Encyclopedia of Earthquake Engineering

2015 Edition
| Editors: Michael Beer, Ioannis A. Kougioumtzoglou, Edoardo Patelli, Siu-Kui Au

SAR Tomography for 3D Reconstruction and Monitoring

  • D. RealeEmail author
  • G. Fornaro
Reference work entry
DOI: https://doi.org/10.1007/978-3-642-35344-4_226


Cosmo-Skymed; Differential interferometry; DInSAR; Displacement measurement; Infrastructures monitoring; Multidimensional SAR imaging; SAR tomography; Synthetic-aperture radar, SAR; TerraSAR-X


Synthetic-aperture radar (SAR) is one of the most important Earth remote sensing sensors whose applications have grown dramatically in the recent years. It provides images at microwaves with resolution comparable to that of optical systems, but with the crucial advantage of all-time, day/night, and all-weather, imaging capability. Similarly to classical surveillance radars, SAR measures the distance (range) from sensor to target: resolutions of the order of meters are achieved through the pulse compression of large bandwidth (frequency-modulated) signals. Very high resolution in the along-track direction is achieved as well through the coherent combination of target echoes received over the illumination interval, thus implementing a virtual (synthetic) array of antennas...

This is a preview of subscription content, log in to check access.


  1. Arangio S, Calò F, Di Mauro M, Bonano M, Marsella M, Manunta M (2013) An application of the SBAS-DInSAR technique for the assessment of structural damage in the city of Rome. Struct Infrastruct Eng. doi: 10.1080/15732479.2013.833949Google Scholar
  2. Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Probl 14:1–54MathSciNetzbMATHCrossRefGoogle Scholar
  3. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40:2375–2383CrossRefGoogle Scholar
  4. Budillon A, Evangelista A, Schirinzi G (2011) Three-dimensional SAR focusing from multipass signals using compressive sampling. IEEE Trans Geosci Remote Sens 49:488–499CrossRefGoogle Scholar
  5. Carnec C, King C, Massonnet D (1995) Measurement of land subsidence by means of differential SAR interferometry to sites of small extent. Geophys Res Lett 23:3579–3582CrossRefGoogle Scholar
  6. Cascini L, Ferlisi S, Peduto D, Fornaro G, Manunta M (2007) Analysis of DInSAR Data via geotechnical criteria. Rivista Italiana di Geotecnica 4:50–67Google Scholar
  7. Cloude SR (2006) Polarization coherence tomography. Radio Sci 41:RS4017. doi:10.1029/2005RS003436CrossRefGoogle Scholar
  8. Crosetto M, Crippa B, Biescas E (2005) Early detection and in-depth analysis of deformation phenomena by radar interferometry. Eng Geol 79:81–91CrossRefGoogle Scholar
  9. Curlander JC, McDonough R (1991) Synthetic aperture radar – system and signal processing. Wiley, New YorkzbMATHGoogle Scholar
  10. D'Agostino N, Cheloni D, Fornaro G, Giuliani R, Reale D (2012) Space-time distribution of afterslip following the 2009 L’Aquila earthquake. J Geophys Res 117:B02402. doi:10.1029/2011JB008523Google Scholar
  11. De Maio A, Fornaro G, Pauciullo A (2009) Detection of single scatterers in multi-dimensional SAR imaging. IEEE Trans Geosci Remote Sens 47:2284–2297CrossRefGoogle Scholar
  12. Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38:2202–2212CrossRefGoogle Scholar
  13. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39:8–20CrossRefGoogle Scholar
  14. Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: squeeSAR. IEEE Trans Geosci Remote Sens 49:3460–3470CrossRefGoogle Scholar
  15. Fornaro G, Franceschetti G (1999) SAR interferometry, Chapter IV. In: Franceschetti G, Lanari R (eds) Synthetic aperture radar processing. CRC Press, Boca RatonGoogle Scholar
  16. Fornaro G, Serafino F (2006) Imaging of single and double scatterers in urban areas via SAR tomography. IEEE Trans Geosci Remote Sens 44:3497–3505CrossRefGoogle Scholar
  17. Fornaro G, Serafino F, Lombardini F (2005) 3D multipass SAR focusing: experiments with long-term spaceborne data. IEEE Trans Geosci Remote Sens 43:702–712CrossRefGoogle Scholar
  18. Fornaro G, Reale D, Serafino F (2009a) Four-dimensional SAR imaging for height estimation and monitoring of single and double scatterers. IEEE Trans Geosci Remote Sens 47:224–237CrossRefGoogle Scholar
  19. Fornaro G, Pauciullo A, Serafino F (2009b) Deformation monitoring over large areas with multipass differential SAR interferometry: a new approach based on the use of spatial differences. Int J Remote Sens 30:1455–1478CrossRefGoogle Scholar
  20. Fornaro G, Reale D, Verde S (2013) Bridge thermal dilation monitoring with millimeter sensitivity via multidimensional SAR imaging. IEEE Geosci Remote Sens Lett 10:677–681CrossRefGoogle Scholar
  21. Gernhardt S, Adam N, Eineder M, Bamler R (2010) Potential of very high resolution SAR for persistent scatterer interferometry in urban areas. Ann GIS 16:103–111CrossRefGoogle Scholar
  22. Ghiglia DC, Pritt MD (1998) Two-dimensional phase unwrapping: theory, algorithms, and software. Wiley-Interscience, New YorkzbMATHGoogle Scholar
  23. Gini F, Lombardini F, Montanari M (2002) Layover solution in multibaseline SAR interferometry. IEEE Trans Aerosp Electron Syst 38:1344–1356CrossRefGoogle Scholar
  24. Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans Geosci Remote Sens 45:3317–3341CrossRefGoogle Scholar
  25. Lombardini F (2005) Differential tomography: a new framework for SAR interferometry. IEEE Trans Geosci Remote Sens 43:37–44CrossRefGoogle Scholar
  26. Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Fiegl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:138–142CrossRefGoogle Scholar
  27. Moreira A, Prats-Iraola P, Younis M, Krieger G, Hajnsek I, Papathanassiou KP (2013) A tutorial on synthetic aperture radar. IEEE Geosci Remote Sens Mag 1:6–43CrossRefGoogle Scholar
  28. Pauciullo A, Reale D, De Maio A, Fornaro G (2012) Detection of double scatterers in SAR tomography. IEEE Trans Geosci Remote Sens 50:3567–3586CrossRefGoogle Scholar
  29. Reale D, Fornaro G, Pauciullo A, Zhu X, Bamler R (2011a) Tomographic imaging and monitoring of buildings with very high resolution SAR data. IEEE Geosci Remote Sens Lett 8:661–665CrossRefGoogle Scholar
  30. Reale D, Nitti DO, Peduto D, Nutricato R, Bovenga F, Fornaro G (2011b) Post-seismic deformation monitoring with the COSMO/SKYMED constellation. IEEE Geosci Remote Sens Lett 8(4):696–700CrossRefGoogle Scholar
  31. Reale D, Fornaro G, Pauciullo A (2013) Extension of 4-D SAR imaging to the monitoring of thermally dilating scatterers. IEEE Trans Geosci Remote Sens. 51:5296–5306Google Scholar
  32. Reigber A, Moreira A (2000) First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans Geosci Remote Sens 38:2142–2152CrossRefGoogle Scholar
  33. Tebaldini S (2010) Single and multipolarimetric SAR tomography of forested areas: a parametric approach. IEEE Trans Geosci Remote Sens 48(5):2375–2387CrossRefGoogle Scholar
  34. Van Zyl J (2001) The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronaut 48:559–565CrossRefGoogle Scholar
  35. Zhu X, Bamler R (2010a) Very high resolution spaceborne SAR tomography in urban environment. IEEE Trans Geosci Remote Sens 48:4296–4308CrossRefGoogle Scholar
  36. Zhu X, Bamler R (2010b) Tomographic SAR inversion by L1 norm regularization – the compressive sensing approach. IEEE Trans Geosci Remote Sens 48:3839–3846CrossRefGoogle Scholar
  37. Zhu X, Bamler R (2011) Let’s do the time warp: multicomponent nonlinear motion estimation in differential SAR tomography. IEEE Geosci Remote Sens Lett 8:735–739CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute for Electromagnetic Sensing of the EnvironmentNational Research CouncilNaplesItaly