Advertisement

Organic Acid and Solvent Production: Butanol, Acetone, and Isopropanol; 1,3- and 1,2-Propanediol Production; and 2,3-Butanediol Production

  • Jiann-Shin Chen
  • Mary Jo Zidwick
  • Palmer Rogers∗

Abstract

The versatility of bacteria in the production of commercially useful chemicals is well represented by the fermentations that produce butanol, acetone, isopropanol, 1,3- and 1,2-propanediol, and 2,3-butanediol. Most of these chemicals can be synthesized from petroleum-derived feedstock chemicals. The merit of industrial applications of these fermentations ultimately depends on the economics of the bioprocesses or the need for a chiral product, which is more easily achieved through a bioprocess. Butanol, acetone, and isopropanol were traditionally used as solvents, and the industrial fermentation producing these chemicals was thus known as the solvent fermentation. Solvent fermentation is performed by several species of Clostridia, and it was the first industrial fermentation utilizing pure cultures and aseptic techniques. Its large scale was also unprecedented. Butanol has desirable properties as an automobile fuel, and this potential use has received much attention. Current efforts in improving butanol fermentation for industrial uses focus on the development of less expensive raw materials, a higher final product concentration, and bacterial strains that are more amenable to genetic manipulations. Whereas 1,2-propanediol is produced in large quantities by a chemical process, 1,3-propanediol has been more difficult to produce via chemical synthesis. Because of the usefulness of 1,3-propanediol as a monomer for the production of polyester for fiber applications, industrial interest in bioproduction of this monomer remains high. 2,3-Butanediol is produced by a number of bacteria, and it is a commercial chemical intermediate. Perhaps the greatest potential for 2,3-butanediol lies in high-value, special-product uses, which may make a fermentation route competitive.

References

  1. Abbad-Andaloussi S, Manginot-Durr C, Amine J, Petitdemange E, Petitdemange H (1995) Isolation and characterization of Clostridium butyricum DSM 5431 mutants with increased resistance to 1,3-propanediol and altered production of acids. Appl Environ Microbiol 61:4413–4417PubMedGoogle Scholar
  2. Abbad-Andaloussi S, Durr C, Raval G, Petitdemange H (1996) Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glycerol and glucose. Microbiology 142:1149–1158Google Scholar
  3. Adler HI, Crow W (1987) A technique for predicting the solvent-producing ability of Clostridium acetobutylicum. Appl Environ Microbiol 53:2496–2499PubMedGoogle Scholar
  4. Afschar AS, Bellgardt KH, Vaz Rossell CE, Czok A, Schaller K (1991) The production of 2,3-butanediol by fermentation of high test molasses. Appl Microbiol Biotechnol 34:582–585Google Scholar
  5. Afschar AS, Vas Rossell CE, Jonas R, Quesada Chanto A, Schaller K (1993) Microbial production and downstream processing of 2,3-butanediol. J Biotechnol 27:317–329Google Scholar
  6. Ahrens K, Menzel K, Zeng AP, Deckwer WD (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture. III: enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol Bioengin 59:544–552Google Scholar
  7. Alam S, Capit F, Weigand WA, Hong J (1990) Kinetics of 2,3-butanediol fermentation by Bacillus amyloliquefaciens: effect of initial substrate concentration and aeration. J Chem Tech Biotechnol 47:71–84Google Scholar
  8. Allcock ER, Woods DR (1981) Carboxymethyl cellulase and cellobiase production by Clostridium acetobutylicum in an industrial fermentation medium. Appl Environ Microbiol 41:539–541PubMedGoogle Scholar
  9. Allcock ER, Reid SJ, Jones DT, Woods DR (1981) Autolytic activity and an autolysis-deficient mutant of Clostridium acetobutylicum. Appl Environ Microbiol 42:929–935PubMedGoogle Scholar
  10. Altaras NE, Cameron DC (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl Environ Microbiol 65:1180–1185PubMedGoogle Scholar
  11. Altaras NE, Cameron DC (2000) Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol Prog 16:940–946PubMedGoogle Scholar
  12. Altaras NE, Etzel MR, Cameron DC (2001) Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8. Biotechnol Prog 17:52–56PubMedGoogle Scholar
  13. Annous B, Blaschek HP (1991) Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl Environ Microbiol 57:2544–2548PubMedGoogle Scholar
  14. Anonymous (1956) Trends of world solvents production for the past ten years and the management of the Chiai (Taiwan) Solvents Works (in Chinese). Petroleum Communications China Petroleum Corporation Taiwan China June, Issue 60, pp 42–57Google Scholar
  15. Anonymous (1958) New direction of development for the Chiai (Taiwan) solvents works (in Chinese) Petroleum Communications China Petroleum Corporation, Taiwan China May, Issue 83, pp 6–7Google Scholar
  16. Anonymous (1996a) Chemical profile: propylene glycol. Chem Mark Rep 249:37Google Scholar
  17. Anonymous (1996b) Facts and figures for the chemical industry: production by the US chemical industry. Chem Eng News June 24, 41Google Scholar
  18. Anonymous (1997) Facts and figures for the chemical industry – production: mixed in 1996. Chem Eng News June 23, 41Google Scholar
  19. Anonymous (1999a) Shell Chemicals Research Team wins ACS 2000 award for innovation. Chem Mark Rep 256Google Scholar
  20. Anonymous (1999b) All-microbial route yields chiral building blocks. Chem Eng News 77(8):57Google Scholar
  21. Anonymous (2001a) Chemical prices. Chem Mark Rep 259:8–21Google Scholar
  22. Anonymous (2001b) Chemical profile: isopropanol. Chem Mark Rep, November 12, 31Google Scholar
  23. Arzberger CF, Peterson WH, Fred EB (1920) Certain factors that influence acetone production by Bacillus acetoethylicum. J Biol Chem 44:465–479Google Scholar
  24. Azeddoug H, Hubert J, Reysset G (1992) Stable inheritance of shuttle vectors based on plasmid pIM13 in a mutant strain of Clostridium acetobutylicum. J Gen Microbiol 138:1371–1378PubMedGoogle Scholar
  25. Babb BL, Collett HJ, Reid SJ, Woods DR (1993) Transposon mutagenesis of Clostridium acetobutylicum P262: isolation and characterization of solvent deficient and metronidazole resistant mutants. FEMS Microbiol Lett 114:343–348PubMedGoogle Scholar
  26. Bahl H, Andersch WA, Braun K, Gottschalk G (1982a) Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture. Eur J Appl Microbiol Biotechnol 14:17–20Google Scholar
  27. Bahl H, Andersch W, Gottschalk G (1982b) Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. Appl Microbiol Biotechnol 15:201–205Google Scholar
  28. Baldus JM, Green BD, Youngman P, Morgan CP Jr (1994) Phosphorylation of Bacillus subtilis transcription factor Spo0A stimulates transcription from the spoIIG promoter by enhancing binding to weak 0A boxes. J Bacteriol 176:296–306PubMedGoogle Scholar
  29. Ballongue J, Amine J, Masion E, Petitdemange H, Gay R (1985) Induction of acetoacetate decarboxylase in Clostridium acetobutylicum. FEMS Microbiol Lett 29:273–277Google Scholar
  30. Barber JM, Robb FT, Webster JR, Woods DR (1979) Bacteriocin production by Clostridium acetobutylicum in an industrial fermentation process. Appl Environ Microbiol 37:433–437PubMedGoogle Scholar
  31. Barbirato F, Camarasa-Claret C, Grivet JP, Bories A (1995) Glycerol fermentation by a new 1,3-propanediol-producing microorganism: enterobacter agglomerans. Appl Microbiol Biotechnol 43:786–793Google Scholar
  32. Barbirato F, Grivet JP, Soucaille P, Bories A (1996a) 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environ Microbiol 62:1448–1451PubMedGoogle Scholar
  33. Barbirato F, Soucaille P, Bories A (1996b) Physiologic mechanisms involved in accumulation of 3-hydroxypropionaldehyde during fermentation of glycerol by Enterobacter agglomerans. Appl Environ Microbiol 62:4405–4409PubMedGoogle Scholar
  34. Barbirato F, Chedaille D, Bories A (1997a) Propionic acid fermentation from glycerol: comparison with conventional substrates. Appl Microbiol Biotechnol 47:441–446Google Scholar
  35. Barbirato F, Astruc S, Soucaille P, Camarasa C, Salmon JM, Bories A (1997b) Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: limitations and regulations. Microbiology 143:2423–2432PubMedGoogle Scholar
  36. Barbirato F, Himmi EH, Conte T, Bories A (1998) 1,3-propanediol production by fermentation: an interesting way to valorize glycerin from the ester and ethanol industries. Ind Crops Prod 7:281–289Google Scholar
  37. Bata RM, Elrod AC, Lewandowski TP (1991) Butanol as a blending agent with gasoline for I. C. engines. In: Hurn RW, Marshall WF, Allsup JR (eds) Oxygenates in motor fuel formulation. Society of Automotive Engineers, Warrendale, pp 35–40Google Scholar
  38. Beesch SC (1952) Acetone-butanol fermentation of sugars. Ind Engin Chem 44:1677–1682Google Scholar
  39. Beesch SC (1953) Acetone-butanol fermentation of starches. Appl Microbiol 1:85–95PubMedGoogle Scholar
  40. Bennett GN, Rudolph FB (1995) The central metabolic pathway from acetyl-CoA to butyryl-CoA in Clostridium acetobutylicum. FEMS Microbiol Rev 17:241–249Google Scholar
  41. Bennett GN, San KY (2001) Microbial formation, biotechnological production and application of 1,2-propanediol. Appl Microbiol Biotechnol 55:1–9PubMedGoogle Scholar
  42. Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol 64:1079–1085PubMedGoogle Scholar
  43. Beronio PB Jr, Tsao GT (1993) Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control. Biotechnol Bioengin 42:1263–1269Google Scholar
  44. Bertram J, Dü P (1989) Conjugal transfer and expression of streptococcal transposons in Clostridium acetobutylicum. Arch Microbiol 151:551–557Google Scholar
  45. Bertram J, Kuhn A, Dü P (1990) Tn916-induced mutants of Clostridium acetobutylicum defective in regulation of solvent formation. Arch Microbiol 153:373–377Google Scholar
  46. Biebl H (1991) Glycerol fermentation of 1,3-propanediol by Clostridium butyricum: measurement of product inhibition by use of a pH-auxostat. Appl Microbiol Biotechnol 35:701–705Google Scholar
  47. Biebl H, Marten S (1995) Fermentation of glycerol to 1,3-propanediol: use of cosubstrates. Appl Microbiol Biotechnol 44:15–19Google Scholar
  48. Biebl H, Marten S, Hippe H, Deckwer WD (1992) Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl Microbiol Biotechnol 36:592–597Google Scholar
  49. Biebl H, Zeng AP, Menzel K, Deckwer WD (1998) Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl Microbiol Biotechnol 50:24–29PubMedGoogle Scholar
  50. Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297PubMedGoogle Scholar
  51. Billig E (1992) Butyl alcohols. In: Kroschwitz JI, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology, vol 4, 4th edn. Wiley, New York, pp 691–700Google Scholar
  52. Birrer GA, Chesbro WR, Zsigray RM (1994) Electro-transformation of Clostridium beijerinckii NRRL B-592 with shuttle plasmid pHR106 and recombinant derivatives. Appl Microbiol Biotechnol 41:32–38PubMedGoogle Scholar
  53. Blaschek H, Annous B, Formanek J, Chen CK (2002) Method of producing butanol using a mutant strain of Clostridium beijerinckii. US Patent 6358717Google Scholar
  54. Blomqvist K, Nikkola M, Lehtovaara P, Suihko M-L, Airaksinen U, Straby KB, Knowles JKC, Penttila ME (1993) Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol 175:1392–1404PubMedGoogle Scholar
  55. Boenigk R, Bowien S, Gottschalk G (1993) Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol 38:453–457Google Scholar
  56. Bolt JA (1980) A Survey of alcohol as a motor fuel. In: Alcohols as motor fuels. Society of Automotive Engineers, Warrendale, pp 21–33Google Scholar
  57. Bouvet OMM, Lenormand P, Carlier JP, Grimont PAD (1994) Phenotypic diversity of anaerobic glycerol dissimilation shown by seven enterobacterial species. Res Microbiol 145:129–139PubMedGoogle Scholar
  58. Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50:1165–1170PubMedGoogle Scholar
  59. Bowring SN, Morris JG (1985) Mutagenesis of Clostridium acetobutylicum. J Appl Bacteriol 58:577–584PubMedGoogle Scholar
  60. Boynton ZL, Bennett GN, Rudolph FB (1996a) Cloning, sequencing and expression of clustered genes encoding β-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. J Bacteriol 178:3015–3024PubMedGoogle Scholar
  61. Boynton ZL, Bennett GN, Rudolph FB (1996b) Cloning, sequencing, and expression of genes encoding phosphotransacetylase and acetate kinase from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 62:2758–2766PubMedGoogle Scholar
  62. Bryant RS (1990) Microbial enhanced oil recovery and compositions therefor. US Patent 4905761Google Scholar
  63. Bryn K, Stormer FC (1976) Decreased riboflavin formation in mutants of Aerobacter (Enterobacter) aerogenes deficient in the butanediol pathway. Biochim Biophys Acta 428:257–259PubMedGoogle Scholar
  64. Bulthuis BA, Gatenby AA, Laynie SL, Hsu AK, Lareau RD (1998) Method for the production of glycerol by recombinant organisms. Patent Cooperation Treaty (PCT) Application WO 98/21340Google Scholar
  65. Cameron DC, Cooney CL (1986) A novel fermentation: the production of R(−)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum. Biotechnology 4:651–654Google Scholar
  66. Cameron DC, Tong IT, Skraly FA (1993) Metabolic engineering for the production of 1,3-propanediol. In: Chianelli RR, Davison BH (eds) ACS symposium on bioremediation and bioprocessing, vol 38. American Chemical Society, Denver CO, pp 294–295Google Scholar
  67. Cameron DC, Altaras NE, Hoffman ML, Shaw AJ (1998) Metabolic engineering of propanediol pathways. Biotechnol Prog 14:16–125Google Scholar
  68. Cameron DC, Shaw AJ, Altaras NE (2000) Microbial production of 1,2-propanediol from sugar. US Patent 6087140Google Scholar
  69. Cato EP, George WL, Finegold SM (1986) Genus Clostridium Prazmowski 1880. In: Sneath HA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1141–1200Google Scholar
  70. Champluvier B, Decallonne J, Rouxhet PG (1989) Influence of sugar source (lactose, glucose, galactose) on 2,3-butanediol production by Klebsiella oxytoca NRRL-B199. Arch Microbiol 152:411–414PubMedGoogle Scholar
  71. Chen J-S (1993) Properties of acid-and solvent-forming enzymes of clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, Stoneham, pp 51–76Google Scholar
  72. Chen JS (1995) Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. FEMS Microbiol Rev 17:263–273PubMedGoogle Scholar
  73. Chen C-K, Blaschek HP (1999a) Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Appl Microbiol Biotechnol 52:170–173PubMedGoogle Scholar
  74. Chen C-K, Blaschek H (1999b) Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration. Appl Environ Microbiol 65:499–505PubMedGoogle Scholar
  75. Chen J-S, Hiu SF (1986) Acetone-butanol-isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum). Biotechnol Lett 8:371–376Google Scholar
  76. Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, Weyler W, Sanford K (2000) The commercial production of chemicals using pathway engineering. Biochim Biophys Acta 1543:434–455PubMedGoogle Scholar
  77. Clark SW, Bennett GN, Rudolph FB (1989) Isolation and characterization of mutants of Clostridium acetobutylicum ATCC 824 deficient in acetoacetyl-coenzyme A: acetate/butyrate: coenzyme A-transferase (EC 2.8.3.9) and in other solvent pathway enzymes. Appl Environ Microbiol 55:970–976PubMedGoogle Scholar
  78. Cocks GT, Aguilar J, Lin ECC (1974) Evolution of L-1,2-propanediol catabolism in Escherichia coli by recruitment of enzymes for L-fucose and L-lactate metabolism. J Bacteriol 118:83–88PubMedGoogle Scholar
  79. Colby GD (1993) CoA-transferase and 3-hydroxybutyryl-CoA Dehydrogenases: acetoacetyl-CoA-reacting enzymes from Clostridium beijerinckii NRRL B593. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg VAGoogle Scholar
  80. Colby GD, Chen J-S (1992) Purification and properties of 3-hydroxybutyryl-coenzyme A dehydrogenase from Clostridium beijerinckii (“Clostridium butylicum”) NRRL B593. Appl Environ Microbiol 58:3297–3302PubMedGoogle Scholar
  81. Colin T, Bories A, Moulin G (2000) Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl Microbiol Biotechnol 54:201–205PubMedGoogle Scholar
  82. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826PubMedGoogle Scholar
  83. Compere AL, Griffith WL (1979) Evaluation of substrates for butanol production. Dev Ind Microbiol 20:509–517Google Scholar
  84. Compere AL, Griffith WL, Googin JM (1985) Solvents production by clostridia as a function of wood stream organic toxicant concentration. Dev Ind Microbiol 26:535–541Google Scholar
  85. Cornillot E, Soucaille P (1996) Solvent-forming genes in clostridia. Nature 380:489Google Scholar
  86. Cornillot E, Croux C, Soucaille P (1997a) Physical and genetic map of the Clostridium acetobutylicum ATCC 824 chromosome. J Bacteriol 179:7426–7434PubMedGoogle Scholar
  87. Cornillot E, Nair RV, Papoutsakis ET, Soucaille P (1997b) The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J Bacteriol 179:5442–5447PubMedGoogle Scholar
  88. Croux C, Garcia JL (1991) Sequence of the lyc gene encoding the autolytic lysozyme of Clostridium acetobutylicum ATCC 824: comparison with other lytic enzymes. Gene 104:25–31PubMedGoogle Scholar
  89. Croux C, Garcia JL (1992) Reconstruction and expression of the autolytic gene from Clostridium acetobutylicum ATCC 824 in Escherichia coli. FEMS Microbiol Lett 95:13–20Google Scholar
  90. Croux C, Canard B, Goma G, Soucaille P (1992a) Autolysis of Clostridium acetobutylicum ATCC 824. J Gen Microbiol 138:861–869PubMedGoogle Scholar
  91. Croux C, Canard B, Goma G, Soucaille P (1992b) Purification and characterization of an extracellular muramidase of Clostridium acetobutylicum ATCC 824 that acts on non-N-acetylated peptidoglycan. Appl Environ Microbiol 58:1075–1081PubMedGoogle Scholar
  92. Cueto PH, Mendez BS (1990) Direct selection of Clostridium acetobutylicum fermentation mutants by a protein suicide method. Appl Environ Microbiol 56:578–580PubMedGoogle Scholar
  93. Cummins C, Johnson JL (1971) Taxonomy of the clostridia: wall composition and DNA homologies in Clostridium butyricum and other butyric acid-producing clostridia. J Gen Microbiol 67:33–46Google Scholar
  94. Dabrock B, Bahl H, Gottschalk G (1992) Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol 58:1233–1239PubMedGoogle Scholar
  95. Daniel R, Gottschalk G (1992) Growth temperature-dependent activity of glycerol dehydratase in Escherichia coli expressing the Citrobacter freundii dha regulon. FEMS Microbiol Lett 100:281–286Google Scholar
  96. Daniel R, Boenigk R, Gottschalk G (1995a) Purification of 1,3-propanediol dehydrogenase from iand cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. J Bacteriol 177:2151–2156PubMedGoogle Scholar
  97. Daniel R, Stuertz K, Gottschalk G (1995b) Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii. J Bacteriol 177:4392–4401PubMedGoogle Scholar
  98. Daniel R, Bobik TA, Gottschalk G (1999) Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev 22:553–566Google Scholar
  99. de Mas C, Jansen NB, Tsao GT (1988) Production of optically active 2,3-butanediol by Bacillus polymyxa. Biotechnol Bioengin 31:366–377Google Scholar
  100. Deckwer WD (1995) Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol Rev 16:143–149Google Scholar
  101. Desai RP, Papoutsakis ET (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobytylicum. Appl Environ Microbiol 65:936–945PubMedGoogle Scholar
  102. Diaz-Torres M, Dunn-Coleman NS, Chase MW, Trimbur D (2000) Method for the recombinant production of 1,3-propanediol. US Patent 6136576Google Scholar
  103. Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648Google Scholar
  104. Dürre P, Bahl H (1996) Microbial production of acetone/butanol/isopropanol. In: Roehr M (ed) Products of primary metabolism, vol 6, 2nd edn. VCH, Weinheim, pp 229–268Google Scholar
  105. Dürre P, Fischer RJ, Kuhn A, Lorenz K, Schreiber W, Stürzenhofecker B, Ullmann S, Winzer K, Sauer U (1995) Solventogenic enzymes of Clostridium acetobutylicum, catalytic properties, genetic organization and transcriptional regulation. FEMS Microbiol Rev 17:251–262PubMedGoogle Scholar
  106. Dürre P, Bohringer M, Nakotte S, Schaffer S, Thormann K, Zickner B (2002) Transcriptional regulation of solventogenesis in Clostridium acetobutylicum. J Molec Microbiol Biotechnol 4:295–300Google Scholar
  107. Eiteman MA, Miller JH (1995) Effect of succinic acid on 2,3-butanediol production by Klebsiella oxytoca. Biotechnol Lett 17:1057–1062Google Scholar
  108. Ennis BM, Maddox IS (1985) Use of Clostridium acetobutylicum P262 for production of solvents from whey permeate. Biotechol Lett 7:601–606Google Scholar
  109. Evans VJ, Liyanage H, Ravagnani A, Young M, Kashket ER (1998) Truncation of peptide deformylase reduces the growth rate and stabilizes solvent production in Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 64:1780–1785PubMedGoogle Scholar
  110. Fernbach A, Strange EH (1911) Acetone and higher alcohols (amyl, butyl or ethyl alcohols and butyric, propionic or acetic acid) from starches, sugars and other carbohydrates. British Patent 15203–15204Google Scholar
  111. Fischer RJ, Helms J, Dü P (1993) Cloning, sequencing and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis. J Bacteriol 175:6959–6969PubMedGoogle Scholar
  112. Fond O, Jansen NB, Tsao GT (1985) A model of acetic acid and 2,3-butanediol inhibition of the growth and metabolism of Klebsiella oxytoca. Biotechnol Lett 7:727–732Google Scholar
  113. Fond O, Engasser JM, Matta-El-Amouri G, Petitdemange H (1986a) The acetone butanol fermentation on glucose and xylose. I: regulation and kinetics in batch cultures. Biotechnol Bioengin 28:160–166Google Scholar
  114. Fond O, Engasser JM, Matta-El-Amouri G, Petitdemange H (1986b) The acetone butanol fermentation on glucose and xylose. II: regulation and kinetics in fed-batch cultures. Biotechnol Bioengin 28:167–175Google Scholar
  115. Fontaine L, Meynial-Salles I, Girbal L, Yang X, Croux C, Soucaille P (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184:821–830PubMedGoogle Scholar
  116. Forage RG, Foster MA (1982) Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. J Bacteriol 149:413–419PubMedGoogle Scholar
  117. Forage RG, Lin ECC (1982) Dha system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151:591–599PubMedGoogle Scholar
  118. Frazer FR, McCaskey TA (1991) Effect of components of acid-hydrolyzed hardwood on conversion of D-xylose to 2,3-butanediol by Klebsiella pneumoniae. Enz Microb Technol 13:110–115Google Scholar
  119. Freier-Schroeder D, Wiegel J, Gottschalk G (1989) Butanol formation by Clostridium thermosaccharolyticum at neutral pH. Biotechnol Lett 11:831–836Google Scholar
  120. Gabriel CL (1928) Butanol fermentation process. Ind Engin Chem 20:1063–1067Google Scholar
  121. Gabriel CL, Crawford FM (1930) Development of the butyl-acetonic fermentation industry. Ind Engin Chem 22:1163–1165Google Scholar
  122. Gapes JR (2000a) The economics of the acetone-butanol fermentation: theoretical and market considerations. J Molec Microbiol Biotechnol 2:27–32Google Scholar
  123. Gapes JR (2000b) The history of the acetone-butanol project in Austria. J Molec Microbiol Biotechnol 2:5–8Google Scholar
  124. Gapes JR, Nimcevic D, Friedl A (1996) Long-term continuous cultivation of Clostridium beijerinckii in a two-stage chemostat with on-line solvent removal. Appl Environ Microbiol 62:3210–3219PubMedGoogle Scholar
  125. Garg SK, Jain A (1995) Fermentative production of 2,3-butanediol: a review. Biores Technol 51:103–109Google Scholar
  126. George HA, Chen J-S (1983) Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (synonym, C. butylicum). Appl Environ Microbiol 46:321–327PubMedGoogle Scholar
  127. George HA, Johnson JL, Moore WEC, Holdeman LV, Chen J-S (1983) Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl Environ Microbiol 45:1160–1163PubMedGoogle Scholar
  128. Gerischer U, Dü P (1990) Cloning, sequencing, and molecular analysis of the acetoacetate decarboxylase gene region from Clostridium acetobutylicum. J Bacteriol 172:6907–6918PubMedGoogle Scholar
  129. Ghazvinizadeh H, Turtura GC, Zambonelli C (1972) The fermentation of L-rhamnose by clostridia. Ann Microbiol 22:155–158Google Scholar
  130. Gibbs DF (1983) The rise and fall (…and rise?) of acetone/butanol fermentations. Trends Biotechnol 1:12–15Google Scholar
  131. Girbal L, Soucaille P (1994) Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: Rle of NADH/NAD ratio and ATP pool. J Bacteriol 176:6433–6438PubMedGoogle Scholar
  132. Girbal L, Soucaille P (1998) Regulation of solvent production in Clostridium acetobutylicum. Trends Biotechnol 16:11–16Google Scholar
  133. Girbal L, Croux C, Vasconcelos I, Soucaille P (1995a) Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Rev 17:287–297Google Scholar
  134. Girbal L, Vasoncelos I, Saint-Amans S, Soucaille P (1995b) How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol Rev 16:151–162Google Scholar
  135. Godin C, Engasser JM (1990) Two-stage continuous fermentation of Clostridium acetobutylicum: effects of pH and dilution rate. Appl Microbiol Biotechnol 33:269–273Google Scholar
  136. Gottwald M, Gottschalk G (1985) The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Arch Microbiol 143:42–46Google Scholar
  137. Gottwald M, Hippe H, Gottschalk G (1984) Formation of n-butanol from D-glucose by strains of the “Clostridium tetanomorphum” group. Appl Environ Microbiol 48:573–576PubMedGoogle Scholar
  138. Goupil-Feuillerat N, Cocaign-Bousquet M, Godon J-J, Ehrlich SD, Renault P (1997) Dual role of a-acetolactate decarboxylase in Lactococcus lactis subsp. lactis. J Bacteriol 179:6285–6293PubMedGoogle Scholar
  139. Green EM, Bennett GN (1996) Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Appl Biochem Biotechnol 57/58:213–221Google Scholar
  140. Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:2079–2086PubMedGoogle Scholar
  141. Greenberg K (1999) New PDO technologies create opportunities. Chem Mark Rep 255 4 and 9Google Scholar
  142. Grove LH (1982) Process for the production of organic fuel. US Patent 4326032Google Scholar
  143. Grupe H, Gottschalk G (1992) Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl Environ Microbiol 58:3896–3902PubMedGoogle Scholar
  144. Gunzel B, Yonsel S, Deckwer WD (1991) Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2 m3. Appl Microbiol Biotechnol 36:289–294Google Scholar
  145. Gutierrez NA, Maddox IS (1992) Product inhibition in a nonmotile mutant of Clostridium acetobutylicum. Enz Microbiol Technol 14:101–105Google Scholar
  146. Hamilton GA, Westheimer FH (1959) A crystalline decarboxylase without biotin. J Am Chem Soc 8:2277Google Scholar
  147. Hancock KR, Rockman E, Young CA, Pearce L, Maddox IS, Scott DB (1991) Expression and nucleotide sequence of the Clostridium acetobutylicum β-galactosidase gene cloned in Escherichia coli. J Bacteriol 173:3084–3095PubMedGoogle Scholar
  148. Harris J, Mulder R, Kell DB, Walter RP, Morris JG (1986) Solvent production by Clostridium pasteurianum in media of high sugar content. Biotechnol Lett 8:889–892Google Scholar
  149. Harris LM, Desai RP, Welker NE, Papoutsakis ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioengin 67:1–11Google Scholar
  150. Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 184:3586–3597PubMedGoogle Scholar
  151. Hartmanis MGN (1987) Butyrate kinase from Clostridium acetobutylicum. J Biol Chem 262:617–621PubMedGoogle Scholar
  152. Hasting JJH (1978) Acetone-butyl alcohol fermentation. In: Rose AH (ed) Primary products of metabolism. Academic, London, pp 31–45Google Scholar
  153. Hastings JJH (1971) Development of the fermentation industries in Great Britain. Adv Appl Microbiol 14:1–45PubMedGoogle Scholar
  154. Haynie SL, Wagner LW (1997) Process for making 1,3-propanediol from carbohydrates using mixed microbial cultures. US Patent 5599689Google Scholar
  155. Hermann M, Fayolle F, Marchal R, Podvin L, Sebald M, Vandecasteele J-P (1985) Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol 50:1238–1243PubMedGoogle Scholar
  156. Heyndrickx M, De Vos P, Vancanneyt M, De Ley J (1991) The fermentation of glycerol by Clostridium butyricum LMG 1212 t2 and 1213 t1 and C. pasteurianum LMG 3285. Appl Microbiol Biotechnol 34:637–642Google Scholar
  157. Himmi EH, Bories A, Barbirato F (1999) Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Biores Technol 67:123–138Google Scholar
  158. Hiu SF, Zhu C-X, Yan R-T, Chen J-S (1987) Butanol-ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum). Appl Environ Microbiol 53:697–703PubMedGoogle Scholar
  159. Hoffman J (2001) Butadiene hit hard by sharp drop in derivatives demand. Chem Mark Rep 260:1 and 12Google Scholar
  160. Holt RA, Stephens GM, Morris JG (1984) Production of solvents by Clostridium acetobutylicum cultures maintained at neutral pH. Appl Environ Microbiol 48:1166–1170PubMedGoogle Scholar
  161. Holt RA, Cairns AJ, Morris JG (1988) Production of butanol by Clostridium puniceum in batch and continuous culture. Appl Microbiol Biotechnol 27:319–324Google Scholar
  162. Homann T, Tag C, Biebl H, Deckwer WD, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33:121–126Google Scholar
  163. Hong R (1999) The cloning of a putative regulatory gene and the sol region from Clostridium beijerinckii. M.S. thesis Virginia Polytechnic Institute and State University, Blacksburg VAGoogle Scholar
  164. Hongo M, Murata A (1965a) Bacteriophages of Clostridium saccharoperbutylacetonicum. Part I: some characteristics of the twelve phages obtained from the abnormally fermented broths. Agric Biol Chem 29:1135–1139Google Scholar
  165. Hongo M, Murata A (1965b) Bacteriophages of Clostridium saccharoperbutylacetonicum. Part II: enumeration of phages by the application of the plaque count technique and some factors influencing the plaque formation. Agric Biol Chem 29:1140–1145Google Scholar
  166. Houben MCM (1995) Oxygenated blending components for gasoline-alcohols and ethers. In: Marshall EL, Owen K (eds) Motor gasoline: critical reports on applied chemistry, vol 34, Royal Society of Chemistry. Cambridge, UK, pp 45–71Google Scholar
  167. Howard WL (1991) Acetone. In: Kroschwitz JI, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology, vol 1, 4th edn. Wiley, New York, pp 176–194Google Scholar
  168. Huang K-X, Rudolph FB, Bennett GN (1999) Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1,2-propanediol. Appl Environ Microbiol 65:3244–3247PubMedGoogle Scholar
  169. Huang K-X, Huang S, Rudolph FB, Bennett GN (2000) Identification and characterization of a second butyrate kinase from Clostridium acetobutylicum ATCC 824. J Molec Microbiol Biotechnol 2:33–38Google Scholar
  170. Husemann M, Papoutsakis ET (1986) Effect of acetoacetate, butyrate, and uncoupling ionophores on growth and product formation of Clostridium acetobutylicum. Biotechnol Lett 8:37–42Google Scholar
  171. Husemann MHW, Papoutsakis ET (1988) Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations. Biotechnol Bioengin 32:843–852Google Scholar
  172. Husemann MHW, Papoutsakis ET (1989) Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridium acetobutylicum. Appl Microbiol Biotechnol 30:585–595Google Scholar
  173. Inoue Y, Kimura A (1995) Methylglyoxal and regulation of its metabolism in microorganisms. Adv Microb Physiol 37:177–227PubMedGoogle Scholar
  174. Ismaiel AA, Chen JS (1998) Purification of the aldehyde-alcohol dehydrogenase encoded by the aad gene from Clostridium acetobutylicum ATCC 824. In: Abstracts of the 98th general meeting of the American Society of Microbiology American Society for Microbiology, Washington, DC, pp O-40 400Google Scholar
  175. Ismaiel AA, Zhu C-X, Colby GD, Chen J-S (1993) Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J Bacteriol 175:5097–5105PubMedGoogle Scholar
  176. Jansen NB, Tsao GT (1983) Bioconversion of pentoses to 2,3-butanediol by Klebsiella pneumoniae. In: Fiechter A, Jeffries TW (eds) Advances in biochemical engineering/biotechnology, vol 27. Springer, New York, pp 85–99Google Scholar
  177. Jansen NB, Flickinger MC, Tsao GT (1984) Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724. Biotechnol Bioengin 26:362–369Google Scholar
  178. Johansen L, Bryn K, Stormer FC (1975) Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. J Bacteriol 123:1124–1130PubMedGoogle Scholar
  179. Johnson JL (1984) Bacterial classification. III: nucleic acids in bacterial classification. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 8–11Google Scholar
  180. Johnson JL, Chen J-S (1995) Taxonomic relationships among strains of Clostridium acetobutylicum and other phenotypically similar organisms. FEMS Microbiol Rev 17:233–240Google Scholar
  181. Johnson JL, Toth J, Santiwatanakul S, Chen J-S (1997) Cultures of “Clostridium acetobutylicum” from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA-DNA reassociation. Int J Syst Bacteriol 47:420–424PubMedGoogle Scholar
  182. Jones DT, Keis S (1995) Origins and relationships of industrial solvent-producing clostridial strains. FEMS Microbiol Rev 17:223–232Google Scholar
  183. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524PubMedGoogle Scholar
  184. Jones DT, Jones WA, Woods DR (1985) Production of recombinants after protoplast fusion in Clostridium acetobutylicum P262. J Gen Microbiol 131:1213–1216Google Scholar
  185. Jones DT, Shirley M, Wu X, Keis S (2000) Bacteriophage infections in the industrial AB fermentation process. J Molec Microbiol Biotechnol 2:21–26Google Scholar
  186. Junelles A-M, Janati-Idrissi R, El Kanouni A, Petitdemange H, Gay R (1987) Acetone-butanol fermentation by mutants selected for resistance to acetate and butyrate halogen analogues. Biotechnol Lett 9:175–178Google Scholar
  187. Juni E, Heym GA (1956) A cyclic pathway for the bacterial dissimilation of 2,3-butanediol, acetylmethylcarbinol, and diacetyl. I: general aspects of the 2,3-butanediol cycle. J Bacteriol 71:425–432PubMedGoogle Scholar
  188. Kashket ER, Cao ZY (1995) Clostridial strain degeneration. FEMS Microbiol Rev 17:307–315Google Scholar
  189. Keis S, Bennett CF, Ward VK, Jones DT (1995) Taxonomy and phylogeny of industrial solvent-producing clostridia. Int J Syst Bacteriol 45:693–705PubMedGoogle Scholar
  190. Keis S, Shaheen R, Jones DT (2001a) Emended description of Clostridium acetobutylicum and Clostridium beijerinckii and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol 51:2095–2103PubMedGoogle Scholar
  191. Keis S, Sullivan JT, Jones DT (2001b) Physical and genetic map of the Clostridium saccharobutylicum (formerly Clostridium acetobutylicum) NCP 262 chromosome. Microbiology 147:1909–1922PubMedGoogle Scholar
  192. Kelly FC (1936) One thing leads to another. Houghton Mifflin, BostonGoogle Scholar
  193. Killeffer DH (1927) Butanol and acetone from corn. Ind Engin Chem 19:46–50Google Scholar
  194. Korkhin Y, Kalb (Gilboa) AJ, Peretz M, Bogin O, Burstein Y, Frolow F (1998) NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J Molec Biol 278:67–981Google Scholar
  195. Kutzenok A, Aschner M (1952) Degenerative processes in a strain of Clostridium butylicum. J Bacteriol 64:829–836PubMedGoogle Scholar
  196. Ladisch MR (1991) Fermentation-derived butanol and scenarios for its uses in energy-related applications. Enz Microbiol Technol 13:280–283Google Scholar
  197. Laffend LA, Nagarajan V, Nakamura CE (1997) Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism. US Patent 5686276Google Scholar
  198. Laffend LA, Nagarajan V, Nakamura CE (2000) Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism. US Patent 6025184Google Scholar
  199. Largier ST, Long S, Santangelo JD, Jones DT, Woods DR (1985) Immobilized Clostridium acetobutylicum P 262 mutants for solvent production. Appl Environ Microbiol 50:477–481PubMedGoogle Scholar
  200. Larsen SH, Stormer FC (1973) Diacetyl (Acetoin) reductase from Aerobacter aerogenes. Eur J Biochem 34:100–106PubMedGoogle Scholar
  201. Laube VM, Groleau D, Martin SM (1984) 2,3-butanediol production from xylose and other hemicellulosic components by Bacillus polymyxa. Biotechnol Lett 6:257–262Google Scholar
  202. Lee HK, Maddox IS (1986) Continuous production of 2,3-butanediolfrom whey permeate using Klebsiella pneumoniae immobilized in calcium alginate. Enz Microb Technol 8:409–411Google Scholar
  203. Lee SF, Forsberg CW, Gibbins LN (1985) Cellulolytic activity of Clostridium acetobutylicum. Appl Environ Microbiol 50:220–228PubMedGoogle Scholar
  204. Lee SY, Bennett GN, Papoutsakis ET (1992) Construction of Escherichia coli-Clostridium acetobutylicum shuttle vectors and transformation of Clostridium acetobutylicum strains. Biotechnol Lett 14:427–432Google Scholar
  205. Lemme CJ, Frankiewicz JR (1985) Strains of Clostridium acetobutylicum and process for its preparation. US Patent 4521516Google Scholar
  206. Lemmel SA (1985) Mutagenesis in Clostridium acetobutylicum. Biotechnol Lett 7:711–716Google Scholar
  207. Lemmel SA, Datta R, Frankiewicz JR (1986) Fermentation of xylan by Clostridium acetobutylicum. Enz Microbiol Technol 8:217–221Google Scholar
  208. Lenz TG, Moreira AR (1980) Economic evaluation of the acetone-butanol fermentation. Ind Engin Chem Prod Res Devel 19:478–483Google Scholar
  209. Lepage C, Fayolle F, Hermann M, Vandecasteele J-P (1987) Changes in membrane liquid composition of Clostridium acetobutylicum during acetone-butanol fermentation: effects of solvents, growth temperature and pH. J Gen Microbiol 133:103–110Google Scholar
  210. Li G (1998) Development of a reporter system for the study of gene expression for solvent production in Clostridium beijerinckii NRRL B582 and Clostridium acetobutylicum ATCC 824. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg VAGoogle Scholar
  211. Lin Y-L, Blaschek HP (1984) Transformation of heat-treated Clostridium acetobutylicum protoplasts with pUB110 plasmid DNA. Appl Environ Microbiol 48:737–742PubMedGoogle Scholar
  212. Logsdon JE, Loke RA (1996) Isopropyl alcohol. In: Kroschwitz JI, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology, vol 20, 4th edn. Wiley, New York, pp 216–240Google Scholar
  213. Logsdon JE, Loke RA (1999) Isopropyl alcohols. In: Kroschwitz JI (ed) Kirk-Othmer concise encyclopedia of chemical technology, 4th edn. Wiley, New York, pp 1654–1656Google Scholar
  214. Luers FM, Seyfried R, Daniel R, Gottschalk G (1997) Glycerol conversion to 1,3-propanediol by Clostridium pasteurianum: cloning and expression of the gene encoding 1,3-propanediol dehydrogenase. FEMS Microbiol Lett 154:337–345PubMedGoogle Scholar
  215. Lund BM, Brocklehurst TF, Wyatt GM (1981) Characterization of strains of Clostridium puniceum sp. nov., a pink-pigmented, pectolytic bacterium. J Gen Microbiol 122:17–26Google Scholar
  216. Macis L, Daniel R, Gottschalk G (1998) Properties and sequence of the coenzyme B12-dependent glycerol dehydratase of Clostridium pasteurianum. FEMS Microbiol Lett 164:21–28PubMedGoogle Scholar
  217. Maddox IS (1980) Production of n-butanol from whey filtrate using Clostridium acetobutylicum NCIB 2951. Biotechnol Lett 2:493–498Google Scholar
  218. Maddox IS, Steiner E, Hirsch S, Wessner S, Gutierrez NA, Gapes JR, Schuster KC (2000) The cause of “acid crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE-) fermentation process. J Molec Microbiol Biotechnol 2:95–100Google Scholar
  219. Malinowski JJ (1999) Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol. Biotechnol Tech 13:127–130Google Scholar
  220. Malinowski JJ (2000) Reactive extraction for downstream separation of 1,3-propanediol. Biotechnol Prog 16:76–79PubMedGoogle Scholar
  221. Marchal R, Ropars M, Pourquie J, Fayolle F, Vandecasteele JP (1992) Large-scale enzymatic hydrolysis of agricultural lignocellulosic biomass. Part II: conversion into acetone-butanol. Biores Technol 42:205–217Google Scholar
  222. Mattsson DM, Rogers P (1994) Analysis of Tn916-induced mutants of Clostridium acetobutylicum altered in solventogenesis and sporulation. J Ind Microbiol 13:258–268PubMedGoogle Scholar
  223. McCoy E, Fred EB (1941) The stability of a culture for industrial fermentation. J Bacteriol 41:90–91Google Scholar
  224. McCoy E, McClung LS (1935) Studies on anaerobic bacteria. J Infect Dis 56:333–346Google Scholar
  225. McCoy E, Fred EB, Peterson WH, Hastings EG (1926) A cultural study of the acetone butyl alcohol organism. J Infect Dis 39:457–483Google Scholar
  226. McCutchan WN, Hickey RJ (1954) The butanol-acetone fermentations. In: Underkofler LA, Hickey RJ (eds) Industrial fermentations, vol 1. Chemical Publishing, New York, pp 347–388Google Scholar
  227. McNeil B, Kristiansen B (1986) The acetone butanol fermentation. Adv Appl Microbiol 31:61–92Google Scholar
  228. Meinecke B, Bahl H, Gottschalk G (1984) Selection of an asporogenous strain of Clostridium acetobutylicum in continuous culture under phosphate limitation. Appl Environ Microbiol 48:1064–1065PubMedGoogle Scholar
  229. Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enz Microbiol Technol 20:82–86Google Scholar
  230. Mermelstein LD, Papoutsakis ET (1993a) Evaluation of macrolide and lincosamide antibiotics for plasmid maintenance in low pH Clostridium acetobutylicum ATCC 824 fermentations. FEMS Microbiol Lett 113:71–76Google Scholar
  231. Mermelstein LD, Papoutsakis ET (1993b) In vivo methylation in Escherichia coli by the Bacillus subtilis phage 3 T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 59:1077–1081PubMedGoogle Scholar
  232. Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology 10:190–195PubMedGoogle Scholar
  233. Mermelstein LD, Papoutsakis ET, Petersen DJ, Bennett GN (1993) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon. Biotechnol Bioengin 42:1053–1060Google Scholar
  234. Mickelson MN, Werkman CH (1940) Formation of trimethyleneglycol from glycerol by Aerobacter. Enzymologia 8:252–256Google Scholar
  235. Minton NP, Oultram JD (1988) Host:vector systems for gene cloning in Clostridium. Microbiol Sci 5:310–315PubMedGoogle Scholar
  236. Mitchell WJ (1998) Physiology of carbohydrate to solvent conversion by clostridia. Adv Microb Physiol 39:31–130PubMedGoogle Scholar
  237. Monot F, Engasser J-M, Petitdemange H (1984) Influence of pH and undissociated butyric acid in the production of acetone and butanol in batch cultures of Clostridium acetobutylicum. Appl Microbiol Biotechnol 19:422–426Google Scholar
  238. Montoya D, Arevalo C, Gonzales S, Aristizabal F, Schwarz WH (2001) New solvent-producing Clostridium sp. strains, hydrolyzing a wide range of polysaccharides, are closely related to Clostridium butyricum. J Ind Microbiol Biotechnol 27:329–335PubMedGoogle Scholar
  239. Moore SK (1999) DuPont, Genencor close in on biological propanediol route. Chem Week 161:17Google Scholar
  240. Moreira AR, Ulmer DC, Linden JC (1981) Butanol toxicity in butylic fermentation. Biotechnol Bioengin Symp 11:567–579Google Scholar
  241. Nagarajan V, Nakamura CE (1998) Production of 1,3-propanediol from glycerol by recombinant bacteria expressing recombinant diol dehydratase. US Patent 5821092Google Scholar
  242. Nair RV, Bennett GN, Papoutsakis ET (1994) Molecular characterization of an alcohol/aldehyde dehydrogenase gene of Clostridium acetobutylicum ATCC 824. J Bacteriol 176:871–885PubMedGoogle Scholar
  243. Nakamura CE, Gatenby AA, Hsu AK, LaReau RD, Haynie SL, Diaz-Torres R, Trimbur DE, Whited GM, Nagarajan A, Payne MS, Picataggio SK, Nair RV (2000) Method for the production of 1,3-propanediol by recombinant microorganisms. US Patent 6013494Google Scholar
  244. Nakas JP, Schaedle M, Parkinson CM, Coonley CE, Tanenbaum SW (1983) System development for linked-fermentation production of solvents from algal biomass. Appl Environ Microbiol 46:1017–1023PubMedGoogle Scholar
  245. Nakashimada Y, Kanai K, Nishio N (1998) Optimization of dilution rate, pH and oxygen supply on optical purity of 2,3-butanediol produced by Paenibacillus polymyxa in chemostat culture. Biotechnol Lett 20:113–1138Google Scholar
  246. Nakashimada Y, Marwoto B, Kashiwamura T, Kakizono T, Nishio N (2000) Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. J Biosci Bioeng 90:661–664PubMedGoogle Scholar
  247. Nakotte S, Schaffer S, Bohringer M, Dü P (1998) Electroporation of, plasmid isolation from and plasmid conservation in Clostridium acetobutylicum DSM 792. Appl Microbiol Biotechnol 50:564–567PubMedGoogle Scholar
  248. Nativel F, Pourquie J, Ballerini D, Vandecasteele JP, Renault P (1992) The biotechnology facilities at Soustons for biomass conversion. Int J Solar Energy 11:219–229Google Scholar
  249. Nilegaonkar S, Bhosale SB, Kshirsagar DC, Kapadi AH (1992) Production of 2,3-butanediol from glucose by Bacillus licheniformis. World J Microbiol Biotechnol 8:378–381Google Scholar
  250. Nimcevic D, Gapes JR (2000) The acetone-butanol fermentation in pilot plant and pre-industrial scale. J Molec Microbiol Biotechnol 2:15–20Google Scholar
  251. Nimcevic D, Schuster M, Gapes JR (1998) Solvent production by Clostridium beijerinckii NRRL B592 growing on different potato media. Appl Microbiol Biotechnol 50:426–428PubMedGoogle Scholar
  252. Nölling J, Breton G, Omelchenko MV, Markarova KS, Zeng Q, Gibson R, Lee HM, DuBois J, Qiu D, Hitti J, GTC Sequencing Center Production, Finishing, and Bioinformatics Teams, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838Google Scholar
  253. Noon R (1982) Power-grade butanol. Chemtech 12:681–683Google Scholar
  254. Northrop JH, Ashe LH, Senior JK (1919) Biochemistry of Bacillus acetoethylicum with reference to the formation of acetone. J Biol Chem 39:1–21Google Scholar
  255. Ogata S, Hongo M (1979) Bacteriophages of the genus Clostridium. Adv Appl Microbiol 25:241–273PubMedGoogle Scholar
  256. Oiwa H, Naganuma M, Ohnuma S-I (1987) Acetone-butanol production from dahlia inulin by Clostridium pasteurianum var. I-53. Agric Biol Chem 51:2819–2820Google Scholar
  257. O'Neill H, Mayhew SG, Butler G (1998) Cloning and analysis of the genes for a novel electron-transferring flavoprotein from Megasphaera elsdenii. J Biol Chem 273:21015–21024PubMedGoogle Scholar
  258. Osuna J, Soberon X, Morett E (1997) A proposed architecture for the central domain of the bacterial enhancer-binding proteins based on secondary structure prediction and fold recognition. Protein Sci 6:543–555PubMedGoogle Scholar
  259. Oude Elferink SJWH, Krooneman J, Gorrschal JC, Spoelstra SF, Faber F, Driehuis F (2001) Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67:125–132PubMedGoogle Scholar
  260. Ouellette J (2000) PO and PG markets face tight margins. Chem Mark Rep 257 5 and 14Google Scholar
  261. Oultram JD, Young M (1985) Conjugal transfer of plasmid pAMβ1 from Streptococcus lactis and Bacillus subtilis to Clostridium acetobutylicum. FEMS Microbiol Lett 27:129–134Google Scholar
  262. Oultram JD, Davies A, Young M (1987) Conjugal transfer of a small plasmid from Bacillus subtilis to Clostridium acetobutylicum by cointegrate formation with plasmid pAMβ1. FEMS Microbiol Lett 42:113–119Google Scholar
  263. Oultram JD, Loughlin M, Swinfield T-J, Brehm JK, Thompson DE, Minton NP (1988) Introduction of plasmids into whole cells of Clostridium acetobutylicum by electroporation. FEMS Microbiol Lett 56:83–88Google Scholar
  264. Oultram JD, Burr ID, Elmore MJ, Minton NP (1993) Cloning and sequence analysis of the genes encoding phosphotransbutyrylase and butyrate kinase from Clostridium acetobutylicum NCIMB 8052. Gene 131:107–112PubMedGoogle Scholar
  265. Owen K, Coley T (1990) Oxygenated blend components for gasoline. In: Automotive fuels handbook. Society of Automotive Engineers, Warrendale PA, pp 221–259Google Scholar
  266. Palosaari NR, Rogers P (1988) Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum. J Bacteriol 170:2971–2976PubMedGoogle Scholar
  267. Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191–208PubMedGoogle Scholar
  268. Papoutsakis ET, Meyer CL (1985) Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnol Bioengin 27:50–66Google Scholar
  269. Paquet V, Croux C, Goma G, Soucaille P (1991) Purification and characterization of the extracellular α-amylase from Clostridium acetobutylicum. Appl Environ Microbiol 57:212–218PubMedGoogle Scholar
  270. Pedroni P, Volpe A, Galli G, Mura GM, Pratesi C, Grandi G (1995) Characterization of the locus encoding the [Ni-Fe] sulfhydrogenase from the archaeon Pyrococcus furiosus: evidence for a relationship to bacterial sulfite reductases. Microbiology 141:449–458PubMedGoogle Scholar
  271. Peguin S, Goma G, Delorme P, Soucaille P (1994) Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition. Appl Microbiol Biotechnol 42:611–616Google Scholar
  272. Peretz M, Bogin O, Tel-Or S, Cohen A, Li G, Chen J-S, Burstein Y (1997) Molecular cloning, nucleotide sequencing, and expression of genes encoding alcohol dehydrogenase from the thermophile Thermoanaerobacter brockii and the mesophile Clostridium beijerinckii. Anaerobe 3:259–270PubMedGoogle Scholar
  273. Petersen DJ, Welch RW, Rudolph FB, Bennett GN (1991) Molecular cloning of an alcohol (butanol) dehydrogenase gene cluster from Clostridium acetobutylicum ATCC 824. J Bacteriol 173:1831–1834PubMedGoogle Scholar
  274. Petersen DJ, Cary JW, Vanderleyden J, Bennett GN (1993) Sequence and arrangement of genes encoding enzymes of the acetone-production pathway of Clostridium acetobutylicum ATCC 824. Gene 123:93–97PubMedGoogle Scholar
  275. Petitdemange E, Durr C, Abbad-Andalousi S, Raval G (1995) Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Indust Microbiol 15:498–502Google Scholar
  276. Pflugmacher U, Gottschalk G (1994) Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii. Appl Microbiol Biotechnol 41:313–316Google Scholar
  277. Pierce SM, Wayman M (1983) Diesel fuel by fermentation of wastes. US Patent 4368056Google Scholar
  278. Potera C (1997) Genencor and DuPont create “green” polyester. Genet Eng News 17:17Google Scholar
  279. Prescott SC, Dunn CG (1949) The acetone-butanol fermentation. In: Prescott SC, Dunn CG (eds) Industrial microbiology, 2nd edn. McGraw-Hill, New York, pp 312–351Google Scholar
  280. Prescott SC, Dunn CG (1959a) The acetone-butanol fermentation. In: Prescott SC, Dunn CG (eds) Industrial microbiology, 3rd edn. McGraw-Hill, New York, pp 250–284Google Scholar
  281. Prescott SC, Dunn G (1959b) The acetone-ethanol fermentation. In: Prescott SC, Dunn G (eds) Industrial microbiology, 3rd edn. McGraw-Hill, New York, pp 295–298Google Scholar
  282. Prescott SC, Dunn CG (1959c) The butanol-isopropanol fermentation. In: Prescott SC, Dunn CG (eds) Industrial microbiology, 3rd edn. McGraw-Hill, New York, pp 285–294Google Scholar
  283. Qureshi N, Blaschek HP (2001) ABE production from corn: a recent economic evaluation. J Indust Microbiol Biotechnol 27:292–297Google Scholar
  284. Qureshi N, Lolas A, Blaschek HP (2001) Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J Indust Microbiol Biotechnol 26:290–295Google Scholar
  285. Rakhley G, Zhou ZH, Adams MWW, Kovacs KL (1999) Biochemical and molecular characterization of the [NiFe] hydrogenase from the hyperthermophilic archaeon, Thermococcus litoralis. Eur J Biochem 266:1158–1165Google Scholar
  286. Ramachandran KB, Goma G (1988) 2,3-Butanediol production from glucose by Klebsiella pneumoniae in a cell recycle system. J Biotechnol 9:39–46Google Scholar
  287. Rao G, Mutharasan R (1986) Alcohol production by Clostridium acetobutylicum induced by methyl viologen. Biotechnol Lett 8:893–896Google Scholar
  288. Rao G, Mutharasan R (1987) Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes. Appl Environ Microbiol 53:1232–1235PubMedGoogle Scholar
  289. Rao G, Mutharasan R (1988) Altered electron flow in a reduced environment in Clostridium acetobutylicum. Biotechnol Lett 10:129–132Google Scholar
  290. Raspoet D, Pot B, De Deyn D, De Vos P, Kersters K, De Ley J (1991) Differentiation between 2,3-butanediol producing Bacillus licheniformis and B. polymyxa strains by fermentation product profiles and whole-cell protein electrophoretic patterns. Syst Appl Microbiol 14:1–7Google Scholar
  291. Ravagnani A, Jennert KCB, Steiner E, Grunberg R, Jefferies JR, Wilkinson SR, Young DI, Tidswell EC, Brown DP, Youngman P, Morris JG, Young M (2000) Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Molec Microbiol 37:1172–1185Google Scholar
  292. Rayner A (1926) The occurrence, properties, and uses of trimethylene glycol, and the fermentation of glycerin lyes. J Soc Chem Indust 45:265T–266TGoogle Scholar
  293. Reid SJ, Allcock ER, Jones DT, Woods DR (1983) Transformation of Clostridium acetobutylicum protoplasts with bacteriophage DNA. Appl Environ Microbiol 45:305–307PubMedGoogle Scholar
  294. Reimann A, Biebl H (1996) Production of 1,3-propanediol by Clostridium butyricum DSM 5431 and product tolerant mutants in fedbatch culture: feeding strategy for glycerol and ammonium. Biotechnol Lett 18:827–832Google Scholar
  295. Reimann A, Abbad-Andaloussi S, Biebl H, Petitdemange H (1998a) 1,3-propanediol formation with product-tolerant mutants of Clostridium butyricum DSM 5431 in continuous culture: productivity, carbon and electron flow. J Appl Microbiol 84:1125–1130Google Scholar
  296. Reimann A, Biebl H, Deckwer WD (1998b) Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl Microbiol Biotechnol 49:359–363Google Scholar
  297. Reysset G, Sebald M (1985) Conjugal transfer of plasmid-mediated antibiotic resistance from streptococci to Clostridium acetobutylicum. Ann Inst Pasteur/Microbiol 136B:275–282Google Scholar
  298. Rogers P (1986) Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Adv Appl Microbiol 31:1–60Google Scholar
  299. Rogers P (1999) Clostridia: solvent formation. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation, vol 2. Wiley, New York, pp 670–687Google Scholar
  300. Rogers P, Gottschalk G (1993) Biochemistry and regulation of acid and solvent production in clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, Stoneham, pp 25–50Google Scholar
  301. Rogers P, Palosaari N (1987) Clostridium acetobutylicum mutants that produce butyraldehyde and altered quantities of solvents. Appl Environ Microbiol 53:2761–2766PubMedGoogle Scholar
  302. Roos JW, McLaughlin JK, Papoutsakis ET (1985) The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations of Clostridium acetobutylicum. Biotechnol Bioengin 27:681–694Google Scholar
  303. Rose N (1986) Chaim Weizmann. Penguin Books, New YorkGoogle Scholar
  304. Rosenberg SL (1980) Fermentation of pentose sugars to ethanol and other neutral products by microorganisms. Enz Microb Technol 2:185–193Google Scholar
  305. Ross D (1961) The acetone-butanol fermentation. Progr Indust Microbiol 3:71–90Google Scholar
  306. Ryden R (1958) Development of anaerobic fermentation processes: acetone-butanol. In: Steel R (ed) Biochemical engineering. Macmillan, New York, pp 125–148Google Scholar
  307. Sablayrolles JM, Goma G (1984) Butanediol production by Aerobacter aerogenes NRRL B199: effects of initial substrate concentration and aeration agitation. Biotechnol Bioengin 26:148–155Google Scholar
  308. Saha BC, Bothast RJ (1999) Production of 2,3-butanediol by newly isolated Enterobacter cloacae. Appl Microbiol Biotechnol 52:321–326PubMedGoogle Scholar
  309. Saint-Amans S, Perlot P, Goma G, Soucaille P (1994) High production of 1,3-propanediol from glycerol by Clostridium butyricum VPI 3266 in a simply controlled fed-batch system. Biotechnol Lett 16:831–836Google Scholar
  310. Sanchez-Riera F, Cameron DC, Cooney CL (1987) Influence of environmental factors in the production of R(-)-1,2-propanediol by Clostridium thermosaccharolyticum. Biotechnol Lett 9:449–454Google Scholar
  311. Sass C, Walter J, Bennett GN (1993) Isolation of mutants of Clostridium acetobutylicum ATCC 824. Curr Microbiol 26:151–154Google Scholar
  312. Sauer U, Dürre P (1995) Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum. FEMS Microbiol Lett 125:115–120Google Scholar
  313. Schneider Z, Larsen EG, Jacobson G, Johnson BC, Pawelkiewicz J (1970) Purification and properties of glycerol dehydrase. J Biol Chem 245:3388–3396PubMedGoogle Scholar
  314. Schoutens GH, Groot WJ (1985) Economic feasibility of the production of iso-propanol-butanol-ethanol fuels from whey permeate. Process Biochem 20:117–121Google Scholar
  315. Schoutens GH, Nieuwenhuizen MCH, Kossen NWF (1984) Butanol from whey ultrafiltrate: batch experiments with Clostridium beijerinckii LMD 27.6. Appl Microbiol Biotechnol 19:203–206Google Scholar
  316. Schoutens GH, Nieuwenhuizen MCH, Kossen NWF (1985) Continuous butanol production from whey permeate with immobilized Clostridium beijerinckii LMD 27.6. Appl Microbiol Biotechnol 21:282–286Google Scholar
  317. Schuster KC, Goodacre R, Gapes JR, Young M (2001) Degeneration of solventogenic Clostridium strains monitored by Fourier transform infrared spectroscopy of bacterial cells. J Ind Microbiol Biotechnol 27:314–321PubMedGoogle Scholar
  318. Seifert C, Bowien S, Gottschalk G, Daniel R (2001) Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. Eur J Biochem 268:2369–2378PubMedGoogle Scholar
  319. Seyfried M, Daniel R, Gottschalk G (1996) Cloning, sequencing, and overexpression of the genes encoding coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. J Bacteriol 178:5793–5796PubMedGoogle Scholar
  320. Shelley S, D’Aquino RL (1999) Three routes vie for the 1,3-propanediol market. Chem Engin 106:56Google Scholar
  321. Skraly FA, Lytle BL, Cameron DC (1998) Construction and characterization of a 1,3-propanediol operon. Appl Env Microbiol 64:98–105Google Scholar
  322. Solomon BO, Zeng AP, Biebl H, Ejiofor AO, Posten C, Deckwer WD (1994) Effects of substrate limitation on product distribution and H2/CO2 ratio in Klebsiella pneumoniae during anaerobic fermentation of glycerol. Appl Microbiol Biotechnol 42:222–226Google Scholar
  323. Solomon BO, Zeng A-P, Biebl H, Schlieker H, Posten C, Deckwer W-D (1995) Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol. J Biotechnol 39:107–117PubMedGoogle Scholar
  324. Solomons GL (1976) Solvents from carbohydrates: some economic considerations. Process Biochem 11:32–37Google Scholar
  325. Somrutai W, Takagi M, Yoshida T (1996) Acetone-butanol fermentation by Clostridium aurantibutyricum ATCC 17777 from a model medium for palm oil mill effluent. J Ferment Bioengin 81:543–547Google Scholar
  326. Spivey MJ (1978) The acetone/butanol/ethanol fermentation. Process Biochem 13:2–25Google Scholar
  327. Sprenger GA, Hammer BA, Johnson EA, Lin EC (1989) Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae. J Gen Microbiol 135:1255–1262PubMedGoogle Scholar
  328. St Martin EJ, Freedberg WB, Lin ECC (1977) Kinase replacement by a dehydrogenase for Escherichia coli glycerol utilization. J Bacteriol 131:1026–1028PubMedGoogle Scholar
  329. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849Google Scholar
  330. Stephens GM, Holt RA, Gottschal JC, Morris JG (1985) Studies on the stability of solvent production by Clostridium acetobutylicum in continuous culture. J Appl Bacteriol 59:597–605Google Scholar
  331. Stevens D, Alam S, Bajpai R (1988) Fermentation of cheese whey by a mixed culture of Clostridium beijerinckii and Bacillus cereus. J Ind Microbiol 3:15–19Google Scholar
  332. Stieb M, Schink B (1984) A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov.sp.nov., possessing various fermentation pathways. Arch Microbiol 140:139–146Google Scholar
  333. Stim-Herndon KP, Petersen DJ, Bennett GN (1995) Molecular characterization of the acetyl coenzyme A acetyltransferase (thiolase) from Clostridium acetobutylicum ATCC 824. Gene 154:81–85PubMedGoogle Scholar
  334. Stormer FC (1975) 2,3-Butanediol biosynthetic system in Aerobacter aerogenes. In: Wood WA (ed) Methods in enzymology, vol 41. Academic, New York, pp 518–533Google Scholar
  335. Streekstra H, Teixera de Mattos MJ, Neijssel OM, Tempest DW (1987) Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat culture. Arch Microbiol 147:268–275Google Scholar
  336. Suzuki T, Onishi H (1968) Aerobic dissimilation of L-rhamnose and the production of L-rhamnonic acid and 1,2-propanediol by yeasts. Agric Biol Chem 32:888–893Google Scholar
  337. Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18PubMedGoogle Scholar
  338. Szmant HH (1989) Organic building blocks of the chemical industry. Wiley, New York, pp 347–348Google Scholar
  339. Tang JCT, Ruch FE, Lin ECC (1979) Purification and properties of a nicotinamide adenine dinucleotide-linked dehydrogenase that serves an Escherichia coli mutant for glycerol catabolism. J Bacteriol 140:182–187PubMedGoogle Scholar
  340. Tang JCT, Forage RG, Lin ECC (1982) Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae. J Bacteriol 152:1169–1174PubMedGoogle Scholar
  341. Taylor MB, Juni E (1960) Stereoisomeric specificities of 2,3-butanediol dehydrogenases. Biochim Biophys Acta 39:448–457PubMedGoogle Scholar
  342. Terracciano JS, Kashket ER (1986) Intracellular conditions required of initiation of solvent production by Clostridium acetobutylicum. Appl Environ Microbiol 52:86–91PubMedGoogle Scholar
  343. Thayer A (2000) Challenges of a biobased economy C %26 EN May 29 40Google Scholar
  344. Thompson DK, Chen J-S (1990) Purification and properties of an acetoacetyl coenzyme A-reacting phosphotransbutyrylase from Clostridium beijerinckii (“Clostridium butylicum”) NRRL B593. Appl Environ Microbiol 56:607–613PubMedGoogle Scholar
  345. Thomson AW, O'Neill JG, Wilkinson JF (1976) Acetone production by methylobacteria. Arch Microbiol 109:243–246PubMedGoogle Scholar
  346. Thormann K, Feustel L, Lorenz K, Nakotte S, Dü P (2002) Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. J Bacteriol 184:1966–1973PubMedGoogle Scholar
  347. Tobimatsu T, Hara T, Sakaguchi M, Kishimoto Y, Wada Y, Isoda M, Sakai T, Toraya T (1995) Molecular cloning, sequencing, and expression of the genes encoding adenosylcobalamin-dependent diol dehydrase of Klebsiella oxytoca. J Biol Chem 270:712–7148Google Scholar
  348. Tobimatsu T, Azuma M, Matsubara H, Takatori H, Niida T, Nishinoto K, Satoh H, Hayashi R, Toraya T (1996) Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol dehydrase of Klebsiella pneumoniae. J Biol Chem 271:22352–22357PubMedGoogle Scholar
  349. Tobimatsu T, Kjiura H, Yunoki M, Azuma M, Toraya T (1999) Identification and expression of the genes encoding a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase. J Bacteriol 181:4110–4113PubMedGoogle Scholar
  350. Tong IT, Cameron DC (1992) Enhancement of 1,3-propanediol production by cofermentation in Escherichia coli expression Klebsiella pneumoniae dha regulon genes. Appl Biochem Biotechnol 34/35:149–159Google Scholar
  351. Tong I-T, Liao HH, Cameron DC (1991) 1,3-propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl Env Microbiol 57:3541–3546Google Scholar
  352. Toth J, Ismaiel AA, Chen J-S (1999) Purification of a coenzyme A-acylating aldehyde dehydrogenase and cloning of the structural gene from Clostridium beijerinckii NRRL B593. Appl Environ Microbiol 65:4973–4980PubMedGoogle Scholar
  353. Tran-Din K, Gottschalk G (1985) Formation of D(−)-1,2-propanediol and D(−)-lactate from glucose by Clostridium sphenoides under phosphate limitation. Arch Microbiol 142:87–92Google Scholar
  354. Truffaut N, Hubert J, Reysset G (1989) Construction of shuttle vectors useful for transforming Clostridium acetobutylicum. FEMS Microbiol Lett 58:15–20Google Scholar
  355. Trunger V, Boos W (1994) Mapping and cloning of gldA, the structural gene of the Escherichia coli glycerol dehydratase. J Bacteriol 176:1796–1800Google Scholar
  356. Tummala SB, Welker NE, Papoutsakis ET (1999) Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 65:3793–3799PubMedGoogle Scholar
  357. Turner KW, Roberton AM (1979) Xylose, arabinose, and rhamnose fermentation by Bacteroides ruminicola. Appl Environ Microbiol 38:7–12PubMedGoogle Scholar
  358. Ui S, Masuda H, Muraki H (1983) Laboratory-scale production of 2,3-butanediol isomers (D(−), L(+), and Meso) by bacterial fermentations. J Ferment Technol 61:253–259Google Scholar
  359. Ui S, Masuda T, Masuda H, Muraki H (1986) Mechanism for the formation of 2,3-butanediol stereoisomers in Bacillus polymyxa. J Ferment Technol 64:481–486Google Scholar
  360. Ui S, Odagiri M, Mimura A, Kanai H, Kobayashi T, Kudo T (1996) Preparation of a chiral acetoinic compound using transgenic Escherichia coli expressing the 2,3-butandiol dehydrogenase gene. J Ferment Bioeng 81:386–389Google Scholar
  361. Ui S, Okajima Y, Mimura A, Kanai H, Kudo T (1997) Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol. J Ferment Bioeng 84:185–189Google Scholar
  362. Ui S, Hosaka T, Watanabe K, Mimura A (1998) Discovery of a new mechanism of 2,3-butanediol stereoisomer formation in Bacillus cereus YUF-4. J Ferment Bioeng 85:79–83Google Scholar
  363. van der Westhuizen A, Jones DT, Woods DR (1982) Autolytic activity and butanol tolerance of Clostridium acetobutylicum. Appl Environ Microbiol 44:1277–1281Google Scholar
  364. Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 176:1443–1450PubMedGoogle Scholar
  365. Verhasselt P, Poncelet F, Vits K, van Gool A, Vanderleyden J (1989) Cloning and expression of a Clostridium acetobutylicum α-amylase gene in Escherichia coli. FEMS Microbiol Lett 59:135–140Google Scholar
  366. Voget CE, Mignone CF, Ertola RJ (1985) Butanol production from apple pomace. Biotechnol Lett 7:43–46Google Scholar
  367. Voloch M, Ladisch MR, Rodwell VW, Tsao GT (1983) Reduction of acetoin to 2,3-butanediol in Klebsiella pneumoniae: a new model. Biotechnol Bioengin 25:173–183Google Scholar
  368. Wagner TO, Gray DS, Zarah BY, Kozinski AA (1980) Practicality of alcohols as motor fuel. Alcohols as motor fuels society of automotive engineers, Warrendale PA, pp 249–265Google Scholar
  369. Walter KA, Bennett GN, Papoutsakis ET (1992) Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes. J Bacteriol 174:7149–7158PubMedGoogle Scholar
  370. Walter KA, Nair RV, Cary JW, Bennett GN, Papoutsakis ET (1993) Sequence and arrangement of two genes of the butyrate-synthesis pathway of Clostridium acetobutylicum ATCC 824. Gene 134:107–111PubMedGoogle Scholar
  371. Walton MT, Martin JL (1979) Production of butanol-acetone by fermentation. In: Peppler HJ, Perlman D (eds) Microbial technology, vol 1, 2nd edn. Academic, New York, pp 187–209Google Scholar
  372. Waterson RM, Castellino FJ, Hass GM, Hill RL (1972) Purification and characterization of crotonase from Clostridium acetobutylicum. Biol Chem 247:5266–5271Google Scholar
  373. Webster JR, Reid SJ, Jones DT, Woods DR (1981) Purification and characterization of an autolysin from Clostridium acetobutylicum. Appl Environ Microbiol 41:371–374PubMedGoogle Scholar
  374. Weimer PJ (1984a) Control of product formation during glucose fermentation by Bacillus macerans. J Gen Microbiol 130:103–111Google Scholar
  375. Weimer PJ (1984b) Fermentation of 6-deoxyhexoses by Bacillus macerans. Appl Environ Microbiol 47:263–267PubMedGoogle Scholar
  376. Weizmann C (1915) Improvements in bacterial fermentation of carbohydrates and in bacterial cultures for the same. British Patent 4845Google Scholar
  377. Welch RW (1991) Purification and studies of two butanol (ethanol) dehydrogenases and the effects of rifampicin and chloramphenicol on other enzymes important in the production of butyrate and butanol in Clostridium acetobutylicum ATCC 824. PhD thesis, Rice University, Houston TXGoogle Scholar
  378. Welch RW, Rudolph FB, Papoutsakis ET (1989) Purification and characterization of the NADH-dependent butanol dehydrogenase from Clostridium acetobutylicum (ATCC 824). Arch Biochem Biophys 273:309–318PubMedGoogle Scholar
  379. Welling H (1998) Fibers industry get ready. Apparel Industry Magazine 59:65–66Google Scholar
  380. Weyer ER, Rettger LF (1927) A comparative study of six different strains of the organism commonly concerned in large-scale production of butyl alcohol and acetone by the biological process. J Bacteriol 14:399–424PubMedGoogle Scholar
  381. Whitfield CD, Mayhew SG (1974) Purification and properties of electron-transferring flavoprotein from Peptostreptococcus elsdenii. J Biol Chem 249:2801–2810PubMedGoogle Scholar
  382. Wiesenborn DP, Rudolph FB, Papoutsakis ET (1988) Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl Environ Microbiol 54:2717–2722PubMedGoogle Scholar
  383. Wiesenborn DP, Rudolph FB, Papoutsakis ET (1989a) Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids. Appl Environ Microbiol 55:323–329PubMedGoogle Scholar
  384. Wiesenborn DP, Rudolph FB, Papoutsakis ET (1989b) Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis. Appl Environ Microbiol 55:317–322PubMedGoogle Scholar
  385. Wilke D (1999) Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry. Appl Microbiol Biotechnol 52:135–145PubMedGoogle Scholar
  386. Wilkinson SR, Young M (1994) Targeted integration of genes into the Clostridium acetobutylicum chromosome. Microbiology 140:89–95Google Scholar
  387. Wilkinson SR, Young M (1995) Physical map of the Clostridium beijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052 chromosome. J Bacteriol 177:439–448PubMedGoogle Scholar
  388. Williams DR, Young DI, Young M (1990) Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J Gen Microbiol 136:819–826PubMedGoogle Scholar
  389. Winzer K, Lorenz K, Dü P (1997) Acetate kinase from Clostridium acetobutylicum: a highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis. Microbiology 143:3279–3286PubMedGoogle Scholar
  390. Winzer K, Lorenz K, Zickner B, Dü P (2000) Differential regulation of two thiolase genes from Clostridium acetobutylicum DSM 792. J Molec Microbiol Biotechnol 2:531–541Google Scholar
  391. Wittlich P, Themann A, Vorlop K-D (2001) Conversion of glycerol to 1,3-propanediol by a newly isolated thermophilic strain. Biotechnol Lett 23:463–466Google Scholar
  392. Wood A (2001) DuPont Genencor extend alliance. Chem Week 163:38Google Scholar
  393. Woods DR (1995) The genetic engineering of microbial solvent production. Trends Biotechnol 13:259–264PubMedGoogle Scholar
  394. Woolley RC, Morris JG (1990) Stability of solvent production by Clostridium acetobutylicum in continuous culture: strain differences. J Appl Bacteriol 69:718–728Google Scholar
  395. Woolley RC, Pennock A, Ashton RJ, Davies A, Young M (1989) Transfer of Tn1545 and Tn916 to Clostridium acetobutylicum. Plasmid 22:169–174PubMedGoogle Scholar
  396. Yan R-T (1991) Enzymology of butanol formation in Clostridium beijerinckii NRRL B592. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg VAGoogle Scholar
  397. Yan R-T, Chen J-S (1990) Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592. Appl Environ Microbiol 56:2591–2599PubMedGoogle Scholar
  398. Yan R-T, Zhu C-X, Golemboski C, Chen J-S (1988) Expression of solvent-forming enzymes and onset of solvent production in batch cultures of Clostridium beijerinckii (“Clostridium butylicum”). Appl Environ Microbiol 54:642–648PubMedGoogle Scholar
  399. Yeh C-S (1955) Butanol-acetone fermentation (in Chinese). In: Petroleum Communications China Petroleum Corporation Taiwan China December, Issue 54, pp10–19Google Scholar
  400. Yoon K-H, Lee J-K, Kim BH (1991) Construction of a Clostridium acetobutylicum-Escherichia coli shuttle vector. Biotechnol Lett 13:1–6Google Scholar
  401. Yoshino S, Yoshino T, Hara S, Ogata S, Hayashida S (1990) Construction of shuttle vector plasmid between Clostridium acetobutylicum and Escherichia coli. Agric Biol Chem 54:437–441PubMedGoogle Scholar
  402. Young M, Minton NP, Staudenbauer WL (1989) Recent advances in the genetics of the clostridia. FEMS Microbiol Rev 63:301–326Google Scholar
  403. Youngleson JS, Santangelo JD, Jones DT, Woods DR (1988) Cloning and expression of a Clostridium acetobutylicum alcohol dehydrogenase gene in Escherichia coli. Appl Environ Microbiol 54:676–682PubMedGoogle Scholar
  404. Youngleson JS, Jones DT, Woods DR (1989) Homology between hydroxybutyryl and hydroxyacyl coenzyme A dehydrogenase enzymes from Clostridium acetobutylicum fermentation and vertebrate fatty acid β-oxidation pathways. J Bacteriol 171:6800–6807PubMedGoogle Scholar
  405. Youngleson JS, Lin F-P, Reid SJ, Woods DR (1995) Structure and transcription of genes within the β-hbd-adh1 region of Clostridium acetobutylicum P262. FEMS Microbiol Lett 125:185–192PubMedGoogle Scholar
  406. Yu P-L, Pearce LE (1986) Conjugal transfer of streptococcal antibiotic resistance plasmids into Clostridium acetobutylicum. Biotechnol Lett 8:469–474Google Scholar
  407. Yu EKC, Saddler JN (1982) Enhanced production of 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations in the presence of acetic acid. Appl Environ Microbiol 44:777–784PubMedGoogle Scholar
  408. Yu EKC, Saddler JN (1983) Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations. Appl Environ Microbiol 46:630–635PubMedGoogle Scholar
  409. Yu EKC, Saddler JN (1985) Biomass conversion to butanediol by simultaneous saccharification and fermentation. Trends Biotechnol 3:100–104Google Scholar
  410. Yu EKC, Levitin N, Saddler JN (1982) Production of 2,3-butanediol by Klebsiella pneumoniae grown on acid-hydrolyzed wood hemicellulose. Biotechnol Lett 4:741–746Google Scholar
  411. Yu EKC, Deschatelets L, Louis-Seize G, Saddler JN (1985) Butanediol production from cellulose and hemicellulose by Klebsiella pneumoniae grown in sequential coculture with Trichoderma harzianum. Appl Environ Microbiol 50:924–929PubMedGoogle Scholar
  412. Zappe H, Jones DT, Woods DR (1986) Cloning and expression of Clostridium acetobutylicum endoglucanase, cellobiase and amino acid biosynthesis genes in Escherichia coli. J Gen Microbiol 132:1367–1372PubMedGoogle Scholar
  413. Zappe H, Jones DT, Woods DR (1987) Cloning and expression of a xylanase gene from Clostridium acetobutylicum P262 in Escherichia coli. Appl Microbiol Biotechnol 27:57–63Google Scholar
  414. Zappe H, Jones WA, Jones DT, Woods DR (1988) Structure of an endo-β-1,4-glucanase gene from Clostridium acetobutylicum P262 showing homology with endoglucanase genes from Bacillus spp. Appl Environ Microbiol 54:1289–1292PubMedGoogle Scholar
  415. Zeng A-P (1996) Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioproc Engin 14:169–175Google Scholar
  416. Zeng A-P, Deckwer W-D (1991) A model for multiproduct-inhibited growth of Enterobacter aerogenes in 2,3-butanediol fermentation. Appl Microbiol Biotechnol 35:1–3Google Scholar
  417. Zeng A-P, Biebl H, Deckwer W-D (1990) Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Appl Microbiol Biotechnol 33:485–489Google Scholar
  418. Zeng A-P, Biebl H, Schlieker H, Deckwer W-D (1993) Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: regulation of reducing equivalent balance and product formation. Enz Microbol Technol 15:770–779Google Scholar
  419. Zeng A-P, Byun T-G, Posten C, Deckwer W-D (1994a) Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions. Biotechnol Bioengin 44:1107–1114Google Scholar
  420. Zeng A-P, Ross A, Biebl H, Tag C, Gunzel B, Deckwer W-D (1994b) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioengin 44:902–911Google Scholar
  421. Zeng A-P, Biebl H, Deckwer WD (1997) Microbial conversion of glycerol to 1,3-propanediol: recent progress. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. Oxford Press, Oxford UK. ACS Symposium Series 666, pp 264–279Google Scholar
  422. Zhou X, Traxler RW (1992) Enhanced butanol production and reduced autolysin activity after chloramphenicol treatment of Clostridium acetobutylicum ATCC 824. Appl Microbiol Biotechnol 37:293–297Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jiann-Shin Chen
    • 1
  • Mary Jo Zidwick
    • 2
  • Palmer Rogers∗
  1. 1.Department of BiochemistryVirginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUSA
  2. 2.Biotechnology Development CenterCargill, IncorporatedMinneapolisUSA

Personalised recommendations