Amino Acid Production

  • Hidehiko Kumagai

Abstract

Since microbial production of L-glutamic acid was started in 1957 in Japan, various amino acids production with microorganisms has been developed and almost all protein-constitutive amino acids become able to be produced by microbial biotechnology, fermentation, or enzymatic method. This chapter summarizes the microbial biotechnology which was developed and industrialized in Japan. The amino acids include L-alanine, L-cysteine, L-DOPA, L-glutamic acid, D-p-hydroxyphenylglycine, hydroxy-L-proline, L-lysine and L-threonine.

Keywords

Corynebacterium Glutamicum Monosodium Glutamate Amino Acid Production Lysine Decarboxylase Alanine Racemase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aleshin VV, Zakataeva NP, Livshits VA (1999) A new family of amino-acid-efflux proteins. Trends Biochem Sci 24:133–135PubMedCrossRefGoogle Scholar
  2. Chibata I, Kakimoto T, Kato J (1965) Enzymatic production of L-alanine by Pseudomonas dachnae. Appl Microbiol 13:638–645PubMedGoogle Scholar
  3. Chibata I, Tosa T, Kakimoto T (1986a) Alanine. In: Aida K, Chibata I, Nakayama K, Takinami K, Yamada H (eds) Biotechnology of amino acid production. Kodansha/Elsevier, Tokyo/Amsterdam, pp 224–232Google Scholar
  4. Chibata I, Tosa T, Sato T (1986b) Aspartic acid. In: Aida K, Chibata I, Nakayama K, Takinami K, Yamada H (eds) Biotechnology of amino acid production. Kodansha/Elsevier, Tokyo/Amsterdam, pp 144–151Google Scholar
  5. Clement Y, Lanneelle G (1986) Glutamate excretion mechanism in Corynebacterium glutamicum: triggering by biotin starvation or by surfactant addition. J Gen Microbiol 132:925–929Google Scholar
  6. Cremer J, Eggeling L, Sahm H (1991) Control of the lysine biosynthesis sequence in Corynebacterium glutamicum, as analyzed by overexpression of the individual corresponding genes. Appl Environ Microbiol 57:1746–1752PubMedGoogle Scholar
  7. Fusee MC, Swann WE, Carlson GJ (1981) Immobilization of Escherichia coli cells containing aspartase activity with polyurethane and its application for L-aspartic acid production. Appl Environ Microbiol 42:672–676PubMedGoogle Scholar
  8. Hashimoto S, Katsumata R (1999) Mechanism of alanine hyperproduction by Arthrobacter oxydans HAP-1: metabolic shift to fermentation under nongrowth aerobic conditions. Appl Environ Microbiol 65:2781–2783PubMedGoogle Scholar
  9. Ikenaka Y, Nanba H, Yajima K, Yamada Y, Takano M, Takahashi S (1999) Thermostability reinforcement through a combination of thermostability-related mutations of N-carbamyl-D-amino acid amidohydrolase. Biosci Biotechnol Biochem 63:91–95PubMedCrossRefGoogle Scholar
  10. Katayama T, Suzuki H, Yamamoto K, Kumagai H (1999) Transcriptional regulation of tyrosine phenol-lyase gene mediated through TyrR and cAMP receptor protein. Biosci Biotechnol Biochem 63:1823–1827PubMedCrossRefGoogle Scholar
  11. Katayama T, Suzuki H, Koyanagi T, Kumagai H (2000) Cloning and random mutagenesis of the Erwinia herbicola tyrR gene for high-level expression of tyrosine phenol-lyase. Appl Environ Microbiol 66:4764–4771PubMedCrossRefGoogle Scholar
  12. Katayama T, Suzuki H, Koyanagi T, Kumagai H (2002) Functional analysis of the Erwinia herbicola tutB gene and its product. J Bacteriol 184:3135–3141PubMedCrossRefGoogle Scholar
  13. Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S (1997) Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61:109–1112CrossRefGoogle Scholar
  14. Kikuchi M, Nakao Y (1986) Glutamic acid. In: Aida K, Chibata I, Nakayama K, Takinami K, Yamada H (eds) Biotechnology of amino acid production. Kodansha/Elsevier, Tokyo/Amsterdam, pp 101–120Google Scholar
  15. Kikuchi YH, Kojima T, Takatsuka Y, Tanaka T, Kamio Y (1997) Characterization of a second lysine decarboxylase isolated from Escherichia coli. J Bacteriol 179:4486–4492PubMedGoogle Scholar
  16. Kimura E, Abe C, Kawahara Y, Nakamatsu T (1996) Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from Brevibacterium lactofermentum. Biosci Biotechnol Biochem 60:1565–1570PubMedCrossRefGoogle Scholar
  17. Kimura E, Abe C, Kawahara Y, Nakamatsu T, Tokuda H (1997) A dtsR gene-disrupted mutant of Brevibacterium requires fatty acids for growth and efficiently produces L-glutamate in the presence of an excess biotin. Biochem Biophys Res Commun 234:157–161PubMedCrossRefGoogle Scholar
  18. Kimura E, Yagoshi C, Kawahara Y, Ohsumi T, Nakamatsu T, Tokuda H (1999) Glutamate overproduction in Corynebacterium glutamicum triggered by a decrease in the level of a complex comprising dtsR and a biotin-containing subunit. Biosci Biotechnol Biochem 63:1274–1278CrossRefGoogle Scholar
  19. Kinoshita S, Nakayama K, Kitada S (1958) l-Lysine production using microbial auxotroph. J Gen Appl Microbiol 4:128–129CrossRefGoogle Scholar
  20. Kraemer R (1994) Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol Rev 13:75–79CrossRefGoogle Scholar
  21. Kumagai H (1999a) Dihydroxyphenylalanine, produced by microorganisms. In: Flicinger MC, Drew SW (eds) Encyclopedia of bioprocess, technology: fermentation, biocatalysis and bioseparation. Wiley, New York, pp 821–823Google Scholar
  22. Kumagai H (1999b) Tyrosine phenol-lyase. In: Flicinger MC, Drew SW (eds) Encyclopedia of bioprocess, technology: fermentation, biocatalysis and bioseparation. Wiley, New York, pp 2605–2609Google Scholar
  23. Mori H, Shibasaki T, Uozaki Y, Ochiai K, Ozaki A (1996) Detection of novel proline 3-hydroxylase activities in Streptomyces and Bacillus spp. by regio- and stereospecific hydroxylation of L-proline. Appl Environ Microbiol 62:1903–1907PubMedGoogle Scholar
  24. Nakamori S (1986) Threonine and homoserine. In: Aida K, Chibata I, Nakayama K, Takinami K, Yamada H (eds) Biotechnology of amino acid production. Kodansha/Elsevier, Tokyo/Amsterdam, pp 173–182Google Scholar
  25. Ohhashi T, Takahashi S, Nagamachi T, Yoneda K, Yamada H (1981) A new method for 5-(4-hydroxyphenyl)hydantoin synthesis. Agric Biol Chem 45:831–838CrossRefGoogle Scholar
  26. Okamoto K, Kino K, Ikeda M (1997) Hyperproduction of L-threonine by an Escherichia coli mutant with impaired L-threonine uptake. Biosci Biotechnol Biochem 61:1877–1882PubMedCrossRefGoogle Scholar
  27. Ozaki A, Shibasaki T, Mori H (1995) Specific proline and hydroxyproline detection method by post-column derivatization for high-performance liquid chromatography. Biosci Biotechnol Biochem 59:1764–1765CrossRefGoogle Scholar
  28. Sano K, Mitsugi K (1978) Enzymatic production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid by Pseudomonas thiazolinohilum: optimal conditions for the enzyme formation and enzymatic reaction. Agric Biol Chem 42:2315–2321CrossRefGoogle Scholar
  29. Sano K, Yokozeki K, Tamura F, Yasuda N, Noda I, Mitsugi K (1977) Microbial conversion of DL-2-amino-Δ2-thiazoline-4-carboxylic acid to L-cysteine and L-cysteine: screening of microorganisms and identification of products. Appl Environ Microbiol 34:806–810PubMedGoogle Scholar
  30. Sano K, Eguchi NY, Mitsugi K (1979) Metabolic pathway of L-cysteine formation from DL-2-amino-Δ2-thiazoline-4-carboxylic acid by Pseudomonas. Agric Biol Chem 43:2373–2374CrossRefGoogle Scholar
  31. Shibasaki T, Mori H, Chiba S, Ozaki A (1999) Microbial proline 4-hydroxylase screening and gene cloning. Appl Environ Microbiol 65:4028–4031PubMedGoogle Scholar
  32. Suzuki H, Katayama T, Yamamoto K, Kumagai H (1995) Transcriptional regulation of tyrosine phenol-lyase gene of Erwinia herbicola AJ2985. Biosci Biotechnol Biochem 59:2028–2032CrossRefGoogle Scholar
  33. Takahashi S (1986) Microbial production of D-p-hydroxyphenylglycine. In: Aida K, Chibata I, Nakayama K, Takinami K, Yamada H (eds) Biotechnology of amino acid production. Kodansha/Elsevier, Tokyo/Amsterdam, pp 269–279Google Scholar
  34. Takamatsu S, Umemura I, Yamamoto K, Sato T, Chibata I (1982) Production of L-alanine from ammonium fumarate using two immobilized microorganisms. Eur J Appl Microbiol Biotechnol 15:147–152CrossRefGoogle Scholar
  35. Terasawa M, Yukawa H, Takayama Y (1985) Production of L-aspartic acid from Brevibacterium by the cell re-using process. Process Biochem 20:124–128Google Scholar
  36. Tosa T, Sato T, Mori T, Matsuo Y, Chibata I (1973) Continuous production of L-aspartic acid by immobilized aspartase. Biotechnol Bioeng 15:69–84CrossRefGoogle Scholar
  37. Tosaka O, Takinami K (1986) Lysine. In: Aida K, Chibata I, Nakayama K, Takinami K, Yamada H (eds) Biotechnology of amino acid production. Kodansha/Elsevier, Tokyo/Amsterdam, pp 152–172Google Scholar
  38. Vrljic M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826PubMedCrossRefGoogle Scholar
  39. Vrljic M, Garg J, Bellmann A, Wachi S, Freudl R, Malecki MJ, Sahm H, Kozina VJ, Eggeling L, Saier MH Jr (1999) The LysE superfamily: topology of the lysine exporter LysE of Corynebacterium glutamicum, a paradigm for a novel superfamily of transmembrane solute translocators. J Mol Microbiol Biotechnol 1:327–336PubMedGoogle Scholar
  40. Yamada H, Kumagai H (1975) Synthesis of L-tyrosine related amino acids by β-tyrosinase. In: Perlman D (ed) Advances in applied microbiology, vol 19. Academic, New York, pp 249–288Google Scholar
  41. Yokozeki K, Eguchi C, Kamimura A, Kubota K (1988) Asymmetric synthesis of S-carboxymethyl-L-cysteine by a chemico-enzymatic method. Agric Biol Chem 52:2367–2368CrossRefGoogle Scholar
  42. Yukawa H (1999) L-aspartic acid. In: Flicinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Wiley, New York, pp 206–208Google Scholar
  43. Zakataeva NP, Aleshin VV, Tokmakova IL, Troshin PV, Livshits VA (1999) The novel transmembrane Escherichia coli proteins involved in the amino acid efflux. FEBS Lett 452:228–232PubMedCrossRefGoogle Scholar
  44. Zupansic T, Kittle J, Baker B, Miller C, Palmaer D, Asai Y, Inui M, Verrttes A, Kobayashi M, Kurusu M, Yukawa H (1995) Isolation of promoters from Brevibacterium flavum strain MJ233C and comparison of their gene expression levels in B. flavum and Escherichia coli. FEMS Microbiol Lett 131:121–125CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hidehiko Kumagai
    • 1
  1. 1.Ishikawa Prefectural UniversityNonoichi-shiJapan

Personalised recommendations