Encyclopedia of Earthquake Engineering

2015 Edition
| Editors: Michael Beer, Ioannis A. Kougioumtzoglou, Edoardo Patelli, Siu-Kui Au

Seismic Risk Assessment, Cascading Effects

  • Paolo Gasparini
  • Alexander Garcia-AristizabalEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-642-35344-4_260

Synonyms

Domino effects; Short-term hazard and risk assessment; Time-dependent risk; Triggering effects

Introduction

Risk is conveniently assessed as a function of the probability that a certain event will occur and of the extent of the damage caused to humans, environment, and objects. Conceptually, it is the result of the operation
$$ \mathrm{Risk}=\mathrm{Hazard}\times \mathrm{Damage}=\mathrm{Hazard}\times \mathrm{Vunerability}\times \mathrm{Value}\;\mathrm{at}\;\mathrm{Risk} $$
This is a preview of subscription content, log in to check access.

References

  1. Barrientos SE (1994) Large thrust earthquakes and volcanic eruptions. Pure Appl Geophys 142(1):225–237CrossRefGoogle Scholar
  2. Bautista BC, Bautista MLP, Stein RS, Barcelona ES, Punongbayan RS, Laguerta EP, Rasdas AR, Ambubuyog G, Amin EQ (1996) Relationship of regional and local structures to Mount Pinatubo activity. In: Fire and mud; eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and Seismology/University of Washington Press United States, Quezon City/PhilippinesGoogle Scholar
  3. Bazzurro P, Cornell CA, Menun C, Motahari M (2004) Guidelines for seismic assessment of damaged buildings. In: Proceedings of the 13th world conference on earthquake engineering, VancouverGoogle Scholar
  4. Chen XL, Zhou Q, Ran H, Dong R (2012) Earthquake-triggered landslides in southwest China. Nat Hazards Earth Syst Sci 12:351–363. doi:10.5194/nhess-12-351-2012CrossRefGoogle Scholar
  5. Cornell CA, Krawinkler H (2000) Progress and challenges in seismic performance assessment. PEER Center News 3(2), URL http://peer.berkeley.edu/news/2000spring/index.html
  6. Eggert S, Walter TR (2009) Volcanic activity before and after large tectonic earthquakes: observations and statistical significance. Tectonophysics 471:14–26CrossRefGoogle Scholar
  7. Garcia-Aristizabal A, Marzocchi W, Di Ruocco A (2013) Probabilistic framework for multi-hazard assessment. Technical report D3.4, MATRIX project (New methodologies for multi-hazard and multi-risk assessment methods for Europe), grant no. 265138. URL http://matrix.gpi.kit.edu/Deliverables.php
  8. Garcia-Aristizabal A, Gasparini P, Uhinga G (forthcoming-2015) Multi-risk assessment as a tool for decision-making. In: Pauleit S, Jorgensen G, Kabisch S, Gasparini P, Fohlmeister S, Simonis I, Yeshitela K, Coly A, Lindley S, Kombe WJ (eds) Future Cities, vol 4 Climate change and urban vulnerability in Africa: a multidisciplinary approach. Springer Netherlands, ISBN 978-3-319- 03984-8Google Scholar
  9. Gasparini P (2013) The physics of volcanoes since the 1960s. Rivista Nuovo Cimento 36:461–500. doi:10.1393/ncr/i2013-10093-0Google Scholar
  10. Haimes Y (2009) Risk modeling, assessment, and management, 3rd edn. Wiley, HobokenzbMATHGoogle Scholar
  11. Harris RA (1998) Introduction to a special section: stress triggers, stress shadows, and implications for seismic hazards. J Geophys Res 103:24,347–24,358CrossRefGoogle Scholar
  12. Hill DP, Pollitz F, Newhall C (2002) Earthquake-volcano interactions. Physics Today 55(11):41–47Google Scholar
  13. Jibson RW (2011) Methods for assessing the stability of slopes during earthquakes – a retrospective. Eng Geol 122:43–50CrossRefGoogle Scholar
  14. Jibson RW, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58(3–4):271–289. doi:10.1016/S0013-7952(00)00039-9CrossRefGoogle Scholar
  15. Keefer DK (2002) Investigating landslides caused by earthquakes – a historical review. Surv Geophys 23:473–510CrossRefGoogle Scholar
  16. Khazai B, Daniell JE, Wenzel F (2011) The March 2011 Japan earthquake: analysis of losses, impacts, and implications for the understanding of risks posed by extreme events. TECHNIKFOLGENABSCHÄTZUNG, Theorie und Praxis. N3, 20 Dec 2011. S. 22–33. http://www.itas.fzk.de/tatup/113/khua11a.htm
  17. Kraussmann E, Renni E, Campedel M, Cozzani V (2011) Industrial accidents triggered by earthquakes, floods and lightning: lessons learned from a database analysis. Nat Hazards. doi:10.1007/s11069-011-9754-3Google Scholar
  18. Lee KH, Rosowsky DV (2006) Fragility analysis of woodframe buildings considering combined snow and earthquake loading. Struct Saf 28(3):289–303. doi:10.1016/j.strusafe.2005.08.002CrossRefGoogle Scholar
  19. Linde AT, Sacks IS (1998) Triggering of volcanic eruptions. Nature 395:888–890. doi:10.1038/27650Google Scholar
  20. Luco N, Gerstenberger MC, Uma SR, Ryu H, Liel AB, Raghunandan M (2011) A methodology for post-mainshock probabilistic assessment of building collapse risk. In: Proceedings of the ninth pacific conference on earthquake engineering building an earthquake-resilient society, AucklandGoogle Scholar
  21. Manga M, Brodsky E (2006) Seismic Triggering of Eruptions in the Far Field: Volcanoes and Geysers. Annual Review of Earth and Planetary Sciences 34:263–291. doi:10.1146/annurev.earth.34.031405.125125Google Scholar
  22. Marsan D, Lengliné O (2008) Extending earthquakes’ reach through cascading. Science 319(5866):1076–1079. doi:10.1126/science.1148783CrossRefGoogle Scholar
  23. Marzocchi W, Garcia-Aristizabal A, Gasparini P, Mastellone ML, Di Ruocco A (2012) Basic principles of multi-risk assessment: a case study in Italy. Nat Hazards 62(2):551–573. doi:10.1007/s11069-012-0092-xCrossRefGoogle Scholar
  24. Miles SB, Ho CL (1999) Rigorous landslide hazard zonation using Newmark’s method and stochastic ground motion simulation. Soil Dyn Earthquake Eng 18:305–323CrossRefGoogle Scholar
  25. Mori N, Takahashi T, Yasuda T, Yanagisawa H (2011) Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys Res Lett 38:L00G14. doi:10.1029/2011GL049210CrossRefGoogle Scholar
  26. Newmark NM (1965) Effects of earthquakes on dams and embankments. Geotechnique 15(2):139–160CrossRefGoogle Scholar
  27. Nostro C, Stein RS, Cocco M, Belardinelli ME, Marzocchi W (1998) Two-way coupling between Vesuvius eruptions and southern Apennine earthquakes, Italy, by elastic stress transfer. J Geophys Res B Solid Earth 103(B10):24487–24504CrossRefGoogle Scholar
  28. Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc 83:9–27CrossRefGoogle Scholar
  29. Ogata Y (1998) Space-time point-process models for earthquake occurrences. Ann Inst Stat Math 50:379–402zbMATHCrossRefGoogle Scholar
  30. Plafker G, Ericksen GE, Concha JF (1971) Geological aspects of the 31 May 1970, Peru earthquake. Bull Seis Soc Am 61:543–578Google Scholar
  31. Rasmussen K (1995) Natural events and accidents with hazardous materials. J Hazard Mater 40:43–54CrossRefGoogle Scholar
  32. Refice A, Capolongo D (2002) Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Comput Geosci 28(6):735–749. doi:10.1016/S0098-3004(01)00104-2CrossRefGoogle Scholar
  33. Ryu H, Luco N, Uma SR, Liel AB (2011) Developing fragilities for mainshock-damaged structures through incremental dynamic analysis. In: Proceedings of the ninth pacific conference on earthquake engineering building an earthquake-resilient society, AucklandGoogle Scholar
  34. Selva J (2013) Long-term multi-risk assessment: statistical treatment of interaction among risks. Nat Hazards 67(2):701–722CrossRefGoogle Scholar
  35. Vere-Jones D, Davies RB (1966) A statistical survey of earthquakes in the main seismic region of New Zealand. N Z J Geol Geophys 9(3):251–284. doi:10.1080/00288306.1966.10422815CrossRefGoogle Scholar
  36. Walter TR (2007) How a tectonic earthquake may wake up volcanoes: stress transfer during the 1996 earthquake–eruption sequence at the Karymsky Volcanic Group, Kamchatka. Earth Planet Sci Lett 264(3–4):347–359CrossRefGoogle Scholar
  37. Yeo GL, Cornell CA (2005) Stochastic characterization and decision based under time-dependent aftershock risk in performance-based earthquake engineering. Technical report 2005/13. Pacific Earthquake Engineering Research Center (PEER)Google Scholar
  38. Zuccaro G, Cacace F, Spence R, Baxter P (2008) Impact of explosive eruption scenarios at Vesuvius. J Volcanol Geotherm Res 178(3):416–453CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Center for the Analysis and Monitoring of Environmental Risk (AMRA)NaplesItaly