Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Thermodynamic Fluctuations

  • Alan CooperEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_10070-1



Transient statistical/stochastic fluctuations in equilibrium thermodynamic properties that occur in any system in thermal contact with its surroundings.


Due to the incessant thermal motion of atoms and molecules, all objects that are in thermal contact with surroundings will experience statistical fluctuations in internal energy, volume, and other extensive thermodynamic properties, even at thermodynamic equilibrium. These fluctuations are usually imperceptible in everyday macroscopic objects, except in special circumstances*, but take on much greater significance for much smaller (mesoscopic, microscopic) objects. This is particularly important for biological macromolecules where fundamental thermodynamics dictates dynamic characteristics.

[*The effects of thermodynamic fluctuations on a larger scale are observable as the chaotic motion of small objects seen in Brownian...

This is a preview of subscription content, log in to check access.


  1. Callen HB (1960) Thermodynamics. Wiley, New YorkGoogle Scholar
  2. Cooper A (1976) Thermodynamic fluctuations in protein molecules. Proc Natl Acad Sci U S A 73:2740–2741CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cooper A (1984) Protein fluctuations and the thermodynamic uncertainty principle. Prog Biophys Mol Biol 44(3):181–214CrossRefPubMedGoogle Scholar
  4. Cooper A (2010) Protein heat capacity: an anomaly that maybe never was. J Phys Chem Lett 1(22):3298–3304CrossRefGoogle Scholar
  5. Cooper A, Dryden DTF (1984) Allostery without conformational change – a plausible model. Eur Biophys J Biophys Lett 11(2):103–109CrossRefGoogle Scholar
  6. Cooper A, Johnson CM et al (2001) Heat does not come in different colours: entropy-enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions. Biophys Chem 93(2–3):215–230CrossRefPubMedGoogle Scholar
  7. Cui Q, Karplus M (2008) Allostery and cooperativity revisited. Protein Sci 17(8):1295–1307CrossRefPubMedPubMedCentralGoogle Scholar
  8. Erbas-Cakmak S, Leigh DA et al (2015) Artificial molecular machines. Chem Rev 115(18):10081–10206CrossRefPubMedPubMedCentralGoogle Scholar
  9. Feynman RP, Leighton RB et al (1963) The Feynman lectures on physics. Addison-Wesley, ReadingGoogle Scholar
  10. Fraser JS, van den Bedem H et al (2011) Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci U S A 108(39):16247–16252CrossRefPubMedPubMedCentralGoogle Scholar
  11. Guo J, Zhou H-X (2016) Protein allostery and conformational dynamics. Chem Rev 116(11):6503–6515CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hoffmann PM (2012) Life’s ratchet: how molecular machines extract order from chaos. Basic Books, New YorkGoogle Scholar
  13. Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102(19):6679–6685CrossRefPubMedPubMedCentralGoogle Scholar
  14. Nussinov R, Tsai CJ (2015) Allostery without a conformational change? Revisiting the paradigm. Curr Opin Struct Biol 30:17–24CrossRefPubMedGoogle Scholar
  15. Veatch SL, Soubias O et al (2007) Critical fluctuations in domain-forming lipid mixtures. Proc Natl Acad Sci U S A 104(45):17650–17655CrossRefPubMedPubMedCentralGoogle Scholar
  16. Weber G (1975) Energetics of ligand binding to proteins. Adv Protein Chem 29:1–83CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies’ Association (EBSA) 2018

Authors and Affiliations

  1. 1.School of ChemistryUniversity of GlasgowGlasgowUK

Section editors and affiliations

  • Alan Cooper
    • 1
  1. 1.School of Chemistry, University of GlasgowGlasgowUK