The Family Phyllobacteriaceae

  • Anne WillemsEmail author
Reference work entry


The family Phyllobacteriaceae belongs to the order Rhizobiales in the Alphaproteobacteria and currently comprises the 72 species in 13 genera: Ahrensia, Aliihoeflea, Aminobacter (including Chelatobacter), Aquamicrobium (including Defluvibacter), Chelativorans, Hoeflea, Lentilitoribacter, Mesorhizobium, Nitratireductor, Phyllobacterium, Pseudahrensia, Pseudaminobacter, and Thermovum. They form a single cluster within the 16S rRNA gene phylogeny. The family consists of environmental (soil, water) and plant-associated bacteria that have a heterotrophic respiratory metabolism with oxygen as terminal electron acceptor. One Aquamicrobium species can use nitrate as an alternative terminal electron acceptor. One Mesorhizobium species is facultatively chemolithotrophic using thiosulfate or elemental sulfur as sole energy source. Candidatus Liberibacter, a group of uncultivated phloem-inhabiting bacteria that are associated with various plant diseases in citrus and Solanaceae or are endophytic in pear plants, is also associated with the family. However, comprehensive phylogenetic analyses indicate the position of this group as a member of the Phyllobacteriaceae is uncertain.


  1. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181PubMedCrossRefGoogle Scholar
  2. Ahrens R (1968) Taxonomische Untersuchungen an sternbildenden Agrobacterium-Arten aus der westlichen Ostsee. Kieler Meeresforsch 24:147–173Google Scholar
  3. Ahrens A, Lipski A, Klatte S, Busse HJ, Auling G, Altendorf K (1997) Polyphasic classification of Proteobacteria isolated from biofilters. Syst Appl Microbiol 20:255–267CrossRefGoogle Scholar
  4. Auling G, Busse HJ, Egli T, Elbanna T, Stackebrandt E (1993) Description of the Gram-negative, obligately aerobic, nitriloacetate (NTA)-utilizing bacteria as Chelatobacter heintzii, gen. nov., sp. nov. and Chelatococcus asaccharovorans, gen. nov., sp. nov. Syst Appl Microbiol 16:104–112CrossRefGoogle Scholar
  5. Bagchi A, Roy D, Roy P (2005) Homology modeling of a transcriptional regulator SoxR of the lithotrophic sulfur oxidation (Sox) operon in alpha-proteobacteria. J Biomol Struct Dyn 22:571–577PubMedCrossRefGoogle Scholar
  6. Bala A, Murphy P, Giller KE (2003) Distribution and diversity of rhizobia nodulating agroforestry legumes in soils from three continents in the tropics. Mol Ecol 12:917–929PubMedCrossRefGoogle Scholar
  7. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens—re-evaluation of a unique biological group. Microbiol Rev 43:260–296PubMedCentralPubMedGoogle Scholar
  8. Bambauer A, Rainey FA, Stackebrandt E, Winter J (1998) Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabolizing bacterium from activated sludge. Arch Microbiol 169:293–302PubMedCrossRefGoogle Scholar
  9. Baymiev AK, Ivanova ES, Ptitsyn KG, Chubukova OV (2011) Phylogenetic analysis of symbiotic genes of nodule bacteria in plants of the genus Lathyrus (L.) (Fabaceae). Mol Genet Microbiol Virol 26:154–158CrossRefGoogle Scholar
  10. Berger P, Papazian L, Drancourt M, La Scola B, Auffray JP, Raoult D (2006) Ameba-associated microorganisms and diagnosis of nosocomial pneumonia. Emerg Infect Dis 12:248–255PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bertrand H, Nalin R, Bally R, Cleyet-Marel JC (2001) Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biol Fert Soils 33:152–156CrossRefGoogle Scholar
  12. Bibi F, Yasir M, Song GC, Lee SY, Chung YR (2012) Diversity and characterization of endophytic bacteria associated with tidal flat plants and their antagonistic effects on oomycetous plant pathogens. Plant Pathol J 28:20–31CrossRefGoogle Scholar
  13. Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H, Pukal R, Wagner-Döbler I (2005) Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096PubMedCrossRefGoogle Scholar
  14. Biebl H, Tindall BJ, Pukall R, Lunsdorf H, Allgaier M, Wagner-Dobler I (2006) Hoeflea phototrophica sp. nov., a novel marine aerobic alphaproteobacterium that forms bacteriochlorophyll a. Int J Syst Evol Microbiol 56:821–826PubMedCrossRefGoogle Scholar
  15. Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:124–130CrossRefGoogle Scholar
  16. Chen WX, Li GS, Qi YL, Wang ET, Yuan HL, Li JL (1991) Rhizobium huakuii sp. nov. isolated from the root-nodules of Astragalus sinicus. Int J Syst Evol Microbiol 41:275–280Google Scholar
  17. Chen WX, Wang E, Wang SY, Li YB, Chen XQ (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root-nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Evol Microbiol 45:153–159Google Scholar
  18. Chen WX, Wang ET, Kuykendall LD (2005) Genus VI. Mesorhizobium. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2C, 2nd edn. Springer, New York, pp 403–408CrossRefGoogle Scholar
  19. Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41CrossRefGoogle Scholar
  20. Chen WM, Zhu WF, Bontemps C, Young JPW, Wei GH (2010) Mesorhizobium alhagi sp.nov., isolated from wild Alhagi sparsifolia in north-western China. Int J Syst Evol Microbiol 60:958–962PubMedCrossRefGoogle Scholar
  21. Chen WM, Zhu WF, Bontemps C, Young JPW, Wei GH (2011) Mesorhizobium camelthorni sp. nov., isolated from Alhagi sparsifolia Int. J Syst Evol Microbiol 61:574–579CrossRefGoogle Scholar
  22. Chistyakova TI, Dedyukhina EG, Satroutdinov AD, Kaparullina EN, Gavrish EY, Eroshin VK (2005) EDTA-dependent bacterial strain. Process Biochem 40:601–605CrossRefGoogle Scholar
  23. Chung EJ, Park JA, Pramanik P, Bibi F, Jeon CO, Chung YR (2013) Hoeflea suaedae sp. nov., an endophytic bacterium isolated from the root of the halophyte Suaeda maritima. Int J Syst Evol Microbiol 63:2277–2281PubMedCrossRefGoogle Scholar
  24. Cong Q, Kinch LN, Kim BH, Grishin NV (2012) Predictive sequence analysis of the Candidatus Liberibacter asiaticus proteome. PLoS One 7:e41071PubMedCentralPubMedCrossRefGoogle Scholar
  25. Coulter C, Hamilton JTG, McRoberts WC, Kulakov L, Larkin MJ, Harper DB (1999) Halomethane : bisulfide/halide ion methyltransferase, an unusual corrinoid enzyme of environmental significance isolated from an aerobic methylotroph using chloromethane as the sole carbon source. Appl Environ Microb 65:4301–4312Google Scholar
  26. Dai J, Liu X, Wang Y (2012) Genetic diversity and phylogeny of rhizobia isolated from Caragana microphylla growing in desert soil in Ningxia, China. Genet Mol Res 11:2683–2693PubMedCrossRefGoogle Scholar
  27. de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Lindström K, Dreyfus B, Gillis M (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382PubMedCrossRefGoogle Scholar
  28. Degefu T, Wolde-meskel E, Liu BB, Cleenwerck I, Willems A, Frostegård A (2013) Mesorhizobium shonense sp. nov., Mesorhizobium hawassense sp. nov. and Mesorhizobium abyssinicae sp. nov., isolated from root nodules of different agroforestry legume trees. Int J Syst Evol Microbiol 63:1746–1753PubMedCrossRefGoogle Scholar
  29. Doronina NV, Kaparullina EN, Trotsenko YA, Nortemann B, Bucheli-Witschel M, Weilenmann HU, Egli T (2010) Chelativorans multitrophicus gen. nov., sp. nov. and Chelativorans oligotrophicus sp. nov., aerobic EDTA-degrading bacteria. Int J Syst Evol Microbiol 60:1044–1051PubMedCrossRefGoogle Scholar
  30. Duan YP, Zhou LJ, Hall DG, Li WB, Doddapaneni H, Lin H, Liu L, Vahling CM, Gabriel DW, Williams KP, Dickerman A, Sun YJ, Gottwald T (2009) Complete genome sequence of citrus Huanglongbing bacterium, ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics. Mol Plant Microbe In 22:1011–1020CrossRefGoogle Scholar
  31. Egli T, Weilenmann HU, Elbanna T, Auling G (1988) Gram-negative, aerobic, nitriloacetate-utilizing bacteria from waste-water and soil. Syst Appl Microbiol 10:297–305CrossRefGoogle Scholar
  32. Ferraroni M, Matera I, Steimer L, Burger S, Scozzafava A, Stolz A, Briganti F (2012) Crystal structures of salicylate 1,2-dioxygenase-substrates adducts: a step towards the comprehension of the structural basis for substrate selection in class III ring cleaving dioxygenases. J Struct Biol 177:431–438PubMedCrossRefGoogle Scholar
  33. Flores-Felix JD, Carro L, Velazquez E, Valverde A, Cerda-Castillo E, Garcia-Fraile P, Rivas R (2013) Phyllobacterium endophyticum sp.nov., isolated from nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 63:821–826PubMedCrossRefGoogle Scholar
  34. Fritsche K, Auling G, Andreesen JR, Lechner U (1999) Defluvibacter lusatiae gen. nov., sp.nov., a new chlorophenol-degrading member of the alpha-2 subgroup of proteobacteria. Syst Appl Microbiol 22:197–204PubMedCrossRefGoogle Scholar
  35. Galland M, Gamet L, Varoquaux F, Touraine B, Desbrosses G (2012) The ethylene pathway contributes to root hair elongation induced by the beneficial bacteria Phyllobacterium brassicacearum STM196. Plant Sci 190:74–81PubMedCrossRefGoogle Scholar
  36. Gao JL, Turner SL, Kan FL, Wang ET, Tan ZY, Qiu YH, Gu J, Terefework Z, Young JPW, Lindström K, Chen WX (2004) Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 54:2003–2012PubMedCrossRefGoogle Scholar
  37. Garnier M (2005) Genus V. Candidatus Liberibater. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2C, 2nd edn. Springer, New York, pp 400–402CrossRefGoogle Scholar
  38. Garnier M, Jagoueix-Eveillard S, Cronje PR, Le Roux HF, Bove JM (2000) Genomic characterization of a liberibacter present in an ornamental rutaceous tree, Calodendrum capense, in the Western Cape province of South Africa. Proposal of ‘Candidatus Liberibacter africanus subsp. capensis’. Int J Syst Evol Microbiol 50:2119–2125PubMedCrossRefGoogle Scholar
  39. Garrity GM, Bell JA, Lilburn T (2005) Family I. Rhodobacteraceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2C, 2nd edn. Springer, New York, p 161Google Scholar
  40. Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33:999–1043PubMedCrossRefGoogle Scholar
  41. Ghosh W, Roy P (2006) Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol 56:91–97PubMedCrossRefGoogle Scholar
  42. Gonzalez-Bashan LE, Lebsky VK, Hernandez JP, Bustillos JJ, Bashan Y (2000) Changes in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum. Can J Microbiol 46:653–659PubMedCrossRefGoogle Scholar
  43. Guan SH, Chen WF, Wang ET, Lu YL, Yan XR, Zhang XX, Chen WX (2008) Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana spp. in China. Int J Syst Evol Microbiol 58:2646–2653PubMedCrossRefGoogle Scholar
  44. Han TX, Han LL, Wu LJ, Chen WF, Sui XH, Gu JG, Wang ET, Chen WX (2008) Mesorhizobium gobiense sp.nov and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. Int J Syst Evol Microbiol 58:2610–2618PubMedCrossRefGoogle Scholar
  45. Hanert H (1981) The genus Gallionella. In: Starr M, Trüper H, Balows A, Schlegel H (eds) The Prokaryotes. A handbook on habitats, isolation, and identification of bacteria, vol 1. Springer, Berlin, pp 509–515Google Scholar
  46. Hansen AK, Trumble JT, Stouthamer R, Paine TD (2008) A new huanglongbing species, “Candidatus Liberibacter psyllaurous,” found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Appl Environ Microbiol 74:5862–5865PubMedCentralPubMedCrossRefGoogle Scholar
  47. Hao XL, Lin YB, Johnstone L, Baltrus DA, Miller SJ, Wei GH, Rensing C (2012) Draft genome sequence of plant growth-promoting rhizobium Mesorhizobium amorphae, isolated from zinc-lead mine tailings. J Bacteriol 194:736–737PubMedCentralPubMedCrossRefGoogle Scholar
  48. Hintner JP, Remtsma T, Stolz A (2004) Biochemical and molecular characterization of a ring fission dioxygenase with the ability to oxidize (substituted) salicylate(s) from Pseudaminobacter salicylatoxidans. J Biol Chem 279:37250–37260PubMedCrossRefGoogle Scholar
  49. Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across south-eastern Australia. Int J Syst Evol Microbiol 61:299–309PubMedCrossRefGoogle Scholar
  50. Howieson JG, Ballard RA, Yates RJ, Charman N (2011) Selecting improved Lotus nodulating rhizobia to expedite the development of new forage species. Plant Soil 348:231–243CrossRefGoogle Scholar
  51. Jagoueix S, Bove JM, Garnier M (1994) The phloem-limited bacterium of greening disease of citrus is a member of the Alpha-subdivision of the Proteobacteria. Int J Syst Bacteriol 44:379–386PubMedCrossRefGoogle Scholar
  52. Jang GI, Hwang CY, Cho BC (2011) Nitratireductor aquimarinus sp. nov., isolated from a culture of the diatom Skeletonema costatum, and emended description of the genus Nitratireductor. Int J Syst Evol Microbiol 61:2676–2681PubMedCrossRefGoogle Scholar
  53. Jarvis BDW, Pankhurst CE, Patel JJ (1982) Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32:378–380CrossRefGoogle Scholar
  54. Jarvis BDW, VanBerkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898CrossRefGoogle Scholar
  55. Jin HM, Kim JM, Jeon CO (2013) Aquamicrobium aestuarii sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 63:4012–4017Google Scholar
  56. Jung YT, Park S, Lee JS, Oh TK, Yoon JH (2012) Pseudahrensia aquimaris gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 62:2056–2061PubMedCrossRefGoogle Scholar
  57. Jung MY, Shin KS, Kim S, Kim SJ, Park SJ, Kim JG, Cha IT, Kim MN, Rhee SK (2013) Hoeflea halophila sp.nov., a novel bacterium isolated from marine sediment of the East Sea, Korea. Anton Leeuw Int J Gen 103:971–978CrossRefGoogle Scholar
  58. Jurado V, Laiz L, Gonzalez JM, Hernandez-Marine M, Valens M, Saiz-Jimenez C (2005) Phyllobacterium catacumbae sp. nov., a member of the order ‘Rhizobiales’ isolated from Roman catacombs. Int J Syst Evol Microbiol 55:1487–1490PubMedCrossRefGoogle Scholar
  59. Kämpfer P (2005) Genus VII. Pseudaminobacter. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2C, 2nd edn. Springer, New York, pp 409–410CrossRefGoogle Scholar
  60. Kämpfer P, Muller C, Mau M, Neef A, Auling G, Busse HJ, Osborn AM, Stolz A (1999) Description of Pseudaminobacter gen. nov. with two new species, Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov. Int J Syst Bacteriol 49:887–897PubMedCrossRefGoogle Scholar
  61. Kämpfer P, Neef A, Salkinoja-Salonen MS, Busse HJ (2002) Chelatobacter heintzii (Auling et al. 1993) is a later subjective synonym of Aminobacter aminovorans (Urakami et al. 1992). Int J Syst Evol Microbiol 52:835–839PubMedGoogle Scholar
  62. Kämpfer P, Martin E, Lodders N, Jackel U (2009) Transfer of Defluvibacter lusatiensis to the genus Aquamicrobium as Aquamicrobium lusatiense comb. nov. and description of Aquamicrobium aerolatum sp. nov. Int J Syst Evol Microbiol 59:2468–2470PubMedCrossRefGoogle Scholar
  63. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338PubMedCrossRefGoogle Scholar
  64. Kang HS, Yang HL, Lee SD (2009) Nitratireductor kimnyeongensis sp. nov., isolated from seaweed. Int J Syst Evol Microbiol 59:1036–1039PubMedCrossRefGoogle Scholar
  65. Kaparullina EN, Doronina NV, Ezhov VA, Trotsenko YA (2012) EDTA degradation by cells of Chelativorans oligotrophicus immobilized on a biofilter. Appl Biochem Microbiol 48:396–400CrossRefGoogle Scholar
  66. Kaparullina EN, Doronina NV, Trotsenko YA (2011) Aerobic degradation of ethylenediaminetetraacetate (review). Appl Biochem Microbiol 47:460–473CrossRefGoogle Scholar
  67. Katayama-Fujimura Y, Enokizono Y, Kaneko T, Kuraishi H (1983) Deoxyribonucleic acid homologies among species of the genus Thiobacillus. J Gen Appl Microbiol 29:287–295CrossRefGoogle Scholar
  68. Khan Z, Doty SL (2009) Characterization of bacterial endophytes of sweet potato plants. Plant Soil 322:197–207CrossRefGoogle Scholar
  69. Kim KH, Roh SW, Chang HW, Nam YD, Yoon JH, Jeon CO, Oh HM, Bae JW (2009) Nitratireductor basaltis sp. nov., isolated from black beach sand. Int J Syst Evol Microbiol 59:135–138PubMedCrossRefGoogle Scholar
  70. Knösel DH (1984) Genus IV. Phyllobacterium (ex Knösel 1962) nom. rev. (Phyllobacterium Knösel 1962, 96). In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 254–256Google Scholar
  71. Krick A, Kehraus S, Eberl L, Riedel K, Anke H, Kaesler I, Graeber I, Szewzyk U, Konig GM (2007) A marine Mesorhizobium sp. produces structurally novel long-chain N-acyl-L-homoserine lactones. Appl Environ Microbiol 73:3587–3594PubMedCentralPubMedCrossRefGoogle Scholar
  72. Kuvichkina TN, Kaparullina EN, Doronina NV, Trotsenko YA, Reshetilov AN (2012) Degradation of the EDTA and EDTA complexes with metals by immobilized cells of Chelativorans oligotrophicus LPM-4 bacteria. Appl Biochem Microbiol 48:564–568CrossRefGoogle Scholar
  73. La Scola B, Boyadjiev I, Greub G, Khamis A, Martin C, Raoult D (2003) Amoeba-resisting bacteria and ventilator-associated pneumonia. Emerg Infect Dis 9:815–821PubMedCentralPubMedGoogle Scholar
  74. Labbé N, Juteau P, Parent S, Villemur R (2003) Bacterial diversity in a marine methanol-fed denitrification reactor at the Montreal biodome, Canada. Microb Ecol 46:12–21PubMedCrossRefGoogle Scholar
  75. Labbé N, Parent S, Villemur R (2004) Nitratireductor aquibiodomus gen. nov., sp. nov., a novel alpha-proteobacterium from the marine denitrification system of the Montreal Biodome (Canada). Int J Syst Evol Microbiol 54:269–273PubMedCrossRefGoogle Scholar
  76. Lai QL, Yuan J, Wu CL, Shao ZZ (2009) Oceanibaculum indicum gen. nov., sp. nov., isolated from deep seawater of the Indian Ocean. Int J Syst Evol Microbiol 59:1733–1737PubMedCrossRefGoogle Scholar
  77. Lai QL, Yu ZW, Wang JN, Zhong HZ, Sun FQ, Wang LP, Wang BJ, Shao ZZ (2011a) Nitratireductor pacificus sp.nov., isolated from a pyrene-degrading consortium. Int J Syst Evol Microbiol 61:1386–1391PubMedCrossRefGoogle Scholar
  78. Lai QL, Yu ZW, Yuan J, Sun FQ, Shao ZZ (2011b) Nitratireductor indicus sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 61:295–298PubMedCrossRefGoogle Scholar
  79. Lai QL, Li GZ, Shao ZZ (2012a) Genome sequence of Nitratireductor pacificus type strain pht-3B. J Bacteriol 194:6958PubMedCentralPubMedCrossRefGoogle Scholar
  80. Lai QL, Li GZ, Yu ZW, Shao ZZ (2012b) Genome sequence of Nitratireductor indicus type strain C115. J Bacteriol 194:6990PubMedCentralPubMedCrossRefGoogle Scholar
  81. Lambert B, Joos H, Dierickx S, Vantomme R, Swings J, Kersters K, Vanmontagu M (1990) Identification and plant interaction of a Phyllobacterium sp., a predominant rhizobacterium of young sugar-beet plants. Appl Environ Microbiol 56:1093–1102PubMedCentralPubMedGoogle Scholar
  82. Lee SD (2006) Phycicoccus jejuensis gen. nov., sp. nov., an actinomycete isolated from seaweed. Int J Syst Evol Microbiol 56:2369–2373PubMedCrossRefGoogle Scholar
  83. Lei X, Wang E, Chen W, Sui X (2008) Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch Microbiol 190:657–671PubMedCrossRefGoogle Scholar
  84. Liefting LW, Weir BS, Pennycook SR, Clover GRG (2009) ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. Int J Syst Evol Microbiol 59:2274–2276PubMedCrossRefGoogle Scholar
  85. Lin H, Lou BH, Glynn JM, Doddapaneni H, Civerolo EL, Chen CW, Duan YP, Zhou LJ, Vahling CM (2011) The complete genome sequence of ‘Candidatus Liberibacter solanacearum’, the bacterium associated with potato zebra chip disease. PLoS One 6:e19135PubMedCentralPubMedCrossRefGoogle Scholar
  86. Lipski A, Kämpfer P (2012) Aquamicrobium ahrensii sp.nov and Aquamicrobium segne sp. nov., isolated from experimental biofilters. Int J Syst Evol Microbiol 62:2511–2516PubMedCrossRefGoogle Scholar
  87. Lu YL, Chen WF, Wang ET, Han LL, Zhang XX, Chen WX, Han SZ (2009) Mesorhizobium shangrilense sp.nov., isolated from root nodules of Caragana species. Int J Syst Evol Microbiol 59:3012–3018PubMedCrossRefGoogle Scholar
  88. Mahieu S, Frerot H, Vidal C, Galiana A, Heulin K, Maure L, Brunel B, Lefebvre C, Escarre J, Cleyet-Marel JC (2011) Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd. Plant Soil 342:405–417CrossRefGoogle Scholar
  89. Mandal S, Chatterjee S, Dam B, Roy P, Das Gupta SK (2007) The dimeric repressor SoxR binds cooperatively to the promoter(s) regulating expression of the sulfur oxidation (sox) operon of Pseudaminobacter salicylatoxidans KCT001. Microbiol SGM 153:80–91CrossRefGoogle Scholar
  90. Manickam N, Pareek S, Kaur I, Singh NK, Mayilraj S (2012) Nitratireductor lucknowense sp. nov., a novel bacterium isolated from a pesticide contaminated soil. Anton Leeuw Int J Gen 101:125–131CrossRefGoogle Scholar
  91. Mantelin S, Desbrosses G, Larcher M, Tranbarger TJ, Cleyet-Marel JC, Touraine B (2006a) Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta 223:591–603PubMedCrossRefGoogle Scholar
  92. Mantelin S, Fischer-Le Saux M, Zakhia F, Bena G, Bonneau S, Jeder H, de Lajudie P, Cleyet-Marel JC (2006b) Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol 56:827–839PubMedCrossRefGoogle Scholar
  93. Matera I, Ferraroni M, Burger S, Scozzafava A, Stolz A, Briganti F (2008) Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: crystal structure of a peculiar ring-cleaving dioxygenase. J Mol Biol 380:856–868PubMedCrossRefGoogle Scholar
  94. Maynaud G, Willems A, Soussou S, Vidal C, Maure L, Moulin L, Cleyet-Marel JC, Brunel B (2012) Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Syst Appl Microbiol 35:65–72PubMedCrossRefGoogle Scholar
  95. Maynaud G, Brunel B, Mornico D, Durot M, Severac D, Dubois E, Navarro E, Cleyet-Marel JC, Le Quere A (2013) Genome-wide transcriptional responses of two metal-tolerant symbiotic Mesorhizobium isolates to zinc and cadmium exposure. BMC Genomics 14Google Scholar
  96. McDonald IR, Kämpfer P, Topp E, Warner KL, Cox MJ, Hancock TLC, Miller LG, Larkin MJ, Ducrocq V, Coulter C, Harper DB, Murrell JC, Oremland RS (2005) Aminobacter ciceronei sp. nov and Aminobacter lissarensis sp. nov., isolated from various terrestrial environments. Int J Syst Evol Microbiol 55:1827–1832PubMedCrossRefGoogle Scholar
  97. Mergaert J, Swings J (2005a) Family IV. Phyllobacteriaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2C, 2nd edn. Springer, New York, p 393Google Scholar
  98. Mergaert J, Swings J (2005b) Genus I. Phyllobacterium. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2C, 2nd edn. Springer, New York, pp 394–396CrossRefGoogle Scholar
  99. Mergaert J, Boley A, Cnockaert MC, Muller WR, Swings J (2001) Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor. Syst Appl Microbiol 24:303–310PubMedCrossRefGoogle Scholar
  100. Mergaert J, Cnockaert MC, Swings J (2002) Phyllobacterium myrsinacearum (subjective synonym Phyllobacterium rubiacearum) emend. Int J Syst Evol Microbiol 52:1821–1823PubMedGoogle Scholar
  101. Miller LG, Connell TL, Guidetti JR, Oremland RS (1997) Bacterial oxidation of methyl bromide in fumigated agricultural soils. Appl Environ Microbiol 63:4346–4354PubMedCentralPubMedGoogle Scholar
  102. Morgan JK, Zhou LJ, Li WB, Shatters RG, Keremane M, Duan YP (2012) Improved real-time PCR detection of ‘Candidatus Liberibacter asiaticus’ from citrus and psyllid hosts by targeting the intragenic tandem-repeats of its prophage genes. Mol Cell Probes 26:90–98PubMedCrossRefGoogle Scholar
  103. Nandasena KG, O’Hara GW, Tiwari RP, Willems A, Howieson JG (2009) Mesorhizobium australicum sp. nov and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia. Int J Syst Evol Microbiol 59:2140–2147PubMedCrossRefGoogle Scholar
  104. Nascimento FX, Brigido C, Glick BR, Oliveira S, Alho L (2012) Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints. Lett Appl Microbiol 55:15–21PubMedCrossRefGoogle Scholar
  105. Nortemann B (1999) Biodegradation of EDTA. Appl Microbiol Biotech 51:751–759CrossRefGoogle Scholar
  106. Nortemann B, Knackmuss HJ, Rast HG (1986) Bacterial communities degrading aminonaphthalene-2-sulfonates and hydroxynaphthalene-2-sulfonates. Appl Environ Microbiol 52:1195–1202PubMedCentralPubMedGoogle Scholar
  107. Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC (1994) Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522PubMedCrossRefGoogle Scholar
  108. Nour SM, Cleyet-Marel JC, Normand P, Fernandez MP (1995) Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45:640–648PubMedCrossRefGoogle Scholar
  109. Oger PM, Mansouri H, Nesme X, Dessaux Y (2004) Engineering root exudation of lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere. Microb Ecol 47:96–103PubMedCrossRefGoogle Scholar
  110. Palacios L, Arahal DR, Reguera B, Marin I (2006) Hoeflea alexandrii sp. nov., isolated from the toxic dinoflagellate Alexandrium minutum AL1V. Int J Syst Evol Microbiol 56:1991–1995PubMedCrossRefGoogle Scholar
  111. Park S, Lee JS, Lee KC, Yoon JH (2013) Lentilitoribacter donghaensis gen. nov., sp.nov., a slowly-growing alphaproteobacterium isolated from coastal seawater. Anton Leeuw Int J Gen 103:457–464CrossRefGoogle Scholar
  112. Peeters K, Verleyen E, Hodgson DA, Convey P, Ertz D, Vyverman W, Willems A (2012) Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biol 35:543–554CrossRefGoogle Scholar
  113. Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110CrossRefGoogle Scholar
  114. Peix A, Rivas R, Trujillo ME, Vancanneyt M, Velazquez E, Willems A (2005) Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov. Int J Syst Evol Microbiol 55:1163–1166PubMedCrossRefGoogle Scholar
  115. Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256CrossRefGoogle Scholar
  116. Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows H, Schlegel HG (eds) The prokaryotes, vol 1. Springer, Berlin, p 931Google Scholar
  117. Raddadi N, Gonella E, Camerota C, Pizzinat A, Tedeschi R, Crotti E, Mandrioli M, Bianco P, Daffonchio D, Alma A (2011) ‘Candidatus Liberibacter europaeus’ sp. nov that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte rather than a pathogen. Environ Microbiol 13:414–426PubMedCrossRefGoogle Scholar
  118. Ramirez-Bahena MH, Hernandez M, Peix A, Velazquez E, Leon-Barrios M (2012) Mesorhizobial strains nodulating Anagyris latifolia and Lotus berthelotii in Tamadaya ravine (Tenerife, Canary Islands) are two symbiovars of the same species, Mesorhizobium tamadayense sp. nov. Syst Appl Microbiol 35:334–341PubMedCrossRefGoogle Scholar
  119. Rasolomampianina R, Bailly X, Fetiarison R, Rabevohitra R, Bena G, Ramaroson L, Raherimandimby M, Moulin L, De Lajudie P, Dreyfus B, Avarre JC (2005) Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to alpha- and beta-Proteobacteria. Mol Ecol 14:4135–4146PubMedCrossRefGoogle Scholar
  120. Rincon A, Arenal F, Gonzalez I, Manrique E, Lucas MM, Pueyo JJ (2008) Diversity of rhizobial bacteria isolated from nodules of the gypsophyte Ononis tridentata L. growing in Spanish soils. Microb Ecol 56:223–233PubMedCrossRefGoogle Scholar
  121. Rivas R, Laranjo M, Mateos PF, Oliveira S, Martinez-Molina E, Velazquez E (2007) Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Lett Appl Microbiol 44:412–418PubMedCrossRefGoogle Scholar
  122. Roh SW, Kim KH, Nam YD, Chang HW, Kim MS, Shin KS, Yoon JH, Oh HM, Bae JW (2008) Aliihoeflea aestuarii gen. nov., sp. nov., a novel bacterium isolated from tidal flat sediment. J Microbiol 46:594–598PubMedCrossRefGoogle Scholar
  123. Rüger HJ, Höfle MG (1992) Marine star-shaped aggregate forming bacteria Agrobacterium atlanticum sp. nov., Agrobacterium meteori sp. nov., Agrobacterium ferrugineum sp. nov., nom. rev., and Agrobacterium stellatum sp. nov., nom. rev. Int J Syst Bacteriol 42:133–143PubMedCrossRefGoogle Scholar
  124. Safronova VI, Piluzza G, Zinovkina NY, Kimeklis AK, Belimov AA, Bullitta S (2012) Relationships between pasture legumes, rhizobacteria and nodule bacteria in heavy metal polluted mine waste of SW Sardinia. Symbiosis 58:149–159CrossRefGoogle Scholar
  125. Senoo K, Wada H (1989) Isolation and identification of an aerobic gamma-HCH decomposing bacterium from soil. Soil Sci Plant Nutr 35:79–87CrossRefGoogle Scholar
  126. Sfanos K, Harmody D, Dang P, Ledger A, Pomponi S, McCarthy P, Lopez J (2005) A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst Appl Microbiol 28:242–264PubMedCrossRefGoogle Scholar
  127. Singh A, Jangir PK, Kumari C, Sharma R (2012) Genome sequence of Nitratireductor aquibiodomus strain RA22. J Bacteriol 194:6307PubMedCentralPubMedCrossRefGoogle Scholar
  128. Sjoholm OR, Aamand J, Sorensen J, Nybroe O (2010) Degrader density determines spatial variability of 2,6-dichlorobenzamide mineralisation in soil. Environ Pollut 158:292–298PubMedCrossRefGoogle Scholar
  129. Sorokina AY, Chernousova EY, Dubinina GA (2012) Hoeflea siderophila sp. nov., a new neutrophilic iron-oxidizing bacterium. Microbiology 81:59–66CrossRefGoogle Scholar
  130. Stevenson BS, Waterbury JB (2006) Isolation and identification of an epibiotic bacterium associated with heterocystous Anabaena cells. Biol Bull 210:73–77PubMedCrossRefGoogle Scholar
  131. Stevenson BS, Suflita MT, Stamps BW, Moore ERB, Johnson CN, Lawson PA (2011) Hoeflea anabaenae sp. nov., an epiphytic symbiont that attaches to the heterocysts of a strain of Anabaena. Int J Syst Evol Microbiol 61:2439–2444PubMedCrossRefGoogle Scholar
  132. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  133. Texeira DC, Ayres J, de Barros AP, Kitajima EW, Tanaka FAO, Danet L, Jagoueix-Eveillard S, Saillard C, Bove JM (2005) First report of a huanglongbing-like disease of citrus in Sao Paulo State, Brazil and association of a new liberibacter species, “Candidatus Liberibacter americanus”, with the disease. Plant Dis 89:107CrossRefGoogle Scholar
  134. Topp E (2001) A comparison of three atrazine-degrading bacteria for soil bioremediation. Biol Fertil Soils 33:529–534CrossRefGoogle Scholar
  135. Turner SL, Zhang XX, Li FD, Young PW (2002) What does a bacterial genome sequence represent? Mis-assignment of MAFF 303099 to the genospecies Mesorhizobium loti. Microbiol SGM 148:3330–3331CrossRefGoogle Scholar
  136. Tyler HL, Roesch LFW, Gowda S, Dawson WO, Triplett EW (2009) Confirmation of the sequence of ‘Candidatus Liberibacter asiaticus’ and assessment of microbial diversity in Huanglongbing-infected citrus phloem using a metagenomic approach. Mol Plant Microbe In 22:1624–1634CrossRefGoogle Scholar
  137. Uchino Y, Hirata A, Yokota A, Sugiyama J (1998) Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44:201–210PubMedCrossRefGoogle Scholar
  138. Ulrich A, Zaspel I (2000) Phylogenetic diversity of rhizobial strains nodulating Robinia pseudoacacia L. Microbiol SGM 146:2997–3005CrossRefGoogle Scholar
  139. Urakami T (2005) Genus II. Aminobacter. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2C, 2nd edn. Springer, New York, pp 397–399CrossRefGoogle Scholar
  140. Urakami T, Araki H, Oyanagi H, Suzuki KI, Komagata K (1992) Transfer of Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter gen. nov. as Aminobacter aminovorans comb. nov. and description of Aminobacter aganoensis sp. nov. and Aminobacter niigataensis sp. nov. Int J Syst Bacteriol 42:84–92CrossRefGoogle Scholar
  141. Valverde A, Velazquez E, Fernandez-Santos F, Vizcaino N, Rivas R, Mateos PF, Martinez-Molina E, Igual JM, Willems A (2005) Phyllobacterium trifolii sp.nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989PubMedCrossRefGoogle Scholar
  142. Velazquez E, Igual JM, Willems A, Fernadez MP, Munoz E, Mateos PF, Abril A, Toro N, Normand P, Cervantes E, Gillis M, Martinez-Molina E (2001) Mesorhizobium chacoense sp.nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51:1011–1021PubMedCrossRefGoogle Scholar
  143. Vidal C, Chantreuil C, Berge O, Maure L, Escarre J, Bena G, Brunel B, Cleyet-Marel JC (2009) Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850–855PubMedCrossRefGoogle Scholar
  144. Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. International Biology Program, Blackwell Scientific, Oxford, Handbook 15Google Scholar
  145. Vishniac W, Santer M (1957) The thiobacilli. Bacteriol Rev 21:195–213PubMedCentralPubMedGoogle Scholar
  146. Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martinez-Romero E (1999) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65PubMedCrossRefGoogle Scholar
  147. Wang FQ, Wang ET, Liu J, Chen Q, Sui XH, Chen WF, Chen WX (2007) Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 57:1192–1199PubMedCrossRefGoogle Scholar
  148. Wang BJ, Lai QL, Cui ZS, Tan TF, Shao ZZ (2008) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp.P1. Environ Microbiol 10:1948–1963PubMedCrossRefGoogle Scholar
  149. Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163PubMedCrossRefGoogle Scholar
  150. Weilenmann HU, Engeli B, Bucheli-Witschel M, Egli T (2004) Isolation and growth characteristics of an EDTA-degrading member of the alpha-subclass of Proteobacteria. Biodegradation 15:289–301PubMedCrossRefGoogle Scholar
  151. Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 3. Characterization of the filamentous gliding Desulfonema limicola gen. nov. spec. nov. and Desulfonema magnum sp. nov. Arch Microbiol 134 :286–294CrossRefGoogle Scholar
  152. Wolde-Meskel E, Terefework Z, Frostegård A, Lindström K (2005) Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. Int J Syst Evol Microbiol 55:1439–1452PubMedCrossRefGoogle Scholar
  153. Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A (2012) Thermovum composti gen. nov., sp. nov., an alphaproteobacterium from compost. Int J Syst Evol Microbiol 62:2991–2996PubMedCrossRefGoogle Scholar
  154. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the All-Species Living Tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  155. Zhang RF, Cui ZL, Jiang JD, He J, Gu XY, Li SP (2005) Diversity of organophosphorus pesticide-degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes. Can J Microbiol 51:337–343PubMedCrossRefGoogle Scholar
  156. Zhang MQ, Powell CA, Zhou LJ, He ZL, Stover E, Duan YP (2011) Chemical compounds effective against the citrus Huanglongbing bacterium ‘Candidatus Liberibacter asiaticus’ in planta. Phytopathology 101:1097–1103PubMedCrossRefGoogle Scholar
  157. Zhang JJ, Liu TY, Chen WF, Wang ET, Sui XH, Zhang XX, Li Y, Chen WX (2012) Mesorhizobium muleiense sp.nov., nodulating with Cicer arietinum L. Int J Syst Evol Microbiol 62:2737–2742PubMedCrossRefGoogle Scholar
  158. Zhao LF, Deng ZS, Yang WQ, Cao Y, Wang ET, Wei GH (2010) Diverse rhizobia associated with Sophora alopecuroides grown in different regions of Loess Plateau in China. Syst Appl Microbiol 33:468–477PubMedCrossRefGoogle Scholar
  159. Zhao CT, Wang ET, Zhang YM, Chen WF, Sui XH, Chen WX, Liu HC, Zhang XX (2012) Mesorhizobium silamurunense sp. nov., isolated from root nodules of Astragalus species. Int J Syst Evol Microbiol 62:2180–2186PubMedCrossRefGoogle Scholar
  160. Zheng WT, Li Y Jr, Wang R, Sui XH, Zhang XX, Zhang JJ, Wang ET, Chen WX (2013) Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int J Syst Evol Microbiol 63:2002–2007PubMedCrossRefGoogle Scholar
  161. Zhou PF, Chen WM, Wei GH (2010) Mesorhizobium robiniae sp. nov., isolated from root nodules of Robinia pseudoacacia. Int J Syst Evol Microbiol 60:2552–2556PubMedCrossRefGoogle Scholar
  162. Zhou ML, Chen WM, Chen HY, Wei GH (2012) Draft genome sequence of Mesorhizobium alhagi CCNWXJ12-2(Tau), a novel salt-resistant species isolated from the desert of northwestern China. J Bacteriol 194:1261–1262PubMedCentralPubMedCrossRefGoogle Scholar
  163. Zhou S, Li Q, Jiang H, Lindström K, Zhang X (2013) Mesorhizobium sangaii sp. nov., isolated from the root nodules of Astragalus luteolus and Astragalus ernestii. Int J Syst Evol Microbiol 63:2794–2799PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratory of Microbiology, Department of Biochemistry and MicrobiologyFaculty of Science, Ghent UniversityGhentBelgium

Personalised recommendations