The Family Hyphomicrobiaceae

Reference work entry

Abstract

The family Hyphomicrobiaceae, first proposed in 1950, is affiliated with the Alphaproteobacteria. Currently (June 2012) it encompasses 18 genera: Hyphomicrobium [type genus], Ancalomicrobium, Angulomicrobium, Aquabacter, Blastochloris, Cucumibacter, Devosia, Dichotomicrobium, Filomicrobium, Maritalea, Methylorhabdus, Pedomicrobium, Pelagibacterium, Prosthecomicrobium, Rhodomicrobium, Rhodoplanes, Seliberia, and Vasilyevaea, with a total of 54 species. Morphologically and physiologically the family is highly diverse. Many representatives are characterized by the presence of prosthecae, and many species divide by budding. Many prosthecate species are oligocarbophilic, thriving only in the presence of low concentrations of suitable carbon sources and unable to grow in rich media. Most are aerobic chemoheterotrophs. A few representatives can grow anaerobically by denitrification or mixed-acid fermentation. Blastochloris, Rhodomicrobium, and Rhodoplanes are genera of facultative photoheterotrophs. Facultative chemolithotrophy with hydrogen and/or reduced sulfur compounds is also encountered. Representatives of the family can be found worldwide in soils, freshwater lakes and streams, and also in the marine environment.

Keywords

Type Species Glycine Betaine Hydroxy Fatty Acid Methanol Dehydrogenase Swarmer Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Argall ME, Smith GD (1993) The use of trehalose-stabilized lyophilized methanol dehydrogenase from Hyphomicrobium X for the detection of methanol. Biochem Mol Biol Int 30:491–497PubMedGoogle Scholar
  2. Aristovskaya TV (1961) Accumulation of iron by decomposing organo-mineral complexes of humid matter by microorganisms. Dokl Akad Nauk SSSR 136:954–957 (in Russian)Google Scholar
  3. Aristovskaya TV, Parinkina OM (1963) New soil microorganism Seliberia stellata nov. gen. n. sp. Bull Acad Sci USSR (Ser Biol) 218:49–56 (in Russian)Google Scholar
  4. Attwood MM, Harder W (1972) A rapid and specific enrichment procedure for Hyphomicrobium spp. Antonie van Leeuwenhoek 38:369–377PubMedCrossRefGoogle Scholar
  5. Babudieri B (1950) Natura delle cosidette “S-formen” delle leptospire. Loro identificazione con Hyphomicrobium vulgare Stutzer e Hartleb. Studio di quest. Ultimo germe. R.C. 1st Supplement Sanita Roma 13:580–591Google Scholar
  6. Bauld J, Bigford R, Staley JT (1983) Prosthecomicrobium litoralum, a new species from marine habitats. Int J Syst Bacteriol 33:613–617CrossRefGoogle Scholar
  7. Bautista VV, Monsalud RG, Yokota A (2010) Devosia yakushimensis sp. nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi. Int J Syst Evol Microbiol 60:627–632PubMedCrossRefGoogle Scholar
  8. Bianchi M (1989) Unusual bloom of star-like prosthecate bacteria and filaments as a consequence of grazing pressure. Microb Ecol 17:137–141PubMedCrossRefGoogle Scholar
  9. Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP (2000) Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch Microbiol 173:425–437PubMedCrossRefGoogle Scholar
  10. Borodina E, Kelly DP, Schumann P, Rainey FA, Ward-Rainey NL, Wood AP (2002) Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov. Arch Microbiol 177:173–183PubMedCrossRefGoogle Scholar
  11. Braun B, Richert I, Szewzyk U (2009) Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe. J Microbiol Meth 79:37–43CrossRefGoogle Scholar
  12. Brown PJB, Kysela DT, Buechlein A, Hemmerich C, Brun YV (2011) Genome sequences of eight morphologically diverse alphaproteobacteria. J Bacteriol 193:4567–4568PubMedCentralPubMedCrossRefGoogle Scholar
  13. Chakravarthy KS, Ramaprasad EVV, Shobba E, Sasikala C, Ramana CV (2010) Rhodoplanes piscinae sp. nov. isolated from pond waters. Int J Syst Evol Microbiol 62:2828–2834Google Scholar
  14. Cox TL, Sly LI (1997) Phylogenetic relationships and uncertain taxonomy of Pedomicrobium species. Int J Syst Bacteriol 47:377–380PubMedCrossRefGoogle Scholar
  15. Diks RMM, Ottengraf SPP, van den Oever AHC (1994) The influence of NaCl on the degradation rate of dichloromethane by Hyphomicrobium sp. Biodegradation 5:129–141CrossRefGoogle Scholar
  16. Doronina NV, Trotsenko YA (2005) Genus XIII. Methylorhabdus Doronina, Braus-Stromeyer, Leisinger and Trotsenko 1996a, 362VP (Effective publication: Doronina, Braus-Stromeyer, Leisinger and Trotsenko 1995, 97). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn., vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 525–527CrossRefGoogle Scholar
  17. Doronina NV, Trotsenko YA (2006) Metabolism of methanol and glucose in Angulomicrobium tetraedrale. Microbiology (Russia) 75:362–364Google Scholar
  18. Doronina NV, Braus-Stromeyer SA, Leisinger T, Trotsenko YA (1995) Isolation and characterization of a new facultatively methylotrophic bacterium: description of Methylorhabdus multivorans, gen. nov., sp. nov. Syst Appl Microbiol 18:92–98CrossRefGoogle Scholar
  19. Douglas HC (1957) Order III. Hyphomicrobiales Douglas, ordo nov. In: Breed RS, Murray EGD, Smith NR (eds) Bergey’s manual of determinative bacteriology, 7th edn. The Williams & Wilkins, Baltimore, p 276Google Scholar
  20. Drews G, Giesbrecht P (1966) Rhodopseudomonas viridis, nov. spec., ein neu isoliertes, obligat phototrophes Bakterium. Arch Mikrobiol 53:255–262PubMedCrossRefGoogle Scholar
  21. Duchow E, Douglas HC (1949) Rhodomicrobium vannielii, a new photoheterotrophic bacterium. J Bacteriol 58:409–416PubMedCentralPubMedGoogle Scholar
  22. Fedorova YV, Volova TG (1988) Energetics of growth of the carboxydobacterium Seliberia carboxyhydrogena on hydrogen. Microbiology (Russia) 57:451–455Google Scholar
  23. Foster JW (1944) Micrological aspects of riboflavin. I. Introduction. II. Bacterial oxidation of riboflavin to lumichrome. J Bacteriol 47:27–41PubMedCentralPubMedGoogle Scholar
  24. Fritz I, Strömpl C, Abraham W-R (2004) Phylogenetic relationships of the genera Stella, Labrys and Angulomicrobium within the ‘Alphaproteobacteria’ and description of Anglomicrobium amanitiforme sp. nov. Int J Syst Evol Microbiol 54:651–657PubMedCrossRefGoogle Scholar
  25. Fukui Y, Abe M, Kobayashi M, Ishihara K, Oikawa H, Yano Y, Satomi M (2012) Maritalea porphyrae sp. nov., isolated from a red alga (Porphyra yezoensis), and transfer of Zhangella mobilis to Maritalea mobilis comb. nov. Int J Syst Evol Microbiol 62:43–48PubMedCrossRefGoogle Scholar
  26. Gälli P, Leisinger T (1985) Specialized bacterial strains for the removal of dichloromethane from industrial waste. Conserv Recycl 8:91–100CrossRefGoogle Scholar
  27. Garrity GM, Bell JA, Lilburn T (2005) Family VIII. Hyphomicrobiaceae Babudieri 1950, 589. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn., vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, p 476Google Scholar
  28. Gebers R (1981) Enrichment, isolation, and emended description of Pedomicrobium ferrugineum Aristovskaya and Pedomicrobium manganicum Aristovskaya. Int J Syst Bacteriol 31:302–316CrossRefGoogle Scholar
  29. Gebers R, Beese M (1988) Pedomicrobium americanum sp. nov. and Pedomicrobium australicum sp. nov. from aquatic habitats, Pedomicrobium gen. emend., and Pedomicrobium ferrugineum sp. emend. Int J Syst Bacteriol 38:303–315CrossRefGoogle Scholar
  30. Ghiorse WC, Hirsch P (1979) An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria. Arch Microbiol 123:213–226CrossRefGoogle Scholar
  31. Gliesche CG, Holm NC, Beese M, Neumann M, Völker H, Gebers R, Hirsch P (1988) New bacteriophages active on strains of Hyphomicrobium. J Gen Microbiol 134:1339–1353PubMedGoogle Scholar
  32. Gliesche C, Fesefeldt A, Hirsch P (2005) Genus I. Hyphomicrobium Stutzer and Hartleb 1898, 76AL. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 476–494CrossRefGoogle Scholar
  33. Heising S, Schink B (1998) Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. Microbiology UK 144:2263–2269CrossRefGoogle Scholar
  34. Hilbrig F, Jérôme V, Salzig M, Freitag R (2009) Strategy for the isolation of native dehydrogenases with potential for biosensor development from the organism Hyphomicrobium zavarzinii ZV580. J Chromatogr A 1216:3518–3525PubMedCrossRefGoogle Scholar
  35. Hiraishi A (1997) Transfer of the bacteriochlorophyll b-containing phototrophic bacteria Rhodopseudomonas viridis and Rhodopseudomonas sulfoviridis to the genus Blastochloris gen. nov. Int J Syst Bacteriol 47:217–219PubMedCrossRefGoogle Scholar
  36. Hiraishi A, Imhoff JF (2005) Genus XVII. Rhodoplanes Hiraishi and Ueda 1994b, 671VP. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 545–549CrossRefGoogle Scholar
  37. Hiraishi A, Ueda Y (1994) Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int J Syst Bacteriol 44:665–673CrossRefGoogle Scholar
  38. Hirsch P (2005) Genus IX. Dichotomicrobium Hirsch and Hoffmann 1989b, 495VP (Effective publication: Hirsch and Hoffmann 1989a, 300). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 513–518CrossRefGoogle Scholar
  39. Hirsch P, Conti SF (1964) Biology of budding bacteria. I. Enrichment, isolation and morphology of Hyphomicrobium spp. Arch Mikrobiol 48:339–357PubMedCrossRefGoogle Scholar
  40. Hirsch P, Gebers R (2005) Genus XIV. Pedomicrobium Aristovskaya 1961, 957AL emend. Gebers and Beese 1988, 305. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 527–538CrossRefGoogle Scholar
  41. Hirsch P, Hoffmann B (1989) Dichotomicrobium thermohalophilum, gen. nov., spec. nov., budding prosthecate bacteria from the Solar Lake (Sinai) and some related strains. Syst Appl Microbiol 11:291–301CrossRefGoogle Scholar
  42. Holm NC, Gliesche CG, Hirsch P (1996) Diversity and structure of Hyphomicrobium populations in a sewage treatment plant and its adjacent receiving lake. Appl Environ Microbiol 62:522–528PubMedCentralPubMedGoogle Scholar
  43. Huo Y-Y, Cheng H, Han X-F, Jiang X-W, Sun C, Zhang X-Q, Zhu X-F, Liu Y-F, Li P-F, Ni P-X, Wu M (2012) Complete genome sequence of Pelagibacterium halotolerans B2T. J Bacteriol 194:197–198PubMedCentralPubMedCrossRefGoogle Scholar
  44. Hwang CY, Cho BC (2008) Cucumibacter marinus gen. nov., sp. nov., a marine bacterium in the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 58:1591–1597PubMedCrossRefGoogle Scholar
  45. Hwang CY, Cho KD, Yih W, Cho BC (2009) Maritalea myrionectae gen. nov., sp. nov., isolated from a culture of the marine ciliate Myrionecta rubra. Int J Syst Evol Microbiol 59:609–614PubMedCrossRefGoogle Scholar
  46. Imhoff JF (2005a) Genus VII. Blastochloris Hiraishi 1997, 218VP. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 506–509CrossRefGoogle Scholar
  47. Imhoff JF (2005b) Genus XVI. Rhodomicrobium Duchow and Douglas 1949, 415AL emend. Imhoff, Trüper and Pfennig 1984, 314. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 543–545CrossRefGoogle Scholar
  48. Imhoff JF, Trüper HG, Pfennig N (1984) Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int J Syst Bacteriol 34:340–343CrossRefGoogle Scholar
  49. Irgens RL, Kersters K, Segers P, Gillis M, Staley JT (1991) Aquabacter spiritensis, gen. nov., sp. nov. an aerobic, gas-vacuolate aquatic bacterium. Arch Microbiol 155:137–142CrossRefGoogle Scholar
  50. Ivanova EP, Flavier S, Christen R (2004) Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788PubMedCrossRefGoogle Scholar
  51. Izumi Y, Takizawa M, Tani Y, Yamada H (1982) An obligate methylotrophic Hyphomicrobium strain, identification, growth characteristics and cell composition. J Ferment Technol 60:371–375Google Scholar
  52. Izumi Y, Yoshida T, Miyazaki SS, Mitsunaga T, Ohshiro T, Shimao M, Miyata A, Tanabe T (1993) L-Serine production by a methylotroph and its related enzymes. Appl Microbiol Biotechnol 39:427–432PubMedCrossRefGoogle Scholar
  53. Janssen PH, Harfoot CG (1991) Rhodopseudomonas rosea sp. nov., a new purple nonsulfur bacterium. Int J Syst Bacteriol 41:26–30CrossRefGoogle Scholar
  54. Jenkins C, Rainey FA, Ward NL, Staley JT (2005a) Genus XV. Prosthecomicrobium Staley 1968, 1940AL emend. Staley 1984, 304. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 538–543CrossRefGoogle Scholar
  55. Jenkins C, Stanley PM, Staley JT (2005b) Genus II. Ancalomicrobium Staley 1968, 1940AL. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 494–497CrossRefGoogle Scholar
  56. Jérôme V, Hermann M, Hilbrig F, Freitag R (2007) Development of a fed-batch process for the production of a dye-linked formaldehyde dehydrogenase in Hyphomicrobium zavarzinii ZV 580. Appl Microbiol Biotechnol 77:779–788PubMedCrossRefGoogle Scholar
  57. Johnson RM, Weisrock WP (1969) Hyphomicrobium indicum sp. nov. (Hyphomicrobiaceae Douglas). Int J Syst Bacteriol 19:295–307CrossRefGoogle Scholar
  58. Kaplan RL, Yelton DB, Gerencser VF (1976) Biochemical and biophysical properties of Hyphomicrobium bacteriophage HyΦ30. J Virol 19:899–902PubMedCentralPubMedGoogle Scholar
  59. Keppen OI, Gorlenko VM (1975) Characteristic of a new species of purple budding bacteria containing bacteriochlorophyll b. Mikrobiologiya 44:258–264 (in Russian)Google Scholar
  60. Kizaki N, Yasohara Y, Nagashima N, Hasegawa J (2008) Characterization of novel alcohol dehydrogenase of Devosia riboflavina involved in stereoselective reduction of 3-pyrrolidinone derivatives. J Mol Catal B Enzym 51:73–80CrossRefGoogle Scholar
  61. Kohler-Staub D, Frank S, Leisinger T (1995) Dichloromethane as the sole carbon source for Hyphomicrobium sp. strain DM2 under denitrification conditions. Biodegradation 6:229–235CrossRefGoogle Scholar
  62. Kölbel-Boelke J, Gemers R, Hirsch P (1985) Genome size determinations for 33 strains of budding bacteria. Int J Syst Bacteriol 35:270–273CrossRefGoogle Scholar
  63. Kompantseva EI, Panteleeva EE, Lysenko AM, Imhoff JF, Thiemann B, Mityushina LL (1998) Taxonomic analysis of a group of strains of bacteriochlorophyll b-containing purple bacteria of the genus Blastochloris. Microbiology (Russia) 67:323–329Google Scholar
  64. Kompantseva EI, Imhoff JF, Thiemann B, Panteleeva EE, Akimov VN (2007) Comparative study of the fatty acid composition of some groups of purple nonsulfur bacteria. Microbiology (Russia) 76:541–551Google Scholar
  65. Kryukov VR, Chernykh NA, Lysenko AM (1990) Seliberia hydrogenophila sp. nov., a new species of aerobic hydrogen bacteria isolated from sea water samples. Microbiology (Russia) 59:309–313Google Scholar
  66. Kumar M, Verma M, Lal R (2008) Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 58:861–865PubMedCrossRefGoogle Scholar
  67. Kuykendall LD (2005) Order VI. Rhizobiales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, p 324Google Scholar
  68. Lakshmi KVNS, Sasikala C, Ramana CV (2009) Rhodoplanes pokkaliisoli sp. nov., a phototrophic alphaproteobacterium isolated from a waterlogged brackish paddy soil. Int J Syst Evol Microbiol 59:2153–2157PubMedCrossRefGoogle Scholar
  69. Large PJ, McDougall H (1975) An enzymic method for the microestimation of trimethylamine. Anal Biochem 64:304–310PubMedCrossRefGoogle Scholar
  70. Larsen EI, Sly LI, McEwan AG (1999) Manganese(II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Arch Microbiol 171:257–264CrossRefGoogle Scholar
  71. Lee SD (2007) Devosia subaequoris sp. nov., isolated from beach sediment. Int J Syst Evol Microbiol 57:2212–2215PubMedCrossRefGoogle Scholar
  72. Lee K-B, Liu C-T, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythtobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919PubMedCrossRefGoogle Scholar
  73. Leifson E (1964) Hyphomicrobium neptunium sp. n. Antonie van Leeuwenhoek 30:249–256PubMedCrossRefGoogle Scholar
  74. Liessens J, Germonpré R, Kersters I, Beernaert S, Verstraete W (1993) Removing nitrate with a methylotrophic fluidized bed: microbial water quality. J Am Water Works Assoc 85:155–161Google Scholar
  75. McAnnula C, Woodall CA, McDonald IR, Studer A, Vuilleumier S, Leisinger T, Murrell JC (2001) Chloromethane utilization gene cluster from Hyphomicrobium chloromethanicum strain CM2T and development of functional gene probes to detect halomethane-degrading bacteria. Appl Environ Microbiol 67:307–316CrossRefGoogle Scholar
  76. McDonald IR, Doronina NV, Trotsenko YA, McAnulla C, Murrell JC (2001) Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol 51:119–122PubMedCrossRefGoogle Scholar
  77. Moore RL, Weiner RM, Gebers R (1984) Genus Hyphomonas Pongratz 1957 nom. rev. emend., Hyphomonas polymorpha Pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (Leifson 1964) comb. nov. emend. (Hyphomicrobium neptunium). Int J Syst Bacteriol 34:71–73CrossRefGoogle Scholar
  78. Murakami-Nitta T, Kirimura K, Kino K (2003) Degradation of dimethyl sulfoxide by the immobilized cells of Hyphomicrobium denitrificans WU-K217. Biochem Eng J 15:199–204CrossRefGoogle Scholar
  79. Nakagawa Y, Sakane T, Yokota A (1996) Transfer of “Pseudomonas riboflavina” (Foster 1944), a gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. Int J Syst Bacteriol 46:16–22PubMedCrossRefGoogle Scholar
  80. Nakagawa Y, Sakane T, Yokota A (2005) Genus VIII. Devosia Nakagawa, Sakane and Yokota 1996, 20VP. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 509–512CrossRefGoogle Scholar
  81. Oertli GE, Jenkins C, Ward N, Rainey F, Stackebrandt E, Staley JT (2006) The genera Prosthecomicrobium and Ancalomicrobium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 5. Springer, New York, pp 65–71Google Scholar
  82. Okamura K, Hisada T, Hiraishi A (2007) Characterization of the thermotolerant purple nonsulfur bacteria isolated from hot-spring Chloroflexus mats and the reclassification of “Rhodopseudomonas cryptolactis” Stadtwald-Demchick et al. 1990 as Rhodopslanes cryptolactis nom. rev., comb. nov. J Gen Appl Microbiol 53:357–361PubMedCrossRefGoogle Scholar
  83. Okamura K, Kanbe T, Hiraishi A (2009) Rhodoplanes serenus sp. nov., a purple non-sulfur bacterium isolated from pond water. Int J Syst Evol Microbiol 59:531–535PubMedCrossRefGoogle Scholar
  84. Poindexter JS (2006) Dimorphic prosthecate bacteria: the genera Caulobacter, Asticcacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas and Thiodendron. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 5. Springer, New York, pp 72–90Google Scholar
  85. Pol A, Op den Camp HJM, Mees SGM, Kersten MASH, van der Drift C (1994) Isolation of a dimethylsulfide-utilizing Hyphomicrobium species and its application in biofiltration of polluted air. Biodegradation 5:105–112PubMedCrossRefGoogle Scholar
  86. Potts LE, Dow CS, Avery RJ (1980) The genome of Rhodomicrobium vannielii, a polymorphic prosthecate bacterium. J Gen Microbiol 117:501–507Google Scholar
  87. Preissner WC, Maier S, Völker H, Hirsch P (1988) Isolation and partial characterization of a bacteriophage active on Hyphomicrobium sp. WI-926. Can J Microbiol 34:101–106PubMedCrossRefGoogle Scholar
  88. Rainey FA, Wiegel J (1996) 16S ribosomal DNA sequence analysis confirms the close relationship between the genera Xanthobacter, Azorhizobium, and Aquabacter and reveals a lack of phylogenetic coherence between Xanthobacter species. Int J Syst Bacteriol 46:607–610CrossRefGoogle Scholar
  89. Rainey FA, Ward-Rainey N, Gliesche CG, Stackebrandt E (1998) Phylogenetic analysis and intrageneric structure of the genus Hyphomicrobium and the related genus Filomicrobium. Int J Syst Bacteriol 48:635–639PubMedCrossRefGoogle Scholar
  90. Ramana VV, Kapoor S, Shobha E, Ramprasad EVV, Sasikala C, Ramana CV (2011) Blastochloris gulmargensis sp. nov., isolated from an epilithic phototrophic biofilm. Int J Syst Evol Microbiol 61:1811–1816PubMedCrossRefGoogle Scholar
  91. Rivas R, Velázquez E, Willems A, Vizcaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martínez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) Druce. Appl Environ Microbiol 68:5217–5222PubMedCentralPubMedCrossRefGoogle Scholar
  92. Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martínez-Molina E, Gillis M, Velázquez E (2003) Description of Devosia neptuniae sp. nov. that nodulates and fxes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53PubMedCrossRefGoogle Scholar
  93. Ryu SH, Chung BS, Le NT, Jang HH, Yun P-Y, Park W, Jeon CO (2008) Devosia geojensis sp. nov., isolated from diesel-contaminated soil in Korea. Int J Syst Evol Microbiol 58:633–636PubMedCrossRefGoogle Scholar
  94. Schär H-P, Ghisalba O (1985) Hyphomicrobium bacterial electrode for determination of monomethyl sulfate. Biotechnol Bioeng 27:897–901PubMedCrossRefGoogle Scholar
  95. Schlesner H (1987) Filomicrobium fusiforme gen. nov., sp. nov., a slender budding, hyphal bacterium from brackish water. Syst Appl Microbiol 10:63–67CrossRefGoogle Scholar
  96. Schlesner H (2005) Filomicrobium Schlesner 1988, 220VP (Effective publication: Schlesner 1987, 65). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 518–520CrossRefGoogle Scholar
  97. Schlesner H, Kath T, Fischer A, Stackebrandt E (1989) Studies on the phylogenetic position of Prosthecomicrobium pneumaticum, Prosthecomicrobium enhydrum, Ancalomicrobium adetum, and various Prosthecomicrobium-like bacteria. Syst Appl Microbiol 12:150–155CrossRefGoogle Scholar
  98. Schmidt J, Kelly SV (2005) Genus XVIII. Seliberia Aristovskaya and Parinkina 1963, 56AL. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 549–554CrossRefGoogle Scholar
  99. Schmidt JM, Swafford JR (2006) The genus Seliberia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 5. Springer, New York, pp 585–589Google Scholar
  100. Semenov A, Staley JT (1992) Ecology of polyprosthecate bacteria. In: Marshall, KC (ed) Advances in microbial ecology, vol 12. Plenum Publishing Company, New York, pp 339–382Google Scholar
  101. Sittig M, Hirsch P (1992) Chemotaxonomic investigation of budding and/or hyphal bacteria. Syst Appl Microbiol 15:209–222CrossRefGoogle Scholar
  102. Sittig M, Schlessner H (1993) Chemotaxonomic investigation of various prosthecate and/or budding bacteria. Syst Appl Microbiol 16:92–103CrossRefGoogle Scholar
  103. Sly LI, Arunpairojana V (1987) Isolation of manganese-oxidizing Pedomicrobium cultures from water by micromanipulation. J Microbiol Meth 6:177–182CrossRefGoogle Scholar
  104. Stadtwald-Demchick R, Turner FR, Gest H (1990) Rhodopseudomonas cryptolactis sp. nov., a new thermotolerant species of budding phototrophic bacteria. FEMS Microbiol Lett 71:117–122CrossRefGoogle Scholar
  105. Staley JT (1968) Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942PubMedCentralPubMedGoogle Scholar
  106. Staley JT (1984) Prosthecomicrobium hirschii, a new species in a redefined genus. Int J Syst Bacteriol 34:304–308CrossRefGoogle Scholar
  107. Staley JT (2005) Genus V. Aquabacter Irgens, Kersters, Segers, Gillis and Staley 1993, 864VP (Effective publication: Irgens, Kersters, Segers, Gillis and Staley 1991, 141). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 504–505CrossRefGoogle Scholar
  108. Stanley PM, Ordal EJ, Staley JT (1979) High numbers of prosthecate bacteria in pulp-mill waste aeration lagoons. Appl Environ Microbiol 37:1007–1011PubMedCentralPubMedGoogle Scholar
  109. Stutzer A, Hartleb R (1899) Untersuchungen über die bei der Bildung von Salpeter beobachteten Mikroorganismen. Mitteilungen des Landwirtschaftlichen Institutes der Kaiserlichen Universität Breslau 1:75–100Google Scholar
  110. Suylen GMH, Kuenen JG (1986) Chemostat enrichment and isolation of Hyphomicrobium EG, a dimethyl-sulphide oxidizing methylotroph and reevaluation of Thiobacillus MS1. Antonie van Leeuwenhoek 52:281–293PubMedCrossRefGoogle Scholar
  111. Takada N (1975) A new species of Hyphomicrobium. In: Terui G (ed) Proceedings of the International Symposium on Microbial Growth on C1 Compounds, The Society of Fermentation Technology. Suita, Japan, pp 29–33Google Scholar
  112. Uebayasi M, Tomizuka N, Kamibayashi A, Tonomura K (1981) Autotrophic growth of a Hyphomicrobium sp. and its hydrogenase activity. Agric Biol Chem 45:1783–1790CrossRefGoogle Scholar
  113. Urakami T, Komagata K (1986) Occurrence of isoprenoid compounds in Gram-negative methanol-, methane-, and methylamine-utilizing bacteria. J Gen Appl Microbiol 32:317–341CrossRefGoogle Scholar
  114. Urakami T, Sasaki J, Suzuki K-I, Komagata K (1995) Characterization and description of Hyphomicrobium denitrificans sp. nov. Int J Syst Bacteriol 45:528–532CrossRefGoogle Scholar
  115. Vannini C, Rosati G, Verni F, Petroni G (2004) Identification of the bacterial endosymbionts of the marine ciliate Euplotes magnicirratus (Ciliophora, Hypotrichia) and proposal of ‘Candidatus Devosia euplotis’. Int J Syst Evol Microbiol 54:1151–1156PubMedCrossRefGoogle Scholar
  116. Vanparys B, Heylen K, Lebbe L, De Vos P (2005) Devosia limi sp. nov., isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 55:1997–2000PubMedCrossRefGoogle Scholar
  117. Vasil’eva LV, Lafitskaya TN, Namsaraev BB (1979) Angulomicrobium tetraedrale, a new genus of budding bacteria with radial cell symmetry. Microbiology (Russia) 48:843–849Google Scholar
  118. Vasil’eva LV, Semenov AM, Giniyatullina AI (1991) A new species of soil bacteria of the genus Prosthecomicrobium. Microbiology (Russia) 60:243–250Google Scholar
  119. Vasilyeva LV (2005) Genus IV. Angulomicrobium Vasilyeva, Lafitskaya and Namsaraev 1986, 354VP (Effective publication: Vasilyeva, Lafitskaya and Namsaraev 1979, 1037). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 501–504CrossRefGoogle Scholar
  120. Verkhovtseva NV, Glebova IN, Morozov VV (1988) Accumulation of iron by Seliberia stellata under various culture conditions. Microbiology (Russia) 57:20–24Google Scholar
  121. Verma M, Kumar M, Dadhwal M, Kaur J, Lal R (2009) Devosia albogilva sp. nov. and Devosia crocina sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 59:795–799PubMedCrossRefGoogle Scholar
  122. Voelz H, Gerencser VF, Kaplan R (1971) Bacteriophage replication in Hyphomicrobium. Virology 44:622–630PubMedCrossRefGoogle Scholar
  123. Vuilleumier S, Nadalig T, Farhan Ul Haque M, Magdelenat G, Lajus A, Roselli S, Muller EEL, Gruffaz C, Barbe V, Médigue C, Bringel F (2011) Complete genome sequence of the chloromethane-degrading Hyphomicrobium sp. strain MC1. J Bacteriol 193:5035–5036PubMedCentralPubMedCrossRefGoogle Scholar
  124. Wang L, Wen Y, Guo X, Wang G, Li S, Jiang J (2010) Degradation of methamidophos by Hyphomicrobium species MAP-1 and the biochemical degradation pathway. Biodegradation 21:513–523PubMedCrossRefGoogle Scholar
  125. Whittenbury R, Dow CS (1977) Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria. Bacteriol Rev 41:754–808PubMedCentralPubMedGoogle Scholar
  126. Wong K, Gill TA (1987) Enzymatic determination of trimethylamine and its relationship to fish quality. J Food Sci 52:1–3CrossRefGoogle Scholar
  127. Wright GE, Madigan MT (1991) Photocatabolism of aromatic compounds by the phototrophic purple bacterium Rhodomicrobium vannielii. Appl Environ Microbiol 57:2069–2073PubMedCentralPubMedGoogle Scholar
  128. Wu X-L, Yu S-L, Gu J, Zhao G-F, Chi C-Q (2009) Filomicrobium insigne sp. nov., isolated from an oil-polluted saline soil. Int J Syst Evol Microbiol 59:300–305PubMedCrossRefGoogle Scholar
  129. Xie C-H, Yokota A (2004) Transfer of Hyphomicrobium indicum to the genus Photobacterium as Photobacterium indicum comb. nov. Int J Syst Evol Microbiol 54:2113–2116PubMedCrossRefGoogle Scholar
  130. Xu H-Y, Chen L-P, Fu S-Z, Fan H-X, Zhou Y-G, Liu S-J, Liu Z-P (2009) Zhangella mobilis gen. nov., sp. nov., a new member of the family Hyphomicrobiaceae isolated from coastal seawater. Int J Syst Evol Microbiol 59:2297–2301PubMedCrossRefGoogle Scholar
  131. Xu X-W, Huo Y-Y, Wang C-S, Oren A, Cui H-L, Vedler E, Wu M (2011) Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 61:1817–1822PubMedCrossRefGoogle Scholar
  132. Yamada H, Miyazaki SS, Izumi Y (1987) L-Serine production by a glycine-resistant mutant of methylotrophic Hyphomicrobium methylovorum. Agric Biol Chem 50:17–21CrossRefGoogle Scholar
  133. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequences. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  134. Yee B, Oertli GE, Fuerst JA, Staley JT (2010) Reclassification of the polyphyletic genus Prosthecomicrobium to form two novel genera, Vasilyevaea gen. nov. and Bauldia gen. nov. with four new combinations: Vasilyevaea enhydra comb. nov., Vasilyevaea mishustinii comb. nov., Bauldia consociata comb. nov. and Bauldia litoralis comb. nov. Int J Syst Evol Microbiol 60:2960–2966PubMedCentralPubMedCrossRefGoogle Scholar
  135. Yelton DB, Gerencser VF, Voelz HG (1979) Isolation and preliminary characterization of three bacteriophages which adsorb specifically to the developing daughter cells of Hyphomicrobium. J Gen Virol 43:29–38CrossRefGoogle Scholar
  136. Yoo S-H, Weon H-Y, Kim B-Y, Hong S-B, Kwon S-W, Cho Y-H, Go S-J, Stackebrandt E (2006) Devosia soli sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56:2689–2692PubMedCrossRefGoogle Scholar
  137. Yoon J-H, Kang S-J, Park S, Oh T-K (2007) Devosia insulae sp. nov., isolated from soil, and emended description of the genus Devosia. Int J Syst Evol Microbiol 57:1310–1314PubMedCrossRefGoogle Scholar
  138. Yoshida T, Mitsunaga T, Yamada H, Izumi Y (1993) Enzymatic assay for L-serine and glyoxylate involving the enzymes in the serine pathway of a methylotroph. Anal Biochem 208:296–299PubMedCrossRefGoogle Scholar
  139. Zengler K, Heider J, Rosselló-Mora R, Widdel F (1999) Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch Microbiol 172:204–212PubMedCrossRefGoogle Scholar
  140. Zhang LJ, Wang GQ, Yu HL, Wang J, Wang SW, Jia Y, Yu YY, Xu JG (2011) First report of human infection by Rhodoplanes sp., Alphaproteobacteria in China. Asian Pac J Trop Med 4:248–250PubMedCrossRefGoogle Scholar
  141. Zhang D-C, Redzic M, Liu H-C, Zhou Y-G, Schinner F, Margesin R (2012) Devosia psychrophila sp. nov. and Devosia glacialis sp. nov., from alpine glacier cryoconite, and an emended description of the genus Devosia. Int J Syst Evol Microbiol 62:710–715PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Plant and Environmental SciencesThe Institute of Life Sciences, The Hebrew University of JerusalemJerusalemIsrael
  2. 2.Laboratory of Marine Ecosystem and BiogeochemistryState Oceanic AdministrationHangzhouPeople’s Republic of China
  3. 3.Second Institute of OceanographyState Oceanic AdministrationHangzhouPeople’s Republic of China

Personalised recommendations