The Family Gallionellaceae

Reference work entry

Abstract

The family Gallionellaceae comprises the genus Gallionella with one established type species, Gallionella ferruginea. The phylogenetic position of Gallionellaceae, as determined by 16S-rDNA sequence comparisons, is among the β-proteobacteria. Its phylogenetic neighbors are Methylophilaceae, Nitrosomonadaceae, and Spirillaceae. The family contains gram-negative, chemolithoautotrophic, neutrophilic, and aerobic ferrous iron-oxidizing bacteria with the ability to secrete an extracellular twisted stalk composed of numerous fibers. Gallionellaceae can be found where anaerobic groundwater containing ferrous iron reaches an environment that contains oxygen. Large amounts of stalk material are usually produced; this material attracts iron hydroxides and many trace metals, giving it a brown, macroscopic appearance. The stalk and iron hydroxide masses formed may eventually cause severe clogging of ditches, drinking-water wells, and any other facilities utilizing iron-bearing, anaerobic groundwater. The family is relevant to biotechnological processes, as it can be used to remove ferrous iron when producing drinking water from groundwater.

Keywords

Ferrous Iron Iron Sulfide Iron Hydroxide Organic Carbon Assimilation Ferrous Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adler O (1904) Ueber Eisenbakterien in ihrer Beziehung zu den therapeutisch verwendeten natürlichen Eisenwässern. Zentralbl Bakteriol Bd II 11:215–277Google Scholar
  2. Anderson CR, Pedersen K (2003) In situ growth of Gallionella biofilms and partitioning of lanthanides and actinides between biological material and ferric oxyhydroxides. Geobiology 1:169–178CrossRefGoogle Scholar
  3. Artymiuk PJ, Bauminger ER, Harrison PM, Lawson DM, Nowik PJ, Treffry A, Yewdall SJ (1991) Ferritin: a model system for iron biomineralization. In: Frankel RB, Blakemore RP (eds) Iron biominerals. Plenum Press, New York, pp 269–294CrossRefGoogle Scholar
  4. Balashova VV (1967a) A cumulative culture of Gallionella filamenta n. sp. [In Russian, with English summary]. Microbiologiya 36:541–544Google Scholar
  5. Balashova VV (1967b) Structure of the “stalk” fibers in a laboratory culture of Gallionella filamenta. [In Russian, with English summary]. Microbiologiya 36:1050–1053Google Scholar
  6. Balashova VV (1968) Taxonomy of the genus Gallionella. [In Russian, with English summary]. Microbiologiya 37:715–723Google Scholar
  7. Balashova VV, Cherni NE (1970) Ultrastructure of Gallionella filamenta. [In Russian, with English summary]. Microbiologiya 39:348–351Google Scholar
  8. Banfield JF, Welch SA, Zhang H, Thomsen Ebert T, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754PubMedCrossRefGoogle Scholar
  9. Beger H, Bringmann G (1953) Bisherige Anschauung uber die Morphologie von Gallionella und neuere elektronenmikroskopische Befunde. Zentralbl Bakteriol Parasitenkd, infektkrank Hyg Abt 2 107:305–318Google Scholar
  10. Cholodny N (1924) Zur Morphologie der Eisenbakterien Gallionella und Spirophyllum. Ber Deut Bot Ges 42:35–44Google Scholar
  11. de Vet WWJM, Dinkla IJT, Abbas BA, Rietveld LC, van Loosdrecht MCM (2011a) Gallionella spp. in trickling filtration of subsurface aerated and natural groundwater. Biotechnol Bioeng 109:904–912PubMedCrossRefGoogle Scholar
  12. de Vet WWJM, Dinkla IJT, Rietveld LC, van Loosdrecht MCM (2011b) Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions. Water Res 45:5389–5398PubMedCrossRefGoogle Scholar
  13. Ehrenberg CG (1836) Vorläufige Mittheilung uber das wirkliche Vorkommen fossiler Infusorien und ihre grosse Verbreitung. Ann Phys 38:213–227CrossRefGoogle Scholar
  14. Emerson D, Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microb 63:4784–4792Google Scholar
  15. Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C, Moyer CL (2007) A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS ONE 2:e667PubMedCentralPubMedCrossRefGoogle Scholar
  16. Emerson C, Field E, Chertkov O, Davenport KW, Goodwin L, Munk C, Nolan M, Woyke T (2013) Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Front Microbiol 4:1–17CrossRefGoogle Scholar
  17. Ferris FG, Konhauser KO, Lyvén B, Pedersen K (1999) Accumulation of metals by bacteriogenic iron oxides in a subterranean environment. Geomicrobiol J 16:181–192CrossRefGoogle Scholar
  18. Ferris FG, Hallberg RO, Lyvén B, Pedersen K (2000) Retention of strontium, cesium, lead and uranium by bacterial iron oxides from a subterranean environment. Appl Geochem 15:1035–1042CrossRefGoogle Scholar
  19. Hallbeck L, Pedersen K (1990) Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea. J Gen Microbiol 136:1675–1680CrossRefGoogle Scholar
  20. Hallbeck L, Pedersen K (1991) Autotrophic and mixotrophic growth of Gallionella ferruginea. J Gen Microbiol 137:2657–2661CrossRefGoogle Scholar
  21. Hallbeck L, Pedersen K (1995) Benefits associated with the stalk of Gallionella ferruginea, evaluated by comparison of a stalk-forming and a non-stalk-forming strain and biofilm studies in situ. Microbial Ecol 30:257–268CrossRefGoogle Scholar
  22. Hallbeck L, Ståhl F, Pedersen K (1993) Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J Gen Microbiol 139:1531–1535PubMedCrossRefGoogle Scholar
  23. Hallbeck LE, Pedersen K (2005) Genus I. Gallionella Ehrenberg 1838 166AL. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology. Volume two: the proteobacteria. Part C: the alpha-, beta-, delta- and epsilonproteobacteria. Springer, New York, pp 880–886Google Scholar
  24. Hanert HH (1968) Untersuchulngen zur Isolierung, Stoffwechselphysiologie und Morpjologie von Gallionella ferruginea Ehrenberg. Arch Mikrobiol 60:348–376CrossRefGoogle Scholar
  25. Hanert HH (1970) Structur und Wachtum von Gallionella ferruginea Ehrenberg am naturlichen Standort in den ersten 6 Stn der Entwicklung. Arch Mikrobiol 75:10–24CrossRefGoogle Scholar
  26. Hanert HH (1973) Quantifizierungen der Massentwicklung des Eisenbacteriums Gallionella ferruginea unter nautlichen Bedingungen. Arch Mikrobiol 88:225–243CrossRefGoogle Scholar
  27. Hanert HH (1989) Budding and/or appendaged bacteria. In: Staley MP, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, 1974–1979Google Scholar
  28. Hanert HH (2006) The genus Gallionella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K–H, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 990–995CrossRefGoogle Scholar
  29. Kappler AK, Straub L (2005) Geomicrobiological cycling of iron. Rev Miner Geochem 59:85–108CrossRefGoogle Scholar
  30. Katsoyiannis IA, Zouboulis AI (2006) Use of iron-and manganese-oxidizing bacteria for the combined removal of iron, manganese and arsenic from contaminated groundwater. Water Qual Res J Can 41:117–129Google Scholar
  31. Krepski ST, Hanson EE, Chan CS (2012) Isolation and characterization of a novel biomineral stalk-forming iron-oxidizing bacterium from a circumneutral groundwater seep. Environ Microbiol 14:1671–1680PubMedCrossRefGoogle Scholar
  32. Kucera S, Wolfe RS (1957) A selective enrichment method for Gallionella ferruginea. J Bacteriol 74:344–349PubMedCentralPubMedGoogle Scholar
  33. Lieske R (1911) Beitraig zu Kenntnis der Physiologie von Spirophyllum ferrugeneum. Jahrb Wirtschaftsgesch 49:91–127Google Scholar
  34. Lutters S, Hanert HH (1989) The ultrastructure of chemolithotrophic Gallionella ferruginea and Thiobacillus ferrooxidans as revealed by chemical fixation and freeze-etching. Arch Microbiol 151:245–251CrossRefGoogle Scholar
  35. Martinez RE, Smith DS, Pedersen K, Ferris FG (2003) Surface chemical heterogeneity of bacteriogenic iron oxides from a subterranean environment. Environ Sci Technol 37:5671–5677PubMedCrossRefGoogle Scholar
  36. Pringsheim EG (1949) Iron bacteria. Biol Rev 24:200–245PubMedCrossRefGoogle Scholar
  37. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  38. Teichmann E (1935) Vergleichende Untersuchungen uber die Kultur und Morphologie einiger Eisenorganismen. Dissertation, Deutche Universität, PragueGoogle Scholar
  39. Van Iterson W (1958) Gallionella ferruginea Ehrenberg in a different light. Academisch Proefschrift, University of Amsterdam, 1–121.N.V. Noord-Hollandsche Uitgevers Maatschappij, AmsterdamGoogle Scholar
  40. Vatter AE, Wolfe R (1956) Electron microscopy of Gallionella ferruginea. J Bacteriol 72:248–252PubMedCentralPubMedGoogle Scholar
  41. Winogradsky S (1888) Ueber Eisenbacterien. Bot Zeit 17:262–269Google Scholar
  42. Winogradsky S (1922) Eisenbakterien als Anorgoxydanten. Gustav Fischer, Jena, pp 1–21Google Scholar
  43. Zopf W (1879) Entwicklungsgeschichtliche Untersuchung uber Crenothrix polyspora, die ursache der Berliner Wassercalamität. Österr Bot Z 29:372–373CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Microbial Analytics Sweden AB (MICANS)MölnlyckeSweden
  2. 2.Department of Civil and Environmental EngineeringChalmers University of TechnologyGöteborgSweden

Personalised recommendations