Luminescent Nanomaterials for Molecular-Specific Cellular Imaging

  • Andrei Vasilyevich Zvyagin
  • Zhen Song
  • Annemarie Nadort
  • Varun Kumaraswamy Annayya Sreenivasan
  • Sergey Mikhailovich Deyev
Reference work entry


Imaging of molecular trafficking in cells and biological tissue aided by molecular-specific fluorescent labeling is very attractive, since it affords capturing the key processes in comprehensive biological context. Several shortcomings of the existing organic dye labeling technology, however, call for development of alternative molecular reporters, with improved photostability, reduced cytotoxicity, and an increased number of controllable surface moieties. Such alternative molecular reporters are represented by inorganic luminescent nanoparticles (NP) whose optical, physical, and chemical properties are discussed on the examples of luminescent nanodiamonds (LND) and upconversion nanoparticles (UCNP). The emission origins of these nanomaterials differ markedly. LND emission results from individual nitrogen-vacancy color-centers in a biocompatible nanodiamond host whose properties can be controlled via size and surface groups. Photophysics of UCNP is governed by the collective, nonlinear excitation transfer processes, resulting in conversion of longer-wavelength excitation to the shorter-wavelength emission. The emission/excitation spectral properties of UCNP falling within the biological tissue transparency window open new opportunities of almost complete suppression of the cell/tissue autofluorescence background. The developed surface of these nanoparticles represents a flexible platform populated with biocompatible surface moieties onto which cargo and targeting biomolecules can be firmly docked through a process called bioconjugation. These bioconjugated modules, e.g., nanodiamond-antibody, (quantum dot)-somatostatin, or (upconversion nanoparticle)-(mini-antibody) can gain admission into the cells by initiating the cell-specific, cell-recognized communication protocol. In this chapter, we aim to demonstrate the whole bottom-up bio-nano-optics approach for optical biological imaging capturing luminescent nanoparticle design, surface activation, and bioconjugation and the resultant bioconjugate module deployment in specific internalization in the cell.


Optically Detect Magnetic Resonance Detonation Nanodiamonds Autofluorescence Background Upconversion Nanoparticles Specific Internalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W.E. Moerner: Proc. Natl. Acad. Sci. 104, 12596 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    G. Seisenberger, M.U. Ried, T. Endre, H. Bning, M. Hallek, C. Bruchle: Science 294, 1929 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, W. Fann: Proc. Natl. Acad. Sci. 104, 727 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    S.W. Wu, G. Han, D.J. Milliron, S. Aloni, V. Altoe, D.V. Talapin, B.E. Cohen, P.J. Schuck: Proc. Natl. Acad. Sci. U.S.A. 106, 10917 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    A.M. Schrand, H. Huang, C. Carlson, J.J. Schlager, E. sawa, S.M. Hussain, L. Dai: J. Phys. Chem. B 111, 2 (2006)Google Scholar
  6. 6.
    T.Y. Cao, Y. Yang, Y.A. Gao, J. Zhou, Z.Q. Li, F.Y. Li: Biomaterials 32, 2959 (2011)CrossRefGoogle Scholar
  7. 7.
    J.L. Yuan, G.L. Wang: Trac-Trends in Analytical Chemistry, 25, 490 (2006)CrossRefGoogle Scholar
  8. 8.
    S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi: J. Am. Chem. Soc. 128, 11635 (2006)CrossRefGoogle Scholar
  9. 9.
    V. Dolmatov, M. Veretennikova, V. Marchukov, V. Sushchev: Phys. Solid State 46, 611 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    E. Osawa: Pure Appl. Chem. 80, 1365 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Turner, O.I. Lebedev, O. Shenderova, I.I. Vlasov, J. Verbeeck, G. Van Tendeloo: Adv. Funct. Mater. 19, 2116 (2009)CrossRefGoogle Scholar
  12. 12.
    F.K. de Theije, O. Roy, N.J. van der Laag, W.J.P. van Enckevort: Diam. Relat. Mater. 9, 929 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    F.K. de Theije, N.J. van der Laag, M. Plomp, W.J.P. van Enckevort: PhilosophicalMagazine A 80, 725 (2000)ADSGoogle Scholar
  14. 14.
    R.R. Nimmagadda, A. Joshi, W.L. Hsu: J. Mater. Res. 5, 2445 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P.A. Curmi, M. Sennour, A. Thorel, M. Borsch, K. Aulenbacher, R. Erdmann, P.R. Hemmer, F. Jelezko, J. Wrachtrup: ACS Nano 3, 1959 (2009)CrossRefGoogle Scholar
  16. 16.
    A. Krueger, M. Ozawa, G. Jarre, Y. Liang, J. Stegk, L. Lu: Phys. Status Solidi A 204, 2881 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    B.R. Smith, M. Niebert, T. Plakhotnik, A.V. Zvyagin: J. Lumin. 127, 260 (2007)CrossRefGoogle Scholar
  18. 18.
    I.I. Vlasov, A.S. Barnard, V.G. Ralchenko, O.I. Lebedev, M.V. Kanzyuba, A.V. Saveliev, V.I. Konov, E. Goovaerts: Adv. Mater. 21, 808 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Smith, A. Mainwood, M. Watkins: Diam. Relat. Mater. 11, 312 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    I. Aharonovich, S. Castelletto, D.A. Simpson, A.D. Greentree, S. Prawer: Phys. Rev. A 81, 043813 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski: Science 276, 2012 (1997)CrossRefGoogle Scholar
  22. 22.
    L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart, P. Bergonzo, S. Perruchas, T. Gacoin, M. Chaigneau, H.C. Chang, V. Jacques, J.F. Roch: Phys. Rev. B 82, 115449 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    T.-L. Wee, Y.-K. Tzeng, C.-C. Han, H.-C. Chang, W. Fann, J.-H. Hsu, K.-M. Chen, Y.-C. Yu: J. Phys. Chem. A 111, 9379 (2007)CrossRefGoogle Scholar
  24. 24.
    A.V. Zvyagin, N.B. Manson: Adv. Nanodiam. Sci. Technol. in press (2012)Google Scholar
  25. 25.
    A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I.Y. Chan, G. Balasubramanian, P.R. Hemmer, F. Jelezko, J. Wrachtrup: Phys. Rev. Lett. 100, 077401 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V.G. Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, M.D. Lukin: Nature 455, 644 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    F. Cichos, C. von Borczyskowski, M. Orrit: Science 12, 272 (2007)Google Scholar
  28. 28.
    R.M. Dickson, A.B. Cubitt, R.Y. Tsien, W.E. Moerner: Nature 388, 355 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    M. Kuno, D.P. Fromm, H.F. Hamann, A. Gallagher, D.J. Nesbitt: J. Chem. Phys. 112, 3117 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    P.A. Frantsuzov, R.A. Marcus: Phys. Rev. B 72, 155321 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    T. Jau, R.A. Marcus: J. Chem. Phys. 123, 054704 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    C. Bradac, T. Gaebel, N. Naidoo, M.J. Sellars, Twamley J., L.J. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau: Nat. Nano 5, 345 (2010)Google Scholar
  33. 33.
    Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, W. Fann: Nat. Nano 3, 284 (2008)CrossRefGoogle Scholar
  34. 34.
    V.K.A. Sreenivasan, E.A. Ivukina, W. Deng, T.A. Kelf, T.A. Zdobnova, S.V. Lukash, B.V. Veryugin, O.A. Stremovskiy, A.V. Zvyagin, S.M. Deyev: J. Mater. Chem. 21, 65 (2011)CrossRefGoogle Scholar
  35. 35.
    S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen, Y.C. Yu: J. Am. Chem. Soc. 127, 17604 (2005)CrossRefGoogle Scholar
  36. 36.
    A.M. Schrand, L. Dai, J.J. Schlager, S.M. Hussain, E. Osawa: Diam. Relat. Mater. 16, 2118 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    A.M. Schrand, S.A. Ciftan Hens, O.A. Shenderova: Crit. Rev. Solid State Mater. Sci. 34, 18 (2009)CrossRefGoogle Scholar
  38. 38.
    D. Ho: Nanodiamonds: Applications in Biology and Nanoscale Medicine. Technology and Engineering (Springer, New York, 2009)Google Scholar
  39. 39.
    L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, L.C.L. Hollenberg: Nat. Nano 6, 358 (2011)CrossRefGoogle Scholar
  40. 40.
    Y.-Y. Chen, H. Shu, Y. Kuo, Y.-K. Tzeng, H.-C. Chang: Diam. Relat. Mater. 20, 803 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    A. Krger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A. Ya Vul, E. Osawa: Carbon 43, 1722 (2005)CrossRefGoogle Scholar
  42. 42.
    A.S. Barnard, M. Sternberg: J. Phys. Chem. B 109, 17107 (2005)CrossRefGoogle Scholar
  43. 43.
    B.R. Smith, D.W. Inglis, B. Sandnes, J.R. Rabeau, A.V. Zvyagin, D. Gruber, C.J. Noble, R. Vogel, E. Osawa, T. Plakhotnik: Small 5, 1649 (2009)CrossRefGoogle Scholar
  44. 44.
    C. Bradac, T. Gaebel, N. Naidoo, J.R. Rabeau, A.S. Barnard: Nano Lett. 9, 3555 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    J.R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, J. Wrachtrup: Nano Lett. 7, 3433 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    P.H. Chung, E. Perevedentseva, C.L. Cheng: Surf. Sci. 601, 3866 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    K. Iakoubovskii, G.J. Adriaenssens: Philos. Mag. Lett. 80, 441 (2000)CrossRefGoogle Scholar
  48. 48.
    R.R. Nimmagadda, A. Joshi, W.L. Hsu: J. Mater. Res. 5, 2445 (1990)ADSCrossRefGoogle Scholar
  49. 49.
    Z. Du, A.F. Sarom, J.P. Longwell, C.A. Mims: Energy Fuels 5, 214 (1991)CrossRefGoogle Scholar
  50. 50.
    T. Ando, M. Ishii, M. Kamo, Y. Sato: J. Chem. Soc. Faraday Trans. 89, 1783 (1993)CrossRefGoogle Scholar
  51. 51.
    T. Gaebel, C. Bradac, J. Chen, J.M. Say, L. Brown, P. Hemmer, J.R. Rabeau: Diam. Relat. Mater. 21, 28 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    C. Bradac, T. Gaebel, C.I. Pakes, J.M. Say, A.V. Zvyagin, J.R. Rabeau: Effect of the Nanodiamond Host on a Nitrogen-Vacancy Color-Centre Emission State. Small, 9:132–139 (2013)CrossRefGoogle Scholar
  53. 53.
    M.V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J.A. Garrido: Phys. Rev. B 83, 081304 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    C. Santori, P.E. Barclay, K.-M.C. Fu, R.G. Beausoleil: Phys. Rev. B 79, 125313 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    M.T. Edmonds, C.I. Pakes, S. Mammadov, W. Zhang, A. Tadich, J. Ristein, L. Ley: Appl. Phys. Lett. 98, 102101 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    K.M.C. Fu, C. Santori, P.E. Barclay, R.G. Beausoleil: Appl. Phys. Lett. 96, 121907 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, C. Huang: Anal. Chem. 81, 930 (2009)CrossRefGoogle Scholar
  58. 58.
    M.P. Hehlen, G. Frei, H.U. Gudel: Phys. Rev. B 50, 16264 (1994)ADSCrossRefGoogle Scholar
  59. 59.
    R.H. Page, K.I. Schaffers, P.A. Waide, J.B. Tassano, S.A. Payne, W.F. Krupke, W.K. Bischel: J. Opt. Soc. Am. B 15, 996 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    J.C. Boyer, F. van Veggel: Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale, 2:1417–1419 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu: Nat. Mater. 10, 968 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L.-d. Sun, L.-P. You, C.-H. Yan: J. Am. Chem. Soc. 128, 6426 (2006)Google Scholar
  63. 63.
    H.-X. Mai, Y.-W. Zhang, L.-D. Sun, C.-H. Yan: J. Phys. Chem. C 111, 13721 (2007)CrossRefGoogle Scholar
  64. 64.
    F. Wang, J.A. Wang, X.G. Liu: Angew. Chem. Int. Ed. 49, 7456 (2010)CrossRefGoogle Scholar
  65. 65.
    V.V. Tuchin: Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, Bellingham, 2007)CrossRefGoogle Scholar
  66. 66.
    C. Vinegoni, D. Razansky, S.A. Hilderbrand, F.W. Shao, V. Ntziachristos, R. Weissleder: Opt. Lett. 34, 2566 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    P.R. Selvin: Ann. Rev. Biophys. Biomol. Struct. 31, 275 (2002)CrossRefGoogle Scholar
  68. 68.
    Q. Liu, Y. Sun, T.S. Yang, W. Feng, C.G. Li, F.Y. Li: J. Am. Chem. Soc. 133, 17122Google Scholar
  69. 69.
    Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, S. Andersson-Engels: ACS Nano 5, 3744 (2011)CrossRefGoogle Scholar
  70. 70.
    A.D. Ostrowski, E.M. Chan, D.J. Gargas, E.M. Katz, G.Han, P. James Schuck, D.J. Milliron, B.E. Cohen: ACS Nano 6, 2686 (2012)CrossRefGoogle Scholar
  71. 71.
    F. Leblond, S.C. Davis, P.A. Valds, B.W. Pogue: J. Photochem. Photobiol. B 98, 77 (2010)CrossRefGoogle Scholar
  72. 72.
    F. Neugart, A. Zappe, F. Jelezko, C. Tietz, J.P. Boudou, A. Krueger, J. Wrachtrup: Nano Lett. 7, 3588 (2007)ADSCrossRefGoogle Scholar
  73. 73.
    S.M. Deyev, R. Waibel, E.N. Lebedenko, A.P. Schubiger, A. Pluckthun: Nat. Biotechnol. 21, 1486 (2003)CrossRefGoogle Scholar
  74. 74.
    D. Li, B.A. Dong, X. Bai, Y. Wang, H.W. Song: J. Phys. Chem. C 114, 8219 (2010)CrossRefGoogle Scholar
  75. 75.
    H. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R.S. Niedbala, H.J. Tanke: Anal. Biochem. 267, 30 (1999)CrossRefGoogle Scholar
  76. 76.
    J.C. Boyer, M.P. Manseau, J.I. Murray, F. van Veggel: Langmuir 26, 1157 (2010)CrossRefGoogle Scholar
  77. 77.
    S.A. Osseni, S. Lechevallier, M. Verelst, C. Dujardin, J. Dexpert-Ghys, D. Neumeyer, M. Leclercq, H. Baaziz, D. Cussac, V. Santran, R. Mauricot: J. Mater. Chem. 21, 18365 (2011)CrossRefGoogle Scholar
  78. 78.
    R.S. Niedbala, H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milunic, P. Bourdelle, R. Vallejo: Anal. Biochem. 293, 22 (2001)CrossRefGoogle Scholar
  79. 79.
    T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A.L. Rogach, S. Keller, J. Radler, G. Natile, W.J. Parak: Nano Lett. 4, 703 (2004)ADSCrossRefGoogle Scholar
  80. 80.
    T.A. Kelf, V.K.A. Sreenivasan, J. Sun, E.J. Kim, E.M. Goldys, A.V. Zvyagin: Nanotechnology 21, 285105 (2010)CrossRefGoogle Scholar
  81. 81.
    M.Z. Strowski, A.D. Blake: Mol. Cell. Endocrinol. 286, 169 (2008)CrossRefGoogle Scholar
  82. 82.
    V.K.A. Sreenivasan, O.A. Stremovskiy, T.A. Kelf, M. Heblinski, A.K. Goodchild, M. Connor, S.M. Deyev, A.V. Zvyagin: Bioconjug. Chem. 22, 1768 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrei Vasilyevich Zvyagin
    • 1
  • Zhen Song
    • 2
  • Annemarie Nadort
    • 3
  • Varun Kumaraswamy Annayya Sreenivasan
    • 4
  • Sergey Mikhailovich Deyev
    • 5
  1. 1.MQ Biofocus Research Centre and MQ Photonics Research CentreMacquarie UniversitySydneyAustralia
  2. 2.MQ Biofocus Research Centre and MQ Photonics Research CentreMacquarie UniversitySydneyAustralia
  3. 3.Department of Biomedical Engineering and Physics, Academic Medical CenterUniversity of Amsterdam1100 DE AmsterdamThe Netherlands
  4. 4.MQ Biofocus Research Centre and MQ Photonics Research CentreMacquarie UniversitySydneyAustralia
  5. 5.Laboratory of Molecular ImmunologyShemyakin & Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussia

Personalised recommendations