Nanophotonic Systems Based on Localized and Hierarchical Optical Near-Field Processes

  • Makoto Naruse
Reference work entry


Nanophotonics offers ultrahigh-density system integration since it is based on local interactions between nanometer-scale matter via optical near-fields and is not constrained by the diffraction limit. In addition, it also gives qualitatively novel benefits over conventional optics and electronics. From a system architectural perspective, nanophotonics drastically changes the fundamental design rules of functional optical systems, and suitable architectures may be built to exploit this. This chapter discusses system architectures for nanophotonics, taking into consideration the unique physical principles of optical near-field interactions, and also describes their experimental verification based on enabling technologies, such as quantum dots and engineered metal nanostructures. In particular, two unique physical processes in light–matter interactions on the nanometer scale are examined. One is optical excitation transfer via optical near-field interactions, and the other is the hierarchical property of optical near-fields. Also, shape-engineered nanostructures and their associated polarization properties are characterized from a system perspective, and some applications are shown. The architectural and physical insights gained enable realization of nanophotonic information systems that overcome the limitations of conventional light and provide unique functionalities that are only achievable using optical near-field processes.


Elemental Shape Content Addressable Memory Layout Factor Polarization Conversion Efficiency Original Hologram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Part of this work was supported by the Strategic Information and Communications R&D Promotion Programme (SCOPE) of the Ministry of Internal Affairs and Communications and Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science. The author acknowledges Dai Nippon Printing Co., Ltd., for fabrication of the hierarchical hologram.


  1. 1.
    D.W. Pohl, D. Courjon (eds.), Near Field Optics (Kluwer, Dordrecht, 1993)Google Scholar
  2. 2.
    M. Ohtsu, H. Hori, Near-Field Nano-Optics (Kluwer/Plenum Publishers, New York, 1999)CrossRefGoogle Scholar
  3. 3.
    M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002)CrossRefGoogle Scholar
  4. 4.
    M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, M. Naruse, Principles of Nanophotonics (Taylor and Francis, Boca Raton, 2008)CrossRefGoogle Scholar
  5. 5.
    S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Nat. Mater. 2, 229 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Z.K. Tang, A. Yanase, T. Yasui, Y. Segawa, K. Cho, Phys. Rev. Lett. 71, 1431 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    S.B. Akers, IEEE Trans. Comput. C-27, 509 (1978)CrossRefGoogle Scholar
  9. 9.
    C. Pistol, C. Dwyer, A.R. Lebeck, IEEE Micro 28, 7 (2008)CrossRefGoogle Scholar
  10. 10.
    C. Dwyer, A. Lebeck, Introduction to DNA Self-Assembled Computer Design (Artech House, Norwood, 2007)Google Scholar
  11. 11.
    W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, M. Ohtsu, Appl. Phys. B 100, 181 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    M. Naruse, H. Hori, K. Kobayashi, T. Kawazoe, M. Ohtsu, Appl. Phys. B 102, 717 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    M. Naruse, F. Peper, K. Akahane, N. Yamamoto, T. Kawazoe, N. Tate, M. Ohtsu, ACM J. Emerg. Technol. Comput. Syst. 8, 4 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Liu, IEEE Micro 22, 58 (2002)Google Scholar
  15. 15.
    M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, M. Ohtsu, IEICE Trans. Electron. E88-C, 1817 (2005)CrossRefGoogle Scholar
  16. 16.
    A. Grunnet-Jepsen, A.E. Johnson, E.S. Maniloff, T.W. Mossberg, M.J. Munroe, J.N. Sweetser, Electron. Lett. 35, 1096 (1999)CrossRefGoogle Scholar
  17. 17.
    M. Naruse, H. Mitsu, M. Furuki, I. Iwasa, Y. Sato, S. Tatsuura, M. Tian, F. Kubota, Opt. Lett. 29, 608 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, S. Sangu, K. Kobayashi, M. Ohtsu, Opt. Lett. 30, 201 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    T. Kawazoe, K. Kobayashi, M. Ohtsu, Appl. Phys. Lett. 86, 103102 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    I. Arsovski, T. Chandler, A. Sheikholeslami, IEEE J. Solid-State Circuits 38, 155 (2003)CrossRefGoogle Scholar
  21. 21.
    P.-F. Lin, J.B. Kuo, IEEE J. Solid-State Circuits 36, 666 (2001)CrossRefGoogle Scholar
  22. 22.
    J.W. Goodman, A.R. Dias, L.M. Woody, Opt. Lett. 2, 1 (1978)ADSCrossRefGoogle Scholar
  23. 23.
    P.S. Guilfoyle, D.S. McCallum, Opt. Eng. 35, 436 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    B. Li, Y. Qin, X. Cao, K.M. Sivalingam, Opt. Netw. Mag. 2, 27 (2001)Google Scholar
  25. 25.
    M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, M. Ohtsu, Opt. Express 14, 306 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    E.A. De Souza, M.C. Nuss, W.H. Knox, D.A.B. Miller, Opt. Lett. 20, 1166 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    M. Naruse, H. Hori, K. Kobayashi, M. Ohtsu, Opt. Lett. 32, 1761 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    P. Kocher, J. Jaffe, B. Jun, Cryptography research (1998),
  29. 29.
    H. Hori, Electronic and electromagnetic properties in nanometer scales, in Optical and Electronic Process of Nano-Matters, ed. by M. Ohtsu (Kluwer, Dordrecht, 2001), pp. 1–55Google Scholar
  30. 30.
    G.-L. Ingold, Y.V. Nazarov, Charge tunneling rates in ultrasmall junctions, in Single Charge Tunneling, ed. by H. Grabert, M.H. Devoret (Plenum, New York, 1992), pp. 21–107Google Scholar
  31. 31.
    H.J. Carmichael, Statistical Methods in Quantum Optics I (Springer, Berlin, 1999)CrossRefGoogle Scholar
  32. 32.
    M. Naruse, T. Kawazoe, R. Ohta, W. Nomura, M. Ohtsu, Phys. Rev. B 80, 125325 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    W. Nomura, T. Yatsui, T. Kawazoe, M. Ohtsu, J. Nanophoton. 1, 011591 (2007)CrossRefGoogle Scholar
  34. 34.
    T. Franzl, T.A. Klar, S. Schietinger, A.L. Rogach, J. Feldmann, Nano Lett. 4, 1599 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    T.A. Klar, T. Franzl, A.L. Rogach, J. Feldmann, Adv. Matter. 17, 769 (2005)CrossRefGoogle Scholar
  36. 36.
    M. Naruse, E. Runge, K. Kobayashi, M. Ohtsu, Phys. Rev. B 82, 125417 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    M. Naruse, K. Leibnitz, F. Peper, N. Tate, W. Nomura, T. Kawazoe, M. Murata, M. Ohtsu, Nano Commun. Netw. 2, 189 (2011)CrossRefGoogle Scholar
  38. 38.
    M. Naruse, T. Yatsui, W. Nomura, N. Hirose, M. Ohtsu, Opt. Express 13, 9265 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    M. Naruse, T. Inoue, H. Hori, Jpn. J. Appl. Phys. 46, 6095 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, M. Ohtsu, IEEE Trans. Nanotechnol. 7, 14 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    M. Naruse, T. Yatsui, J.H. Kim, M. Ohtsu, Appl. Phys. Express 1, 062004 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    M. Ohtsu, K. Kobayashi, Optical Near Fields (Springer, Berlin, 2004)CrossRefGoogle Scholar
  43. 43.
    R.L. van Renesse, Optical Document Security (Artech House, Boston, 2005)Google Scholar
  44. 44.
    S.P. McGrew, Proc. SPIE 1210, 66 (1990)ADSCrossRefGoogle Scholar
  45. 45.
    H. Matsumoto, T. Matsumoto, IPSJ J. 44, 1991 (2003)Google Scholar
  46. 46.
    N. Tate, W. Nomura, T. Yatsui, M. Naruse, M. Ohtsu, Opt. Express 16, 607 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, M. Ohtsu, Opt. Express 18, 7497 (2010)CrossRefGoogle Scholar
  48. 48.
    P. Muhlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, M. Kiguchi, J. Appl. Phys. 95, 3901 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    A.J. Haes, S. Zou, G.C. Schatz, R.P.V. Duyne, J. Phys. Chem. B 108, 109 (2004)CrossRefGoogle Scholar
  51. 51.
    J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, Opt. Lett. 22, 475 (1997)ADSCrossRefGoogle Scholar
  52. 52.
    M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg, Opt. Lett. 23, 1331 (1998)ADSCrossRefGoogle Scholar
  53. 53.
    D.F.P. Pile, D.K. Gramotnev, M. Haraguchi, T. Okamoto, M. Fukui, J. Appl. Phys. 100, 013101 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    M. Naruse, T. Yatsui, H. Hori, M. Yasui, M. Ohtsu, Polarization in optical near- and far-field and its relation to shape and layout of nanostructures. J. Appl. Phys. 103(11), 113525 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S.J. An, J. Yoo, G.-C. Yi, Appl. Phys. Lett. 90, 223110 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    M. Xu, H. Urbach, D. de Boer, H. Cornelissen, Opt. Express 13, 2303 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    J.J. Wang, F. Walters, X. Liu, P. Sciortino, X. Deng, Appl. Phys. Lett. 90, 061104 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    K.B. Crozier, A. Sundaramurthy, G.S. Kino, C.F. Quate, J. Appl. Phys. 94, 4632 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    K. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966)ADSMATHGoogle Scholar
  60. 60.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005)Google Scholar
  61. 61.
    D.W. Lynch, W.R. Hunter, Comments on the optical constants of metals and an introduction to the data for several metals, in Handbook of Optical Constants of Solids, ed. by E.D. Palik (Academic, Orlando, 1985), pp. 275–367CrossRefGoogle Scholar
  62. 62.
    M. Naruse, T. Yatsui, T. Kawazoe, N. Tate, H. Sugiyama, M. Ohtsu, Appl. Phys. Express 1, 112101 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, M. Ohtsu, Opt. Express 17, 11113 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Makoto Naruse
    • 1
  1. 1.Photonic Network Research InstituteNational Institute of Information and Communications TechnologyTokyoJapan

Personalised recommendations