Encyclopedia of Earthquake Engineering

2015 Edition
| Editors: Michael Beer, Ioannis A. Kougioumtzoglou, Edoardo Patelli, Siu-Kui Au

Substructuring Methods for Finite Element Analysis

  • S. AbhinavEmail author
  • Debraj Ghosh
  • C. S. Manohar
Reference work entry
DOI: https://doi.org/10.1007/978-3-642-35344-4_267


Component mode synthesis; Domain decomposition; Hybrid simulations


The motivations for employing substructuring in finite element modeling vary from reduction of computational time, modal synthesis using substructure modes, combining experimental and numerical modeling approaches, equitable sharing of resources in parallel computing environment, and treatment of global/local nonlinearities. The details of methods and tools accordingly also vary. An overview of related issues is presented in this entry.

Problems of computational structural mechanics of realistic systems involve inversion and eigenanalysis of large-size matrices and solutions of a large number of coupled ordinary differential equations or algebraic equations. These are computationally demanding tasks, and development of methods to reduce the computational efforts remains relevant notwithstanding advances in computational hardware. This is particularly true in problems of uncertainty quantification,...

This is a preview of subscription content, log in to check access.


  1. Ahn HT, Kallinderis Y (2006) Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes. J Comput Phys 219(2):671–696MathSciNetzbMATHCrossRefGoogle Scholar
  2. Apiwattanalunggarn P, Shaw SW, Pierre C (2005) Component mode synthesis using nonlinear normal modes. Nonlinear Dyn 41(1–3):17–46MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bennighof JK, Kaplan MF (1998) Frequency window implementation of adaptive multi-level substructuring. J Vib Acoust 120(2):409–418CrossRefGoogle Scholar
  4. Bursi OS, Wagg D (eds) (2008) Modern testing techniques for structural systems: dynamics and control. Springer, New YorkGoogle Scholar
  5. Chen C, Ricles J (2010) Tracking error-based servohydraulic actuator adaptive compensation for real-time hybrid simulation. J Struct Eng 136(4):432–440CrossRefGoogle Scholar
  6. Chen C, Ricles JM (2012) Large-scale real-time hybrid simulation involving multiple experimental substructures and adaptive actuator delay compensation. Earthq Eng Struct Dyn 41:549–569CrossRefGoogle Scholar
  7. Craig RR Jr (1995) Substructure methods in vibration. J Mech Des 117:207CrossRefGoogle Scholar
  8. Ewins DJ (2000) Modal testing: theory, practice and application. Research Studies Press, BaldockGoogle Scholar
  9. Farhat C, Lesoinne M, Pierson K (2000) A scalable dual–primal domain decomposition method. Numer Linear Algebra Appl 7:687–714MathSciNetzbMATHCrossRefGoogle Scholar
  10. Gao X, Castaneda N, Dyke SJ (2013) Real time hybrid simulation: from dynamic system, motion control to experimental error. Earthq Eng Struct Dyn 42:815–832CrossRefGoogle Scholar
  11. Ghosh D, Avery P, Farhat C (2009) FETI-preconditioned conjugate gradient method for large-scale stochastic finite element problems. Int J Numer Methods Eng 80(6–7):914–931MathSciNetzbMATHCrossRefGoogle Scholar
  12. Hughes TJ, Pister KS, Taylor RL (1979) Implicit-explicit finite elements in nonlinear transient analysis. Comput Methods Appl Mech Eng 17:159–182zbMATHCrossRefGoogle Scholar
  13. Hurty WC (1965) Dynamic analysis of structural systems using component modes. AIAA J 3(4):678–685CrossRefGoogle Scholar
  14. Karniadakis GE, Kirby RM II (2003) Parallel scientific computing in C++ and MPI: a seamless approach to parallel algorithms and their implementation. Cambridge University Press, New YorkzbMATHCrossRefGoogle Scholar
  15. Kerschen G, Peeters M, Golnival JC, Vakakis AF (2009) Nonlinear normal modes, part I: a useful framework for structural dynamicist. Mech Syst Signal Process 23:170–194CrossRefGoogle Scholar
  16. Klerk DD, Rixen DJ, Voormeeren SN (2008) General framework for dynamic substructuring: history, review and classification of techniques. AIAA J 46(5):1169–1181CrossRefGoogle Scholar
  17. Maia NMM, de Silva JMM (eds) (1997) Theoretical and experimental modal analysis. Research Studies Press, TauntonGoogle Scholar
  18. Nakashima M (2001) Development, potential, and limitations of real–time online (pseudo–dynamic) testing. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 359(1786):1851–1867CrossRefGoogle Scholar
  19. Papalukopoulos C, Natsiavas S (2007) Dynamics of large scale mechanical models using multilevel substructuring. J Comput Nonlinear Dyn 2(1):40–51CrossRefGoogle Scholar
  20. Prakash A, Hjelmstad KD (2004) A FETI-based multi-time-step coupling method for Newmark schemes in structural dynamics. Int J Numer Methods Eng 61:2183–2204zbMATHCrossRefGoogle Scholar
  21. Sajeeb R, Manohar CS, Roy D (2009) A conditionally linearized Monte Carlo filter in nonlinear structural dynamics. Int J Nonlinear Mech 44:776–790CrossRefGoogle Scholar
  22. Saouma VE, Sivaselvan MV (eds) (2008) Hybrid simulation: theory, implementation and applications. CRC Press, LondonGoogle Scholar
  23. Severn RT, Brownjohn JMW, Dumanoglu AA, Taylor CA (1989) A review of dynamic testing methods for civil engineering structures. In: Proceedings of the conference on civil engineering dynamics, University of Bristol, pp 1–24Google Scholar
  24. Takanashi K, Nakashima M (1987) Japanese activities on on-line testing. J Eng Mech 113(7):1014–1032CrossRefGoogle Scholar
  25. Williams MS, Blakeborough A (2001) Laboratory testing of structures under dynamic loads: an introductory review. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 359(1786):1651–1669CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Civil EngineeringIndian Institute of ScienceBangaloreIndia