5.School of Life SciencesUniversity of WarwickCoventryUK

Section editors and affiliations

  • Peter J. F. Henderson
    • 1
  1. 1.Astbury Centre for Structural Molecular Biology, Institute of Membrane and Systems BiologyUniversity of LeedsLeedsUK