Bacterial Enzymes

Abstract

In the living world, each chemical reaction is catalyzed by its own enzyme. Enzymes exhibit a high specificity, as they are able to discriminate between slightly different substrate molecules. Furthermore, they have the ability to operate at moderate temperature, pressure, and pH, which makes them attractive catalysts for industrial and household conversion processes. The first reports on the industrial use of enzyme products go back to the beginning of the last century. It was the German scientist Röhm who introduced the use of bovine pancreas extracts for the removal of stains in dirty clothing (Röhm 1915, Fig. 6.1). Around the same time, the Laboratoire Amylo in France experimented with the use of extract from Bacillus for conversion of starch into sugars (Fig. 6.2). As a result, the company Rapidase (Seclin, France), which is now part of the life science division of DSM, was formed. With the development of microbial fermentations in the second half of the last century, the number of industrial processes performed by enzymes and the amount of enzyme produced have increased sharply. At present, a renewed worldwide research effort has been directed to identifying more sustainable and environmentally friendly biocatalytic processes. The availability of highly specific and cheap enzymes resulting from genetic and protein engineering has been very instrumental in reviving interest in the industrial application of enzymes.

Keywords

Bacillus Licheniformis Protein Engineering Bacterial Enzyme Bacillus Amyloliquefaciens Glucose Isomerase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This chapter is a compilation of numerous collaborations that have allowed the author to develop insights and ideas in the bacterial enzyme field. Special thanks to all the colleagues and students who have contributed material and illustrations presented in this chapter. The sponsoring of EU under contracts BIO2-CT950119, BIO4-9-98-0249, QLK3-CT-1999-00413, QLTR-2001-00519, and of NWO/STW under contract GBI.4707 is highly acknowledged.

References

  1. Aehle W, Gerritse G, Lenting HB (1995) Lipases with improved surfactant resistance. Patent WO 95/30744Google Scholar
  2. Aiba S, Kitai K, Imanaka T (1983) Cloning and expression of thermostable alpha-amylase gene from Bacillus stearothermophilus in Bacillus stearothermophilus and Bacillus subtilis. Appl Environ Microbiol 46:1059–1065PubMedGoogle Scholar
  3. Albers E, Muller BW (1995) Cyclodextrin derivatives in pharmaceutics. Crit Rev Ther Drug Carrier Syst 12:311–337PubMedGoogle Scholar
  4. Alkema WB, Hensgens CM, Kroezinga EH, De Vries E, Floris R, Van der Laan JM, Dijkstra BW, Janssen DB (2000) Characterization of the beta-lactam binding site of penicillin acylase of Escherichia coli by structural and site-directed mutagenesis studies. Protein Eng 13:857–863PubMedGoogle Scholar
  5. Aramori I, Fukagawa M, Tsumura M, Iwami M, Isogai T, Ono H, Ishitani Y, Kojo H, Kohsaka M, Ueda Y, Imanaka H (1991a) Cloning and nucleotide sequencing of new glutaryl 7-aca and cephalosporin c acylase genes from pseudomonas strains. J Ferment Bioeng 72(4):232–243Google Scholar
  6. Aramori I, Fukagawa M, Tsumura M, Iwami M, Ono H, Kojo H, Kohsaka M, Ueda Y, Imanaka H (1991b) Cloning and nucleotide sequencing of a novel 7 beta-(4-carboxybutanamido)cephalosporanic acid acylase gene of Bacillus laterosporus and its expression in Escherichia coli and Bacillus subtilis. J Bacteriol 173:7848–7855PubMedGoogle Scholar
  7. Balasingham K, Warburton D, Dunnill P, Lilly MD (1972) The isolation and kinetics of penicillin amidase from Escherichia coli. Biochim Biophys Acta 276:250–256PubMedGoogle Scholar
  8. Barbero JL, Buesa JM, Gonzalez De Buitrago G, Mendez E, Perez-Aranda A, Garcia JL (1986) Complete nucleotide sequence of penicillin acylase gene from Kluyvera citrophila. Gene 49:69–80PubMedGoogle Scholar
  9. Bertola MA, Quax WJ, Robertson BW, Marx AF, van der Laken CJ (1992) Microbial esterases and process for the preparation of 2-arylpropionic acids. Patent EP 233656-BGoogle Scholar
  10. Betzel C, Wilson KS, Branner S (1988) Crystallization and preliminary X-ray diffraction studies of an alkaline protease from Bacillus lentus. J Mol Biol 204:803–804PubMedGoogle Scholar
  11. Boesten WHJ, Moody HM (1995) Process for the enzymatic preparation of a beta-lactam derivative. Patent WO 9503420Google Scholar
  12. Bolhuis A, Tjalsma H, Smith HE, De Jong A, Meima R, Venema G, Bron S, van Dijl JM (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis. Appl Environ Microbiol 65:2934–2941PubMedGoogle Scholar
  13. Brown SH, Costantino HR, Kelly RM (1990) Characterization of amylolytic enzyme activities associated with the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56:1985–1991PubMedGoogle Scholar
  14. Bruggink A, Roos EC, Devroom E (1998) Penicillin acylase in the industrial production of beta-lactam antibiotics. Org Process Res Dev 2:128–133Google Scholar
  15. Bruns W, Hoppe J, Tsai H, Bruning HJ, Maywald F, Collins J, Mayer H (1985) Structure of the penicillin acylase gene from Escherichia coli: a periplasmic enzyme that undergoes multiple proteolytic processing. J Mol Appl Genet 3(1):36–44PubMedGoogle Scholar
  16. Buleon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112PubMedGoogle Scholar
  17. Callens M, Kersters-Hilderson H, Vangrysperre W, De Bruyne CK (1988) d-xylose isomerase from streptomyces violaceoruber: structural and catalytic roles of bivalent metal ions. Enzyme Microb Technol 10:695–700Google Scholar
  18. Chakrabarty AM (1981) Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof. US Patent 4,259,444Google Scholar
  19. Chandra AK, Medda S, Bhadra AK (1980) Production of extracellular thermostable alpha-amylase by Bacillus licheniformis. J Ferment Technol 58:1–10Google Scholar
  20. Chen W-P (1980) Glucose isomerase [review]. Proc Biochem 15:36–41Google Scholar
  21. Christiansen T, Christensen B, Nielsen J (2002) Metabolic network analysis of Bacillus clausii on minimal and Semirich medium using (13)C-labeled glucose. Metab Eng 4:159–169PubMedGoogle Scholar
  22. Coffen DL (1997) Enzyme-catalyzed reactions. In: Ahuja SE (ed) Chiral separations: applications and technology. American Chemical Society, Washington, DC, pp 59–91Google Scholar
  23. Collins NC, Grant WD, Jones BE (1998a) Gram-negative alkaliphilic microorganisms. US Patent 5,733,767Google Scholar
  24. Collins NC, Grant WD, Jones BE (1998b) Gram-positive alkaliphilic microorganisms. US Patent 5,707,851Google Scholar
  25. Cox M, Gerritse G, Dankmeyer L, Quax WJ (2001) Characterization of the promoter and upstream activating sequence from the Pseudomonas alcaligenes lipase gene. J Biotechnol 86:9–17PubMedGoogle Scholar
  26. Crameri A, Dawes G, Rodriguez E Jr, Silver S, Stemmer WP (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat Biotechnol 15:436–438PubMedGoogle Scholar
  27. Crawford L, Stepan AM, Mcada PC, Rambosek JA, Conder MJ, Vinci VA, Reeves CD (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Biotechnology (NY) 13:58–62Google Scholar
  28. Drenth J, Hol WGJ, Jansonius JN, Koekoek R (1972) Subtilisin novo: The three-dimensional structure and its comparison with subtilisin Bpn. Eur J Biochem 26:177–181PubMedGoogle Scholar
  29. Droge MJ, Bos R, Quax WJ (2001) Paralogous gene analysis reveals a highly enantioselective 1,2-o-isopropylideneglycerol caprylate esterase of Bacillus subtilis. Eur J Biochem 268:3332–3338PubMedGoogle Scholar
  30. Drummond RJ, Bloch W, Matthews BW, Toy PL, Nicholson HH (1989) Procaryotic xylose isomerase muteins and method to increase protein stability. Patent WO 89/01520Google Scholar
  31. Edman M, Jarhede T, Sjostrom M, Wieslander A (1999) Different sequence patterns in signal peptides from mycoplasmas, other Gram-positive bacteria, and Escherichia coli: a multivariate data analysis. Prot Struct Funct Genet 35:195–205Google Scholar
  32. Eggen R, Geerling A, Watts J, Devos WM (1990) Characterization of pyrolysin, a hyperthermoactive serine protease from the archaebacterium Pyrococcus furiosus. FEMS Microbiol Lett 71:17–20Google Scholar
  33. El-Khattabi M, Ockhuijsen C, Bitter W, Jaeger KE, Tommassen J (1999) Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor. Mol Gen Genet 261:770–776PubMedGoogle Scholar
  34. Emtage JS, Angal S, Doel MT, Harris TJR, Lowe B, Jenkins PA, Lilley G (1983) Synthesis of calf prochymosin (prorennin) in Escherichia coli (synthetic oligonucleotide/gene expression/industrial enzyme). Proc Natl Acad Sci USA 80:3671–3675PubMedGoogle Scholar
  35. Estell DA, Graycar TP, Wells JA (1985) Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem 260:6518–6521PubMedGoogle Scholar
  36. Farber GK, Petsko GA, Ringe D (1987) The 3.0 A crystal structure of xylose isomerase from Streptomyces olivochromogenes. Protein Eng 1:459–466PubMedGoogle Scholar
  37. Filloux A, Michel G, Bally M (1998) GSP-dependent protein secretion in Gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol Rev 22:177–198PubMedGoogle Scholar
  38. Gat O, Lapidot A, Alchanati I, Regueros C, Shoham Y (1994) Cloning and dna sequence of the gene coding for Bacillus stearothermophilus T-6 xylanase. Appl Environ Microbiol 60:1889–1896PubMedGoogle Scholar
  39. Genencor Cleaning Enzymes Product List (2001) Genencor cleaning enzymes product list. Genencor International, RochesterGoogle Scholar
  40. Gerritse G, Hommes RW, Quax WJ (1998a) Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain. Appl Environ Microbiol 64:2644–2651PubMedGoogle Scholar
  41. Gerritse G, Ure R, Bizoullier F, Quax WJ (1998b) The phenotype enhancement method identifies the Xcp outer membrane secretion machinery from Pseudomonas alcaligenes as a bottleneck for lipase production. J Biotechnol 64:23–38PubMedGoogle Scholar
  42. Gray GL, Mainzer SE, Rey MW, Lamsa MH, Kindle KL, Carmona C, Requadt C (1986) Structural genes encoding the thermophilic alpha-amylases of Bacillus stearothermophilus and Bacillus licheniformis. J Bacteriol 166:635–643PubMedGoogle Scholar
  43. Gray GL, Power SD, Poulouse AJ (1995) Lipase from Pseudomonas Mendocina having cutinase activity. US Patent 5,389,536Google Scholar
  44. Griffiths AD, Tawfik DS (2003) Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J 22:24–35PubMedGoogle Scholar
  45. Gusakov AV, Sinitsyn AP, Berlin AG, Markov AV, Ankudimova NV (2000) Surface hydrophobic amino acid residues in cellulase molecules as a structural factor responsible for their high denim-washing performance. Enzyme Microb Technol 27:664–671PubMedGoogle Scholar
  46. Hakamada Y, Hatada Y, Koike K, Yoshimatsu T, Kawai S, Kobayashi T, Ito S (2000) Deduced amino acid sequence and possible catalytic residues of a thermostable, alkaline cellulase from an alkaliphilic bacillus strain. Biosci Biotechnol Biochem 64:2281–2289PubMedGoogle Scholar
  47. Hedstrom G, Backlund M, Slotte JP (1993) Enantioselective synthesis of ibuprofen esters in Aot isooctane microemulsions by Candida cylindracea lipase. Biotechnol Bioeng 42:618–624PubMedGoogle Scholar
  48. Henrick K, Blow DM, Carrell HL, Glusker JP (1987) Comparison of backbone structures of glucose isomerase from streptomyces and arthrobacter. Protein Eng 1:467–469PubMedGoogle Scholar
  49. Hesselink PGM, van Vliet S, De Vries H, Witholt B (1989) Optimization of steroid side chain cleavage by Mycobacterium sp. in the presence of cyclodextrins. Enzyme Microb Technol 11:398–404Google Scholar
  50. Hofemeister J, Kurtz A, Borriss R, Knowles J (1986) The beta-glucanase gene from Bacillus amyloliquefaciens shows extensive homology with that of Bacillus subtilis. Gene 49:177–187PubMedGoogle Scholar
  51. Hofmann BE, Bender H, Schulz GE (1989) Three-dimensional structure of cyclodextrin glycosyltransferase from Bacillus circulans at 3.4 A resolution. J Mol Biol 209:793–800PubMedGoogle Scholar
  52. Irwin D, Shin DH, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180:1709–1714PubMedGoogle Scholar
  53. Ishii Y, Saito Y, Fujimura T, Isogai T, Kojo H, Yamashita M, Niwa M, Kohsaka M (1994) A novel 7-beta-(4-carboxybutanamido)-cephalosporanic acid acylase isolated from Pseudomonas strain C427 and its high-level production in Escherichia coli. J Ferment Bioeng 77:591–597Google Scholar
  54. Ishiye M, Niwa M (1992) Nucleotide sequence and expression in Escherichia coli of the cephalosporin acylase gene of a Pseudomonas strain. Biochim Biophys Acta 1132:233–239PubMedGoogle Scholar
  55. Jacobs M, Eliasson M, Uhlen M, Flock JI (1985) Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res 13:8913–8927PubMedGoogle Scholar
  56. Jager M, Pluckthun A (1997) The rate-limiting steps for the folding of an antibody Scfv fragment. FEBS Lett 418:106–110PubMedGoogle Scholar
  57. Jeong ST, Kim HK, Kim SJ, Chi SW, Pan JG, Oh TK, Ryu SE (2002) Novel zinc-binding center and a temperature switch in the Bacillus stearothermophilus L1 lipase. J Biol Chem 277:17041–17047PubMedGoogle Scholar
  58. Joly JC, Swartz JR (1997) In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases Dsba and Dsbc. Biochemistry 36:10067–10072PubMedGoogle Scholar
  59. Joly JC, Leung WS, Swartz JR (1998) Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc Natl Acad Sci USA 95:2773–2777PubMedGoogle Scholar
  60. Jones B, Quax W (1998) Alzheimer tau test and detergent cellulase made by genetic engineering [no. 9 in a series of articles to promote a better understanding of the use of genetic engineering]. J Biotechnol 66:229–233Google Scholar
  61. Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200PubMedGoogle Scholar
  62. Jongbloed AW, Mroz Z, Kemme PA (1992) The effect of supplementary Aspergillus niger phytase in diets for pigs on concentration and apparent digestibility of dry matter, total phosphorus and phytic acid in different sections of the alimentary tract. J Anim Sci 70:1168Google Scholar
  63. Jorgensen ST, Jorgensen PL (1993) A process for expressing genes in Bacillus Licheniformis. Patent WO 93/10248Google Scholar
  64. Jorgensen OB, Karlsen LG, Nielsen NB, Pedersen S, Rugh S (1988) A new immobilized glucose isomerase with high productivity produced by a strain of Streptomyces murinus. Starch/Starke 40:307–313Google Scholar
  65. Jung ED, Lao G, Irwin D, Barr BK, Benjamin A, Wilson DB (1993) DNA sequences and expression in Streptomyces lividans of an exoglucanase gene and an endoglucanase gene from Thermomonospora fusca. Appl Environ Microbiol 59:3032–3043PubMedGoogle Scholar
  66. Kelly AP, Diderichsen B, Jorgensen S, McConnell DJ (1994) Molecular genetic analysis of the pullulanase b gene of Bacillus acidopullulyticus. FEMS Microbiol Lett 115:97–105PubMedGoogle Scholar
  67. Kerovuo J, Tynkkynen S (2000) Expression of Bacillus subtilis phytase in Lactobacillus plantarum 755. Lett Appl Microbiol 30:325–329PubMedGoogle Scholar
  68. Kerovuo J, Rouvinen J, Hatzack F (2000) Analysis of myo-inositol hexakisphosphate hydrolysis by bacillus phytase: indication of a novel reaction mechanism. Biochem J 352:623–628PubMedGoogle Scholar
  69. Kitahata S, Taniguchi M, Beltran SD, Sugimoto T, Okada S (1983) Purification and some properties of cyclodextrinase from Bacillus coagulans. Agric Biol Chem 47:1441–1447Google Scholar
  70. Knowles J, Lehtovaara P, Penttila M, Teeri T, Harkki A, Salovuori I (1987) The cellulase genes of trichoderma. Antonie Van Leeuwenhoek 53:335–341PubMedGoogle Scholar
  71. Kobayashi T, Hakamada Y, Adachi S, Hitomi J, Yoshimatsu T, Koike K, Kawai S, Ito S (1995) Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43:473–481PubMedGoogle Scholar
  72. Koch R, Zablowski P, Spreinat A, Antranikian G (1990) Extremely thermostable amylolytic enzyme from the archaebacterium Pyrococcus furiosus. FEMS Microbiol Lett 71:21–26Google Scholar
  73. Koeller KM, Wong CH (2001) Enzymes for chemical synthesis. Nature 409:232–240PubMedGoogle Scholar
  74. Kontinen VP, Sarvas M (1993) The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol 8:727–737PubMedGoogle Scholar
  75. Kosaric N, Wieczorek A, Cosentino GP, Magee RJ, Prenosil JE (1983) Ethanol fermentation. Biotechnology 3:258–385Google Scholar
  76. Kreft J, Berger H, Haertlein M, Mueller B, Goebel G, Weidinger W (1983) Cloning and expression in E. coli and Bacillus subtilis of the hemolysin determinant from Bacillus cereus. J Bacteriol 155:681–689PubMedGoogle Scholar
  77. Lapidot A, Mechaly A, Shoham Y (1996) Overexpression and single-step purification of a thermostable xylanase from Bacillus stearothermophilus T-6. J Biotechnol 51:259–264PubMedGoogle Scholar
  78. Legendre D, Laraki N, Graslund T, Bjornvad ME, Bouchet M, Nygren PA, Borchert TV, Fastrez J (2000) Display of active subtilisin 309 on phage: analysis of parameters influencing the selection of subtilisin variants with changed substrate specificity from libraries using phosphonylating inhibitors. J Mol Biol 296:87–102PubMedGoogle Scholar
  79. Li Y, Jiang W, Yang Y, Zhao G, Wang E (1998) Overproduction and purification of glutaryl 7-amino cephalosporanic acid acylase Protein. Protein Expr Purif 12:233–238PubMedGoogle Scholar
  80. Lin W, Lineback DR (1990) Changes in carbohydrate fractions in enzyme-supplemented bread and the potential relationship to staling. Starch/Staerke 42:385–394Google Scholar
  81. Luiten RGM, Quax WJ, Schuurhuizen PW, Mrabet N (1990) Novel glucose isomerase enzymes and their use. Patent EP 0351029-AGoogle Scholar
  82. Lundgren KR, Berkvist L, Hogman S, Joves H, Eriksson G, Bartfai T, van der Laan J, Rosenberg E, Shoham Y (1994) Tcf mill trial on softwood pulp with korsnas thermostable and alkaline stable xylanase T6. FEMS Microbiol Rev 13:365–368Google Scholar
  83. Lyons TP (1982) Proteinase enzymes relevant to the baking industry. Biochem Soc Trans 10:287–290PubMedGoogle Scholar
  84. Mansfeld J, Vriend G, Dijkstra BW, Veltman OR, van Den BB, Venema G, Ulbrich-Hofmann R, Eijsink VG (1997) Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond. J Biol Chem 272:11152–11156PubMedGoogle Scholar
  85. Matsuda A, Matsuyama K, Yamamoto K, Ichikawa S, Komatsu K (1987) Cloning and characterization of the genes for two distinct cephalosporin acylases from a Pseudomonas strain. J Bacteriol 169:5815–5820PubMedGoogle Scholar
  86. Matsumura I, Wallingford JB, Surana NK, Vize PD, Ellington AD (1999) Directed evolution of the surface chemistry of the reporter enzyme beta-glucuronidase. Nat Biotechnol 17:696–701PubMedGoogle Scholar
  87. McPhalen CA, James MNG (1988) Structural comparison of two serine proteinase-protein inhibitor complexes: Eglin-C-Subtilisin carlsberg and Ci-2-subtilisin novo. Biochemistry 27:6582–6598PubMedGoogle Scholar
  88. Mondou F, Shareck F, Morosoli R, Kluepfel D (1986) Cloning of the xylanase gene of Streptomyces lividans. Gene 49:323–329PubMedGoogle Scholar
  89. Nakajima R, Imanaka T, Aiba S (1986) Comparison of amino acid sequences of eleven different alpha-amylases. Appl Microbiol Biotechnol 23:355–360Google Scholar
  90. Nardini M, Lang DA, Liebeton K, Jaeger KE, Dijkstra BW (2000) Crystal structure of Pseudomonas aeruginosa lipase in the open conformation: the prototype for Family I.1 of bacterial lipases. J Biol Chem 275:31219–31225PubMedGoogle Scholar
  91. Nishimori K, Kawaguchi Y, Hidaka M, Uozumi T, Beppu T (1981) Communication: cloning in Escherichia coli of the structural gene of prorennin, the precursor of calf milk-clotting enzyme rennin. J Biochem 90:901–904PubMedGoogle Scholar
  92. Noble ME, Cleasby A, Johnson LN, Egmond MR, Frenken LG (1994) Analysis of the structure of Pseudomonas glumae lipase. Protein Eng 7:559–562PubMedGoogle Scholar
  93. Norris L, Norris F, Christiansen L, Fiil N (1983) Efficient site-directed mutagenesis by simultaneous use of two primers. Nucleic Acids Res 11:5103–5112PubMedGoogle Scholar
  94. Otten LG, Sio CF, Vrielink J, Cool RH, Quax WJ (2002) Altering the substrate specificity of cephalosporin acylase by directed evolution of the beta-subunit. J Biol Chem 277:42121–42127PubMedGoogle Scholar
  95. Outtrup H, Aunstrup K (1975) Production and application of a thermostable alpha-amylase from Bacillus licheniformis. In: Proceedings of the First Intersectional Congress of the Association of Microbiological Societies IAMS (IUMS) 5:205–210Google Scholar
  96. Outtrup H, Dambmann C, Bisgaard-Frantzen H, Olsen AA, Schuelein M (1998) Alkalophilic Bacillus Sp. Ac13 and protease, xylanase, cellulase obtainable therefrom. US Patent 3,723,250Google Scholar
  97. Park SC, Choi YW, Oh TK (1999) Comparative enzymatic hydrolysis of phytate in various animal feedstuff with two different phytases. J Vet Med Sci 61:1257–1259PubMedGoogle Scholar
  98. Peterson MG (1988) DNA sequencing using Taq polymerase. Nucleic Acids Res 16:10915PubMedGoogle Scholar
  99. Picard V, Ersdalbadju E, Lu AQ, Bock SC (1994) A rapid and efficient one-tube PCR-based mutagenesis technique using PFU DNA polymerase. Nucleic Acids Res 22:2587–2591PubMedGoogle Scholar
  100. Quax WJ, Broekhuizen CP (1994) Development of a new bacillus carboxyl esterase for use in the resolution of chiral drugs. Appl Microbiol Biotechnol 41:425–431PubMedGoogle Scholar
  101. Quax WJ, Laroche Y, Vollebregt AWH, Stanssens P, Lauwereys M (1991a) Mutant microbial alpha-amylases with increased thermal, acid and/or alkaline stability. Patent WO 91/00353Google Scholar
  102. Quax WJ, Mrabet NT, Luiten RG, Schuurhuizen PW, Stanssens P, Lasters I (1991b) Enhancing the thermostability of glucose isomerase by protein engineering. Nat Biotechnol 9:738–742Google Scholar
  103. Quax WJ, Bonekamp AF, van Tilborg M (1993) Correct secretion of heterologous proteins from Bacillus licheniformis. In: Baltz HS (ed) Industrial microorganisms: basic and applied molecular genetics. ASM Press, Washington, DC, pp 143–150Google Scholar
  104. Reetz MT, Jaeger KE (1998) Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chem Phys Lipids 93:3–14PubMedGoogle Scholar
  105. Reilly PJ (1979) Starch hydrolysis with soluble and immobilized glucoamylase. Appl Biochem Bioeng 2:185–207Google Scholar
  106. Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D, Macomber J, Short JM, Robertson DE, Miller C (2002) A novel, high performance enzyme for starch liquefaction: discovery and optimization of a low pH, thermostable alpha-amylase. J Biol Chem 277:26501–26507PubMedGoogle Scholar
  107. Robertson DE, Murphy D, Reid J, Antony MM, Link S, Swanson RV, Warren PV, Kosmotka A (1999) Esterases. US Patent 5,942,430Google Scholar
  108. Roels JA, van Tilburg R (1979) Temperature dependence of the stability and the activity of immobilized glucose isomerase. ACS Symp Ser 106:147–172Google Scholar
  109. Röhm O (1915) Verfahren zum Reinigen von Wäschestucken aller Art. Patent DE 283923Google Scholar
  110. Saari GC, Kumar AA, Kawasaki GH, Insley MY, O'Hara PJ (1987) Sequence of the Ampullariella sp. strain 3876 gene coding for xylose isomerase. J Bacteriol 169(2):612–618PubMedGoogle Scholar
  111. Saeki K, Okuda M, Hatada Y, Kobayashi T, Ito S, Takami H, Horikoshi K (2000) Novel oxidatively stable subtilisin-like serine proteases from alkaliphilic bacillus spp.: enzymatic properties, sequences, and evolutionary relationships. Biochem Biophys Res Commun 279:313–319PubMedGoogle Scholar
  112. Sanders JPM, van den Berg JA, Andreoli PM, Vos YJ, van Ee JH, Mulleners LJSM (1985) Molecular cloning and expression in industrial microorganism species. Patent EP 0134048Google Scholar
  113. Saul DJ, Williams LC, Reeves RA, Gibbs MD, Bergquist PL (1995) Sequence and expression of a xylanase gene from the hyperthermophile Thermotoga sp. strain Fjss3-B.1 and characterization of the recombinant enzyme and its activity on kraft pulp. Appl Environ Microbiol 61:4110–4113PubMedGoogle Scholar
  114. Saunders CW, Guyer MS (1986) The production of human serum albumin in Bacillus: new gene fusions, plasmids and Bacillus strains useful in production of human serum albumin economically by cultivation. Patent EP 0229712a2 13Google Scholar
  115. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268PubMedGoogle Scholar
  116. Schrag JD, Li Y, Cygler M, Lang D, Burgdorf T, Hecht HJ, Schmid R, Schomburg D, Rydel TJ, Oliver JD, Strickland LC, Dunaway CM, Larson SB, Day J, McPherson A (1997) The open conformation of a pseudomonas lipase. Structure 5:187–202PubMedGoogle Scholar
  117. Schroen CG, Vandewiel S, Kroon PJ, Devroom E, Janssen AE, Tramper J (2000) Equilibrium position, kinetics, and reactor concepts for the adipyl-7-Adca-hydrolysis process [in process citation]. Biotechnol Bioeng 70:654–661PubMedGoogle Scholar
  118. Schumacher G, Sizmann D, Haug H, Buckel P, Boeck A (1986) Penicillin acylase from E. coli: unique gene-protein relation. Nucleic Acids Res 14:5713–5727PubMedGoogle Scholar
  119. Shendye A, Rao M (1993) Cloning and extracellular expression in Escherichia coli of xylanases from an alkaliphilic thermophilic bacillus sp. Ncim-59. FEMS Microbiol Lett 108:297–302PubMedGoogle Scholar
  120. Shibuya Y, Matsumoto K, Fujii T (1981) Isolation and properties of 7β-(4-carboxybutanamido) cephalosporanic acid acylase-producing bacteria. Agric Biol Chem 45:1561–1567Google Scholar
  121. Simons PCM, Versteegh HAJ, Jongbloed AV, Kemme PA, Skump P, Bos KD, Wolters MGE, Beudeker RF, Verschoor G (1990) Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br J Nutr 64:525–540PubMedGoogle Scholar
  122. Sio CF, Riemens AM, van der Laan JM, Verhaert RM, Quax WJ (2002) Directed evolution of a glutaryl acylase into an adipyl acylase. Eur J Biochem 269:4495–4504PubMedGoogle Scholar
  123. Spezio M, Wilson DB, Karplus PA (1993) Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry 32:9906–9916PubMedGoogle Scholar
  124. Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391PubMedGoogle Scholar
  125. Stephenson K, Harwood CR (1998) Influence of a cell-wall-associated protease on production of alpha-amylase by Bacillus subtilis Appl. Environ Microbiol 64:2875–2881Google Scholar
  126. Stephenson K, Carter NM, Harwood CR, Petitglatron MF, Chambert RG (1998) The influence of protein folding on late stages of the secretion of alpha-amylases from Bacillus subtilis. FEBS Lett 430:385–389PubMedGoogle Scholar
  127. Tamuri M, Kanno M, Ishii Y (1997) Heat and acid-stable alpha-amylase enzymes and processes for producing the same. US Patent 4283722Google Scholar
  128. Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656PubMedGoogle Scholar
  129. Tjalsma H, Noback MA, Bron S, Venema G, Yamane K, van Dijl JM (1997) Bacillus subtilis contains four closely related Type I signal peptidases with overlapping substrate specificities: constitutive and temporally controlled expression of different Sip genes. J Biol Chem 272:25983–25992PubMedGoogle Scholar
  130. Van den Burg B, Vriend G, Veltman OR, Venema G, Eijsink VG (1998) Engineering an enzyme to resist boiling. Proc Natl Acad Sci USA 95:2056–2060PubMedGoogle Scholar
  131. van der Laan JC, Gerritse G, Mulleners LJ, van der Hoek RA, Quax WJ (1991) Cloning, characterization, and multiple chromosomal integration of a Bacillus alkaline protease gene. Appl Environ Microbiol 57(4):901–909PubMedGoogle Scholar
  132. Van der Laan JM, Teplyakov AV, Kelders H, Kalk KH, Misset O, Mulleners LSJM, Dijkstra BW (1992) Crystal structure of the high-alkaline serine protease-Pb92 from Bacillus alcalophilus. Protein Eng 5:405–411PubMedGoogle Scholar
  133. Van Dijl JM, Dejong A, Vehmaanpera J, Venema G, Bron S (1992) Signal peptidase-I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic Type-I signal peptidases. EMBO J 11:2819–2822PubMedGoogle Scholar
  134. Van Eekelen CAG, van der Laan JC, Mulleners LJS (1988) Molecular cloning and expression of genes encoding proteolytic enzymes. Patent EP 0283075Google Scholar
  135. Van Eekelen CAG, Mulleners LJS, van der Laan JC, Misset O, Cuperus RA, Alensink JH (1989) Novel proteolytic enzymes and their use in detergents. Patent EP 0328229Google Scholar
  136. van Leen RW, Bakhuis JG, van Beckhoven RF, Burger H, Dorssers LC, Hommes RW, Lemson PJ, Noordam B, Persoon NL, Wagemaker G (1991) Production of human interleukin-3 using industrial microorganisms. Biotechnology 9:47–52PubMedGoogle Scholar
  137. Van Pouderoyen G, Eggert T, Jaeger KE, Dijkstra BW (2001) The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme. J Mol Biol 309:215–226PubMedGoogle Scholar
  138. Van Solingen P, Meijer D, van der Kleij WA, Barnett C, Bolle R, Power SD, Jones BE (2001) Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 5:333–341PubMedGoogle Scholar
  139. Van Straten NCR, Duynstee HI, Devroom E, Van der Marel GA, van Boom JH (1997) Enzymatic cleavage of N-phenylacetyl-protected ethanolamine phosphates. Liebigs Annalen 1997(6):1215–1220Google Scholar
  140. Verhaert RM, Riemens AM, van der Laan JM, van Duin J, Quax WJ (1997) Molecular cloning and analysis of the gene encoding the thermostable penicillin g acylase from Alcaligenes faecalis. Appl Environ Microbiol 63:3412–3418PubMedGoogle Scholar
  141. Verhaert RM, Beekwilder J, Olsthoorn R, van Duin J, Quax WJ (2002) Phage display selects for amylases with improved low pH starch-binding. J Biotechnol 96:103–118PubMedGoogle Scholar
  142. Wallerstein L (1939) Enzyme preparation from microorganisms. Ind Eng Chem 31:1218–1224Google Scholar
  143. Welker NE, Campbell LL (1967a) Comparison of the alpha-amylase of Bacillus subtilis and Bacillus amyloliquefaciens. J Bacteriol 94:1131–1135PubMedGoogle Scholar
  144. Welker NE, Campbell LL (1967b) Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis. J Bacteriol 94:1124–1130PubMedGoogle Scholar
  145. Wind RD, Uitdehaag JC, Buitelaar RM, Dijkstra BW, Dijkhuizen L (1998) Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes Em1. J Biol Chem 273:5771–5779PubMedGoogle Scholar
  146. Wong HC, Ting T, Lin H-C, Reichert F, Myambo K, Watt KWK, Toy PL, Drummond RJ (1991) Genetic organization and regulation of the xylose degradation genes in Streptomyces rubiginosus. J Bacteriol 173:6849–6858PubMedGoogle Scholar
  147. Xie Y, van De SE, De Weerd T, Wang NH (2001) Purification of adipoyl-7-amino-3-deacetoxycephalosporanic acid from fermentation broth using stepwise elution with a synergistically adsorbed modulator. J Chromatogr A908:273–291Google Scholar
  148. Yamagata H, Udaka S (1994) Starch-processing enzymes produced by recombinant bacteria. Bioprocess Technol 19:325–340PubMedGoogle Scholar
  149. Ye RQ, Kim JH, Kim BG, Szarka S, Sihota E, Wong SL (1999) High-level secretory production of intact, biologically active staphylokinase from Bacillus subtilis. Biotechnol Bioeng 62:87–96PubMedGoogle Scholar
  150. Yuuki T, Nomura T, Tezuka H, Tsuboi A, Tsukagoshi H, Yamagata N, Udaka S (1985) Complete nucleotide sequence of gene coding for heat-and pH-stable alpha-amylase of Bacillus licheniformis: comparison of the amino acid sequence of 3 bacterial liquefying alpha-amylases deduced from the DNA. J Biochem 98:1147–1156PubMedGoogle Scholar
  151. Zhao HM, Giver L, Shao ZX, Affholter JA, Arnold FH (1998) Molecular evolution by STaggered Extension Process (STEP) in vitro recombination. Nat Biotechnol 16:258–261PubMedGoogle Scholar
  152. Zhu GP, Luo D, Cai YF, Zhu XY, Teng MK, Wang YZ (2000) Mutations of Q20l and G247d improved the specific-activity and optimum pH of glucose isomerase. Sheng Wu Gong Cheng Xue Bao 16:469–473PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of GroningenGroningenThe Netherlands

Personalised recommendations