The Prokaryotes pp 283-299 | Cite as
The Family Hyphomonadaceae
- 13 Citations
- 4.8k Downloads
Abstract
The family Hyphomonadaceae comprises strict aerobic and stalked and non-stalked species. Cells in this family can have two differing cell cycles. Species of the genera Algimonas, Maricaulis, Oceanicaulis, Ponticaulis, Robiginitomaculum, and Woodsholea divide by binary fission of the cell leading to flagellated offsprings. Species of the genera Hellea, Hirschia, Hyphomonas, and Litorimonas divide by budding, forming a flagellated cell at the tip of the prosthecum. All flagellated cells are mobile but later develop a stalk, shed the flagella, and become sessile. These two-cell different cycles are both optimal for living in oligotrophic habitats where the competition for food is fierce and should be minimized between siblings. The genus Henriciella is currently the only genus with species lacking any stalks. With the possible exception of Hyphomonas polymorpha, all species are marine isolates and require sodium chloride for optimal growth. Species of Hyphomonadaceae occupy various habitats in the oceans where they are usually found in oligotrophic niches from the Antarctic to deep sea vents. Only few isolates can grow on minimal media with defined carbon sources; however, most species require complex growth factors for growth. Polar lipids for most species are monoglycosyl and monoglucuronosyl diacylglycerols. Common phospholipids are phosphatidylglycerols and many species possess sulfoquinovosyl diacylglycerols and glucuronopyranosyl diacylglycerol taurine amides as well. Most species reduce nitrate and are alkaline phosphatase and leucine arylamidase positive.
Keywords
Polar Lipid Hydroxy Fatty Acid Marine Agar Binary Fission Polar FlagellumNotes
Acknowledgments
The long-standing cooperation with John Smit, Vancouver, and Edward Moore, Gothenburg, is very much acknowledged. We also thank Jennifer Knaak for technical assistance.
References
- Abraham W-R (2005) Controlling gram-negative pathogenic bacteria by interfering with their biofilm formation. Drug Design Rev 2:13–33CrossRefGoogle Scholar
- Abraham W-R, Meyer H, Lindholst S, Vancanneyt M, Smit J (1997) Phospho- and sulfolipids as biomarkers of Caulobacter sensu lato, Brevundimonas and Hyphomonas. Syst Appl Microbiol 20:522–539CrossRefGoogle Scholar
- Abraham W-R, Strömpl C, Meyer H, Lindholst S, Moore ERB, Christ R, Vancanneyt M, Tindall B, Bennasar A, Smit J, Tesar M (1999) Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int J Syst Bacteriol 49:1053–1073PubMedCrossRefGoogle Scholar
- Abraham W-R, Strömpl C, Bennasar A, Vancanneyt M, Snauwaert C, Swings J, Smit J, Moore ERB (2002) Phylogeny of Maricaulis Abraham et al. 1999 and proposal of Maricaulis virginensis sp. nov., M. parjimensis sp. nov., M. washingtonensis sp. nov. and M. salignorans sp. nov. Int J Syst Evol Microbiol 52:2191–2201PubMedGoogle Scholar
- Abraham W-R, Strömpl C, Vancanneyt M, Bennasar A, Swings J, Lünsdorf H, Smit J, Moore ERB (2004) Woodsholea maritima gen. nov., sp. nov., a marine bacterium with a low diversity of polar lipids. Int J Syst Evol Microbiol 54:1227–1234PubMedCrossRefGoogle Scholar
- Abraham W-R, Macedo AJ, Lünsdorf H, Fischer R, Pawelczyk S, Smit J, Vancanneyt M (2008) Phylogeny by a polyphasic approach of the order Caulobacterales, proposal of Caulobacter mirabilis sp. nov., Phenylobacterium haematophilum sp. nov. and Phenylobacterium conjunctum sp. nov., and emendation of the genus Phenylobacterium. Int J Syst Evol Microbiol 58:1939–1949PubMedCrossRefGoogle Scholar
- Ackermann M, Stearns SC, Jenal U (2003) Senescence in a bacterium with asymmetric division. Science 300:1920PubMedCrossRefGoogle Scholar
- Alain K, Tindall BJ, Intertaglia L, Catala P, Lebaron P (2008) Hellea balneolensis gen. nov., sp. nov., a prosthecate alphaproteobacterium from the Mediterranean Sea. Int J Syst Evol Microbiol 58:2511–2519PubMedCrossRefGoogle Scholar
- Badger JH, Eisen JA, Ward NL (2005) Genomic analysis of Hyphomonas neptunium contradicts 16S rRNA gene-based phylogenetic analysis: implications for the taxonomy of the orders ‘Rhodobacterales’ and Caulobacterales. Int J Syst Evol Microbiol 55:1021–1026PubMedCrossRefGoogle Scholar
- Badger JH, Hoover TR, Brun YV, Weiner RM, Laub MT, Alexandre G, Mrazek J, Ren Q, Paulsen IT, Nelson KE, Khouri HM, Radune D, Sosa J, Dodson RJ, Sullivan SA, Rosovitz MJ, Madupu R, Brinkac LM, Durkin AS, Daugherty SC, Kothari SP, Giglio MG, Zhou L, Haft DH, Selengut JD, Davidsen TM, Yang Q, Zafar N, Ward NL (2006) Comparative genomic evidence for a close relationship between the dimorphic prosthecate bacteria Hyphomonas neptunium and Caulobacter crescentus. J Bacteriol 188:6841–6850PubMedCentralPubMedCrossRefGoogle Scholar
- Batrakov SG, Nikitin DI, Pitryuk IA (1996a) Lipid composition of the gram-negative, budding, seawater bacterium Hyphomonas jannaschiana lacking in phospholipids. Biochim Biophys Acta 1303:39–46PubMedCrossRefGoogle Scholar
- Batrakov SG, Nikitin DI, Pitryuk IA (1996b) A novel glycolipid, 1,2-diacyl-3-alpha-D-glucuronopyranosyl-sn-glycerol taurineamide, from the budding seawater bacterium Hyphomonas jannaschiana. Biochim Biophys Acta 1302:167–176PubMedCrossRefGoogle Scholar
- Bowers LM, Shapland EB, Ryan KR (2008) Who’s in charge here? Regulating cell cycle regulators. Curr Opin Microbiol 11:547–552PubMedCrossRefGoogle Scholar
- Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078PubMedCentralPubMedGoogle Scholar
- Brilli M, Fondi M, Fani R, Mengoni A, Ferri L, Bazzicalupo M, Biondi EG (2010) The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis. BMC Syst Biol 4:52PubMedCentralPubMedCrossRefGoogle Scholar
- Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ, Tindall BJ, Spröer C, Overmann J (2012a) Reclassification and amended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 62(Pt 12):2835–2843PubMedCrossRefGoogle Scholar
- Chen MH, Sheu SY, Chen CA, Wang JT, Chen WM (2012b) Oceanicaulis stylophorae sp. nov., isolated from the reef-building coral Stylophora pistillata. Int J Syst Evol Microbiol 62(Pt 9):2241–2246PubMedGoogle Scholar
- Chertkov O, Brown PJB, Kysela DT, Pedro MADE, Lucas S, Copeland A, Lapidus A, Del Rio TG, Tice H, Bruce D, Goodwin L, Pitluck S, Detter JC, Han C, Larimer F, Chang Y-J, Jeffries CD, Land M, Hauser L, Kyrpides NC, Ivanova N, Ovchinnikova G, Tindall BJ, Göker M, Klenk H-P, Brun YV (2011) Complete genome sequence of Hirschia baltica type strain (IFAM 1418T). Stand Genomic Sci 5:287–297PubMedCentralPubMedCrossRefGoogle Scholar
- Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, Glavina del Rio T, Hammon N, Israni S, Dalin E, Tice H, Pitluck S, Saunders E, Brettin T, Bruce D, Han C, Tapia R, Gilna P, Schmutz J, Larimer F, Land M, Hauser L, Kyrpides N, Mikhailova N, Viollier P, Stephens C, Richardson P (2011) Complete sequence of Maricaulis maris MCS10. GenBank CP000449Google Scholar
- Frank DN, Feazel LM, Bessesen MT, Price CS, Janoff EN, Pace NR (2010) The human nasal microbiota and Staphylococcus aureus carriage. PLoS One 5:e10598. doi:10.1371/journal.pone.0010598PubMedCentralPubMedCrossRefGoogle Scholar
- Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H, Yano Y, Satomi M (2012) Algimonas porphyrae gen. nov., sp. nov., a member of the family Hyphomonadaceae, isolated from a red alga Porphyra yezoensis. Int J Syst Evol Microbiol 63(Pt 1):314–20. doi:10.1099/ijs.0.040485-0PubMedGoogle Scholar
- Garrity GM, Bell JA, Lilburn T (2005) Class I. Alphaproteobacteria class. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. The Proteobacteria, vol. 2. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, part C. Springer, New York, p 1Google Scholar
- Hardy GGR, Allen C, Toh E, Long M, Brown PJ, Cole-Tobian JL, Brun YV (2010) A localized multimeric anchor attaches the Caulobacter holdfast to the cell pole. Mol Microbiol 76:409–427PubMedCentralPubMedCrossRefGoogle Scholar
- Havenner JA, McCardell BA, Weiner RM (1979) Development of defined, minimal, and complete media for the growth of Hyphomicrobium neptunium. Appl Environ Microbiol 38:18–23PubMedCentralPubMedGoogle Scholar
- Henrici AT, Johnson D (1935) Stalked bacteria, a new order of Schizomycetes. J Bacteriol 29:3–4Google Scholar
- Jung JY, Kim JM, Jin HM, Kim SY, Park W, Jeon CO (2011) Litorimonas taeanensis gen. nov., sp. nov., isolated from a sandy beach. Int J Syst Evol Microbiol 61:1534–1538PubMedCrossRefGoogle Scholar
- Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and -lactonase. Open Microbiol J 5:1–13PubMedCentralPubMedCrossRefGoogle Scholar
- Kang HS, Lee SD (2009a) Ponticaulis koreensis gen. nov., sp. nov., a new member of the family Hyphomonadaceae isolated from seawater. Int J Syst Evol Microbiol 59:2951–2955PubMedCrossRefGoogle Scholar
- Kang HS, Lee SD (2009b) Hirschia maritima sp. nov., isolated from seawater. Int J Syst Evol Microbiol 59:2264–2268PubMedCrossRefGoogle Scholar
- Lee K, Lee HK, Choi TH, Cho JC (2007) Robiginitomaculum antarcticum gen. nov., sp. nov., a member of the family Hyphomonadaceae, from Antarctic seawater. Int J Syst Evol Microbiol 57:2595–2599PubMedCrossRefGoogle Scholar
- Lee KB, Liu CT, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919PubMedCrossRefGoogle Scholar
- Lee SH, Shim JK, Kim JM, Choi H-K, Jeon CO (2011) Henriciella litoralis sp. nov., isolated from a tidal flat, transfer of Maribaculum marinum Lai et al. 2009 to the genus Henriciella as Henriciella aquimarina nom. nov. and emended description of the genus Henriciella. Int J Syst Evol Microbiol 61:722–727PubMedCrossRefGoogle Scholar
- Loeffler F (1890) Weitere Untersuchungen über die Beizung und Färbung der Geisseln bei den Bakterien. Centralbl Bakteriol Parasitenkd 7:625–639Google Scholar
- Maeda R, Nagashima H, Widada J, Iwata K, Omori T (2009) Novel marine carbazole-degrading bacteria. FEMS Microbiol Lett 292:203–209PubMedCrossRefGoogle Scholar
- Moore RL (1981) The biology of Hyphomicrobium and other prosthecate, budding bacteria. Annu Rev Microbiol 35:567–594PubMedCrossRefGoogle Scholar
- Moore RL, Weiner RM, Gebers R (1984) Genus Hyphomonas Pongratz 1957 nom. rev. emend. Hyphomonas polymorpha Pongratz 1957 nom. rev. emend. and Hyphomonas neptunium (Leifson 1964) comb. nov. emend. (Hyphomicrobium neptunium). Int J Syst Bacteriol 34:71–73CrossRefGoogle Scholar
- Oh HM, Kang I, Vergin KL, Lee K, Giovannoni SJ, Cho JC (2011) Genome sequence of Oceanicaulis sp. strain HTCC2633, isolated from the Western Sargasso Sea. J Bacteriol 193:317–318PubMedCentralPubMedCrossRefGoogle Scholar
- Park S, Yoon J-H (2012) Hirschia litorea sp. nov., isolated from seashore sediment, and emended description of the genus Hirschia Schlesner et al. 1990. Int J Syst Evol Microbiol 63(Pt 5):1684–1689. doi:10.1099/ijs.0.044297-0PubMedGoogle Scholar
- Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295PubMedCentralPubMedGoogle Scholar
- Poindexter JS (1981) The caulobacters: ubiquitous unusual bacteria. Microbiol Rev 45:123–179PubMedCentralPubMedGoogle Scholar
- Poindexter JS (2006) Dimorphic prosthecate bacteria: the genera Caulobacter, Asticcacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas and Thiodendron. Prokaryotes 5:72–90CrossRefGoogle Scholar
- Pongratz E (1957) D’une bactérie pédiculee isolée d’un pus de sinus. Schweiz Z Allg Pathol Bakteriol 20:593–608Google Scholar
- Quan ZX, Zeng DN, Xiao YP, Roh SW, Nam YD, Chang HW, Yoon JH, Oh HM, Bae JW (2009) Henriciella marina gen. nov., sp. nov., a novel member of the family Hyphomonadaceae isolated from the East Sea. J Microbiol 47:156–161PubMedCrossRefGoogle Scholar
- Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25(1):39–67PubMedCrossRefGoogle Scholar
- Schlesner H, Bartels C, Sittig M, Dorsch M, Stackebrandt E (1990) Taxonomic and phylogenetic studies on a new taxon of budding hyphal Proteobacteria, Hirschia baltica gen. nov., sp. nov. Int J Syst Bacteriol 40:443–451PubMedCrossRefGoogle Scholar
- Shaheen SM, Ouimet M-C, Marczynski GT (2009) Comparative analysis of Caulobacter chromosome replication origins. Microbiol 155:1215–1225CrossRefGoogle Scholar
- Shen N, Weiner RM (1998) Isolation and characterization of S-layer proteins from a vent prosthecate bacterium. Microbios 93:7–16PubMedGoogle Scholar
- Shi D, Li Y, Cabrera-Luque J, Jin Z, Yu X, Zhao G, Haskins N, Allewell NM, Tuchman M (2011) A novel N-acetylglutamate synthase architecture revealed by the crystal structure of the bifunctional enzyme from Maricaulis maris. PLoS One 6:e28825PubMedCentralPubMedCrossRefGoogle Scholar
- Smith CS, Hinz A, Bodenmiller D, Larson DE, Brun YV (2003) Identification of genes required for synthesis of the adhesive holdfast in Caulobacter crescentus. J Bacteriol 185:1432–1442PubMedCentralPubMedCrossRefGoogle Scholar
- Stahl DA, Key R, Flesher B, Smit J (1992) The phylogeny of marine and freshwater caulobacters reflects their habitat. J Bacteriol 174:2193–2198PubMedCentralPubMedGoogle Scholar
- Staley JT (1968) Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942PubMedCentralPubMedGoogle Scholar
- Strömpl C, Hold GL, Lünsdorf H, Graham J, Gallacher S, Abraham W-R, Moore ERB, Timmis KN (2003) Oceanicaulis alexandrii gen. nov., sp. nov., a novel stalked bacterium isolated from a culture of the dinoflagellate Alexandrium tamarense (Lebour) Balech. Int J Syst Evol Microbiol 53:1901–1906PubMedCrossRefGoogle Scholar
- Trzcinski AP, Ray MJ, Stuckey DC (2010) Performance of a three-stage membrane bioprocess treating the organic fraction of municipal solid waste and evolution of its archaeal and bacterial ecology. Bioresour Technol 101:1652–1661PubMedCrossRefGoogle Scholar
- Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblizek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappe MS, Webb EA (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72PubMedCrossRefGoogle Scholar
- Weidner S, Arnold W, Stackebrandt E, Pühler A (2000) Phylogenetic analysis of bacterial communities associated with leaves of the seagrass Halophila stipulacea by a culture-independent small-subunit rRNA gene approach. Microb Ecol 39:22–31PubMedCrossRefGoogle Scholar
- Weiner RM, Devine RA, Powell DM, Dagasan L, Moore RL (1985) Hyphomonas oceanitis sp. nov., Hyphomonas hirschiana sp. nov., and Hyphomonas jannaschiana sp. nov. Int J Syst Bacteriol 35:237–243CrossRefGoogle Scholar
- Weiner RM, Melick M, O’Neill K, Quintero E (2000) Hyphomonas adhaerens sp. nov., Hyphomonas johnsonii sp. nov. and Hyphomonas rosenbergii sp. nov., marine budding and prosthecate bacteria. Int J Syst Evol Microbiol 50:459–469PubMedCrossRefGoogle Scholar
- Zerfas PM, Kessel M, Quintero EJ, Weiner RM (1997) Fine-structure evidence for cell membrane partitioning of the nucleoid and cytoplasm during bud formation in Hyphomonas species. J Bacteriol 179:148–156PubMedCentralPubMedGoogle Scholar