Simple Approaches for Constructing Metallic Nanoarrays on a Solid Surface

Reference work entry

Abstract

This chapter concerns simple experimental approaches for constructing metallic nanoarrays on a solid surface for applications to miniaturized optical devices, sensors, and single-molecule detection. Simple interface (air-liquid) moving leads to the controlled formation of one-dimensional (1D) nanoarrays of DNA or its nanofiber without special equipment. The assembly of metallic nanoparticles onto DNA can be driven by electrostatic binding of gold nanoparticles with positive charges, leading the formation of 1D metallic nanoarrays. Specially, a method based on the process of evaporation-induced self-assembly with DNA and drying front movement leads to highly aligned 1D metallic nanoarrays with a longer scale. Higher anisotropic coupling of localized plasmon is observed in the arrays when the light is polarized parallel to the arrays, indicating a uniaxial alignment of Au nanoparticles along the arrays. Finally, the fabrication and patterning of metallic nanoarrays achieved with transfer-printing techniques are described.

Keywords

Atomic Force Microscopy Rolling Circle Amplification Plasmon Waveguide Atomic Force Microscopy Observation Atomic Force Microscopy Topographic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author is grateful for all the contributions from their collaborators, with special thanks to Dr. H. Hayashi (Nagoya Municipal Industrial Research Institute), Prof. H. Shiigi (Osaka Prefecture University), Mr. H. Karasawa, and Prof. F. Iwata (Shizuoka University). The author thanks Dr. H. T. Miyazaki (National Institute for Materials Science), Dr. S. Sugiyama, and Dr. T. Ohtani (National Agricultural and Food Research Organization) for the many most useful and inspiring scientific discussions. Financial support for these studies was provided by Iketani Science and Technology Foundation and Grants-in-Aid for Basic Sciences from the Ministry of Education, Science, Sports, and Culture, Japan (No. 18710106, No. 18310089 and No. 22550136).

References

  1. 1.
    S.A. Maier, Plasmonics: Fundamentals and Application (Springer, New York, 2007)Google Scholar
  2. 2.
    S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requichia, H. Atwater, Adv. Mater. 13, 1501 (2001)Google Scholar
  3. 3.
    S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A. Requichia, Nat. Mater. 2, 229 (2003)ADSGoogle Scholar
  4. 4.
    W. Nomura, T. Yatsui, M. Ohtsu, Appl. Phys. Lett. 86, 181108 (2005)ADSGoogle Scholar
  5. 5.
    T. Yatsui, W. Nomura, M. Ohtsu, Nano Lett. 5, 2548 (2008)ADSGoogle Scholar
  6. 6.
    R. Garrell, Anal. Chem. 61, 401A (1989)Google Scholar
  7. 7.
    A. Campion, P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998)Google Scholar
  8. 8.
    K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Chem. Rev. 99, 2987 (1999)Google Scholar
  9. 9.
    J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B 109, 13857 (2005)Google Scholar
  10. 10.
    B.P. Khanal, E.R. Zubarev, Angew. Chem. Int. Ed. 46, 2195 (2007)Google Scholar
  11. 11.
    M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Chem. Rev. 108, 494 (2008)Google Scholar
  12. 12.
    P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Acc. Chem. Res. 41, 1578 (2008)Google Scholar
  13. 13.
    S. Yamada, Anal. Sci. 25, 1059 (2009)Google Scholar
  14. 14.
    C.X. Yu, J. Irudayaraj, Anal. Chem. 79, 572 (2007)Google Scholar
  15. 15.
    J.Y. Chang, H.M. Wu, H. Chen, Y.C. Ling, W.H. Tan, Chem. Commun. 1092 (2005)Google Scholar
  16. 16.
    K.G. Thomas, S. Barazzouk, B.I. Ipe, S.T.S. Joseph, P.V.J. Kamat, Phys. Chem. B 108, 13066 (2004)Google Scholar
  17. 17.
    K.K. Caswell, J.N. Wilson, U.H.F. Bunz, C.J. Murphy, J. Am. Chem. Soc. 125, 13914 (2003)Google Scholar
  18. 18.
    N.R. Jana, L.A. Gearheart, S.O. Obare, C.J. Johnson, K.J. Edler, S. Mann, C.J. Murphy, J. Mater. Chem. 12, 2909 (2002)Google Scholar
  19. 19.
    C.J. Orendorff, P. Hankins, C.J. Murphy, Langmuir 21, 2022 (2005)Google Scholar
  20. 20.
    G.A. DeVries, M. Brunnbauer, Y. Hu, A.M. Jackson, B. Long, B.T. Neltner, O. Uzun, B.H. Wunsch, F. Stellacci, Science 315, 358 (2007)ADSGoogle Scholar
  21. 21.
    A.M. Jackson, J.W. Myerson, F. Stellacci, Nat. Mater. 3, 330 (2004)ADSGoogle Scholar
  22. 22.
    Q.H. Wei, K.H. Su, S. Durant, X. Zhang, Nano Lett. 4, 1067 (2004)ADSGoogle Scholar
  23. 23.
    C.R. Barry, N.Z. Lwin, W. Zheng, H.O. Jacobs, Appl. Phys. Lett. 83, 5527 (2003)ADSGoogle Scholar
  24. 24.
    L.M. Demers, D.S. Ginger, S.J. Park, Z. Li, S.W. Chung, C.A. Mirkin, Science 296, 1836 (2002)ADSGoogle Scholar
  25. 25.
    Y. Cui, M.T. Bjork, J.A. Liddle, C. Sonnichsen, B. Boussert, A.P. Alivisatos, Nano Lett. 4, 1093 (2004)ADSGoogle Scholar
  26. 26.
    Y. Yin, Y. Lu, Y. Xia, J. Am. Chem. Soc. 123, 771 (2001)Google Scholar
  27. 27.
    S. Hong, R. Eby, S. Myung, B.Y. Lee, S.G. Rao, J. Jang, Dip-pen nanolithography, in Scanning Probe Microscopies Beyond Imaging, ed. by P. Samorí (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006), pp. 141–174Google Scholar
  28. 28.
    R.J. Barsotti Jr., F. Stellacci, J. Mater. Chem. 16, 962 (2006)Google Scholar
  29. 29.
    S.W. Chung, G. Markovich, J.R. Heath, J. Phys. Chem. B 102, 6685 (1998)Google Scholar
  30. 30.
    R.P. Sear, S.-W. Chung, G. Markovich, W.M. Gelbart, J.R. Heath, Phys. Rev. E 59, R6255 (1999)ADSGoogle Scholar
  31. 31.
    P. Yang, F. Kim, Chem. Phys. Chem. 3, 503 (2002)Google Scholar
  32. 32.
    J. Huang, A.R. Tao, S. Connor, R. He, P. Yang, Nano Lett. 6, 524 (2006)ADSGoogle Scholar
  33. 33.
    K.D. Hermanson, S.O. Lumsdon, J.P. Williams, E.W. Kaler, O.D. Velev, Science 294, 1082 (2001)ADSGoogle Scholar
  34. 34.
    S.O. Lumsdon, D.M. Scott, Langmuir 21, 4874 (2005)Google Scholar
  35. 35.
    K.H. Bhatt, O.D. Velev, Langmuir 20, 467 (2004)Google Scholar
  36. 36.
    N. Ranjan, H. Vinzelberg, M. Mertig, Small 2, 1490 (2002)Google Scholar
  37. 37.
    W.A. Lopes, H.M. Jaeger, Nature 414, 735 (2001)ADSGoogle Scholar
  38. 38.
    D. Wyrwa, N. Beyer, G. Schmid, Nano Lett. 2, 419 (2002)ADSGoogle Scholar
  39. 39.
    T. Reuter, O. Vidoni, V. Torma, G. Schmid, L. Nan, M. Oleiche, L. Chi, H. Fuchs, Nano Lett. 2, 709 (2002)ADSGoogle Scholar
  40. 40.
    J.D. Hartgerink, E. Beniash, S.I. Stupp, Science 294, 1684 (2001)ADSGoogle Scholar
  41. 41.
    J.D. Hartgerink, E. Beniash, S.I. Stupp, Proc. Natl. Acad. Sci. USA 99, 5133 (2002)ADSGoogle Scholar
  42. 42.
    M. Reches, E. Gazit, Science 300, 625 (2003)ADSGoogle Scholar
  43. 43.
    L. Li, S.I. Stuppe, Angew. Chem. Int. Ed. 44, 1833 (2005)Google Scholar
  44. 44.
    W. Shenton, T. Douglas, M. Young, G. Stubbs, S. Mann, Adv. Mater. 11, 253 (1999)Google Scholar
  45. 45.
    L.W. Yin, Y. Bando, Y.C. Zhu, D. Golberg, M.S. Li, Adv. Mater. 16, 929 (2004)Google Scholar
  46. 46.
    W.Q. Han, A. Zettl, Nano Lett. 3, 681 (2003)ADSGoogle Scholar
  47. 47.
    Y. Wang, Z. Tang, X. Liang, L.M. Liz-Marzán, N.A. Kotov, Nano Lett. 4, 225 (2004)ADSGoogle Scholar
  48. 48.
    G. Ren, Y. Xing, Nanotechnology 17, 5596 (2006)Google Scholar
  49. 49.
    F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner, Science 293, 2227 (2001)ADSGoogle Scholar
  50. 50.
    M.P. Zach, K.H. Ng, R.M. Penner, Science 290, 2120 (2000)ADSGoogle Scholar
  51. 51.
    S. Minko, A. Kiriy, G. Gorodyska, M. Stamm, J. Am. Chem. Soc. 124, 10192 (2002)Google Scholar
  52. 52.
    O. Harnack, W.E. Ford, A. Yasuda, J.M. Wessels, Nano Lett. 2, 919 (2002)ADSGoogle Scholar
  53. 53.
    K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Silvan, E. Braun, Science 72, 297 (2002)Google Scholar
  54. 54.
    M. Mertig, L.C. Ciacchi, R. Seidel, W. Pompe, A.D. Vita, Nano Lett. 2, 841 (2002)ADSGoogle Scholar
  55. 55.
    M.G. Warnerd, J.E. Hutchison, Nat. Mater. 2, 272 (2003)ADSGoogle Scholar
  56. 56.
    T. Yonezawa, S. Onoue, S. Kimizuka, Chem. Lett. 31, 1172 (2002)Google Scholar
  57. 57.
    J.D. Le, Y. Pinto, N.C. Seeman, K. Musier-Forsyth, T.A. Taton, R.A. Kiehl, Nano Lett. 4, 2343 (2004)ADSGoogle Scholar
  58. 58.
    P. Alivisatos, K.P. Johnson, X.G. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez, P.G. Schultz, Nature 382, 609 (1996)ADSGoogle Scholar
  59. 59.
    R. Elghanian, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Science 277, 1078 (1997)Google Scholar
  60. 60.
    N.C. Seeman, Trends Biotechnol. 17, 437 (1999)Google Scholar
  61. 61.
    H. Yan, S.H. Park, G. Finkelstein, J.H. Park, T.H. LaBean, Science 301, 1882 (2003)ADSGoogle Scholar
  62. 62.
    Y. He, T. Ye, M. Su, C. Zhang, A.E. Ribbe, W. Jinag, C. Mao, Nature 452, 198 (2008)ADSGoogle Scholar
  63. 63.
    E.S. Andersen, M. Dong, M.M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M.M. Golas, B. Sander, H. Stark, C.L.P. Oliveira, J.S. Pedersen, V. Birkedal, F. Besenbacher, K.V. Gothelf, J. Kjems, Nature 459, 73 (2009)ADSGoogle Scholar
  64. 64.
    S.M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, W.M. Shih, Nature 459, 414 (2009)ADSGoogle Scholar
  65. 65.
    C. Erler, M. Mertig, J. Vac. Sci. Technol. B 27, 939 (2009)Google Scholar
  66. 66.
    K. Otobe, T. Ohtani, Nucleic Acid Res. 29, e109 (2001)Google Scholar
  67. 67.
    H. Yokota, D.A. Nickerson, B.J. Trask, G. Van Den Engh, M. Hirst, I. Sadowski, R. Aebersold, Anal. Biochem. 264, 158 (1998)Google Scholar
  68. 68.
    D. Bensimon, A.J. Simon, V. Croquette, A. Bension, Phys. Rev. Lett. 74, 4754 (1995)ADSGoogle Scholar
  69. 69.
    X. Michalet, R. Ekong, F. Fougerousse, S. Rousseaux, C. Schurra, N. Hornigold, M. Slegtenhorst, J. Wolfe, S. Povey, J.S. Beckmann, A. Bensimon, Science 277, 1518 (1997)Google Scholar
  70. 70.
    J.F. Allemand, D. Bensimon, L. Jullien, A. Bensiom, V. Croquette, Biophys. J. 73, 2064 (1997)Google Scholar
  71. 71.
    A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, V. Heslot, D. Bensimon, Science 265, 2096 (1994)ADSGoogle Scholar
  72. 72.
    Y. Okahata, T. Kobayashi, K. Tanaka, Langmuir 12, 1326 (1996)Google Scholar
  73. 73.
    P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, Appl. Phys. Lett. 77, 1399 (2000)ADSGoogle Scholar
  74. 74.
    X. Liang, K.J. Morton, R.H. Austin, S.Y. Chou, Nano Lett. 7, 3774 (2007)ADSGoogle Scholar
  75. 75.
    M. Rief, H. Clausen-Schaumann, H.E. Gaub, Nat. Struct. Biol. 6, 346 (1999)Google Scholar
  76. 76.
    J. Hu, Y. Zhang, H. Gao, M. Li, U. Hartman, Nano Lett. 2, 55 (2002)ADSGoogle Scholar
  77. 77.
    Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita Jr., H. Itoh, Nature 399, 446 (1999)ADSGoogle Scholar
  78. 78.
    S.B. Smith, L. Finzi, C. Bustamante, Science 258, 1122 (1992)ADSGoogle Scholar
  79. 79.
    A.T. Woolley, R.T. Kelly, Nano Lett. 1, 345 (2001)ADSGoogle Scholar
  80. 80.
    H. Nakao, H. Hayashi, T. Yoshino, S. Sugiyama, K. Otobe, T. Ohtani, Nano Lett. 2, 475 (2002)ADSGoogle Scholar
  81. 81.
    H. Nakao, Anal. Sci. 25, 1387 (2009)Google Scholar
  82. 82.
    J.M. Kim, T. Ohtani, S. Sugiyama, T. Hirose, H. Muramatsu, Amal. Chem. 73, 5984 (2001)Google Scholar
  83. 83.
    T. Thundat, D.P. Allison, R.J. Warmack, Nucleic Acids Res. 22, 4224 (1994)Google Scholar
  84. 84.
    T. Yamamoto, T. Shimizu, E. Kurokawa, React. Funct. Polym. 43, 79 (2000)Google Scholar
  85. 85.
    D. Yang, T. Strode, H.P. Spielmann, A.H.J. Wang, T.G. Burke, J. Am. Chem. Soc. 120, 2979 (1998)Google Scholar
  86. 86.
    Y.-F. Song, P. Yang, Polyhedron 20, 501 (2001)Google Scholar
  87. 87.
    A. Kumar, M. Pattarkine, M. Bhadhade, A.B. Mandale, K.N. Ganesh, S.S. Datar, C.V. Dharmadhikari, M. Sastry, Adv. Mater. 13, 341 (2001)Google Scholar
  88. 88.
    J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke, H.K. Schackert, Adv. Mater. 12, 507 (2000)Google Scholar
  89. 89.
    W.E. Ford, O. Harnack, A. Yasuda, J.M. Wessels, Adv. Mater. 13, 1793 (2001)Google Scholar
  90. 90.
    D. Zanchet, C.M. Micheel, W.J. Parak, D. Gerion, A.P. Alivisatos, Nano Lett. 1, 32 (2001)ADSGoogle Scholar
  91. 91.
    M. Mertig, L.C. Ciacchi, R. Seidel, W. Pompe, A. De Vita, Nano Lett. 2, 841 (2002)ADSGoogle Scholar
  92. 92.
    Y. Liu, W. Meyer-Zaika, S. Franzka, G. Schmid, M. Tsoli, H. Kuhn, Angew. Chem. Int. Ed. 4, 95 (2003)Google Scholar
  93. 93.
    G. Wang, R.W. Murray, Nano Lett. 4, 95 (2004)ADSGoogle Scholar
  94. 94.
    F. Patolsky, Y. Weizmann, O. Lioubashevski, I. Willner, Angew. Chem. Int. Ed. 41, 2323 (2002)Google Scholar
  95. 95.
    G. Wang, J. Zhang, R.W. Murray, Anal. Chem. 74, 4320 (2002)Google Scholar
  96. 96.
    H. Nakao, H. Shiigi, Y. Yamamoto, T. Tokonami, T. Nagaoka, S. Sugiyama, T. Ohtani, Nano Lett. 3, 1391 (2003)ADSGoogle Scholar
  97. 97.
    H. Shiigi, Y. Yamamoto, N. Yoshi, H. Nakao, T. Nagaoka, Chem. Commun. 4288 (2006)Google Scholar
  98. 98.
    H. Shiigi, R. Morita, Y. Yamamoto, S. Tokonami, H. Nakao, T. Nagaoka, Chem. Commun. 3615 (2009)Google Scholar
  99. 99.
    H. Nakao, H. Hayashi, F. Iwata, H. Karasawa, S. Sugiyama, T. Ohtani, Lamgmuir 21, 7945 (2005)Google Scholar
  100. 100.
    H. Nakao, H. Hayashi, K. Okita, Anal. Sci. 17, 545 (2001)Google Scholar
  101. 101.
    A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution (Dekker, New York, 1985)Google Scholar
  102. 102.
    M.C. Gimeno, The chemistry of gold, in Modern Supramolecular Gold Chemistry, ed. by A. Lagna (WILEY-VHC Verlag GmbH & Co. KGaA, Weinheim, 2008), pp. 41–48Google Scholar
  103. 103.
    G.T. Walker, M.C. Little, J.G. Nadeau, D.D. Shank, Proc. Natl. Acad. Sci. USA 89, 392 (1992)ADSGoogle Scholar
  104. 104.
    A. Fire, S.-Q. Xu, Proc. Natl. Acad. Sci. USA 92, 4641 (1995)ADSGoogle Scholar
  105. 105.
    H. Takahashi, K. Yamamoto, T. Ohtani, S. Sugiyama, BioTechniques 47, 609 (2009)Google Scholar
  106. 106.
    L. Blanco, A. Bernad, J.M. Lázaro, G. Martin, C. Garmendia, M. Salas, J. Biol. Chem. 264, 8935 (1989)Google Scholar
  107. 107.
    S. Beyer, P. Nickels, F.C. Simmel, Nano Lett. 5, 719 (2005)ADSGoogle Scholar
  108. 108.
    O.I. Wilner, S. Shimron, Y. Weizmann, Z.-G. Wang, I. Willner, Nano Lett. 9, 2040 (2009)ADSGoogle Scholar
  109. 109.
    H. Nakao, T. Taguchi, H. Shiigi, K. Miki, Chem. Commun. 1858 (2009)Google Scholar
  110. 110.
    H. Nakao, H. Hayashi, H. Shiigi, K. Miki, Anal. Sci. 25, 1175 (2009)Google Scholar
  111. 111.
    C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Phys. Rev. Lett. 88, 77402 (2002)ADSGoogle Scholar
  112. 112.
    J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, D. Hanstorp, Nano Lett. 4, 115 (2004)ADSGoogle Scholar
  113. 113.
    H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Phys. Rev. Lett. 83, 4357 (1999)ADSGoogle Scholar
  114. 114.
    H. Nakao, M. Gad, S. Sugiyama, K. Otobe, T. Ohtani, J. Am. Chem. Soc. 125, 7161 (2003)Google Scholar
  115. 115.
    C.J. Orendorff, A. Gole, T.K. Sau, C.J. Murphy, Anal. Chem. 77, 3261 (2005)Google Scholar
  116. 116.
    K. Sokolov, G. Chumanov, T.M. Cotton, Anal. Chem. 70, 3898 (1998)Google Scholar
  117. 117.
    J. Malicka, I. Gryzczynski, J.R. Lakowicz, Anal. Chem. 75, 4408 (2003)Google Scholar
  118. 118.
    A. Parfenov, I. Gryzczynski, J. Malicka, C.D. Geddes, J.R. Lakowicz, J. Phys. Chem. B 107, 8829 (2003)Google Scholar
  119. 119.
    J.R. Lakowicz, C.D. Geddes, I. Gryzczynski, J. Malicka, Z. Gryzczynski, K. Aslan, J. Lukomski, E. Matveera, J. Zhang, R. Badugn, J. J. Huang, Fluorescence 14, 425 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Ion Beam GroupNational Institute for Materials ScienceIbarakiJapan

Personalised recommendations