The Family Hydrogenophilaceae

Reference work entry

Abstract

Hydrogenophilaceae, a family within the order Hydrogenophilales, comprises the genera Thiobacillus, Hydrogenophilus, Petrobacter, Tepidiphilus, and Sulfuricella. Members of the family are all Gram negative, rod shaped, and non-sporulating; the reported biochemical characteristics of individual species are highly variable concerning various morphological and chemotaxonomic properties. Most members of the family are chemolithotrophic or mixotrophic using various inorganic electron donors such as reduced sulfuric compounds or hydrogen. Members of the family are either mesophilic or moderately thermophilic and have been isolated from various environments, e.g., freshwater, aerobic digesters on water treatment sludge, and hot springs. No strains have been reported as pathogens.

Keywords

Rice Straw Reduce Sulfur Compound Polar Flagellum Water Treatment Sludge Moderate Thermophile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aroca G, Urrutia H, Nunez D, Oyarzun P, Araniciba A, Guerrero K (2007) Comparison of the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans. Electron J Biotechnol 10:514–520CrossRefGoogle Scholar
  2. Battaglia-Brunet F, El Achbouni H, Quemeneur M, Hallberg KB, Kelly DB, Joulian C (2011) Proposal that the arsenite-oxidizing organisms Thiomonas cuprina and „Thiomonas arsenivorans“ be reclassified as strains of Thiomonas delicata. Int J Syst Evol Microbiol 61:2816–2821PubMedCrossRefGoogle Scholar
  3. Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardsson PM, Coleman MA, Wood AP, Kelly DP (2006a) The genome sequence of the obligately chemolithotrophic, facultative anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188:1473–1488PubMedCentralPubMedCrossRefGoogle Scholar
  4. Beller HR, Letain TE, Chakicherla A, Kane SR, Legler TC, Coleman MA (2006b) Whole-genome transcriptional analysis of chemolithotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions. J Bacteriol 188:7005–7015PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bejerinck MW (1904) Ueber die bakterien, welche sich im dunkeln mit kohlensäure als kohlenstoffquelle ernähern können. Centralbl Bakeeriol Parasitenkd Infektionskr Hyg. Abt. II, 11:592–599Google Scholar
  6. Boden R, Cleland D, Green PN, Katayama Y, Uchino Y, Murrell JC, Kelly DP (2012) Phylogenetic assessment of culture collection strains of Thiobacillus thioparus, and definitive 16S rRNA gene sequence for T. thioparus, T. denitrificans and Halothiobacillus neapolitanus. Arch Microbiol 194:187–195PubMedCrossRefGoogle Scholar
  7. Brandl H (2008) Microbial leaching of metals. In: Rehm HJ, Reeds G (eds) Biotechnology: special processes, vol 10, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim, pp 192–217Google Scholar
  8. Chen S, Qiu GZ, Qin WQ, Lan ZY (2008) Bioleaching of sphalerite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans cultured in 9 K medium modified with pyrrhotite. J Cent Sout Univ Technol 15:503–507CrossRefGoogle Scholar
  9. Drobner E, Huber H, Rachel R, Stetter KO (1992) Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer. Arch Microbiol 157:213–217PubMedCrossRefGoogle Scholar
  10. Dul’tseva NM, Tourova TP, Spiridonova EM, Kolganova TV, Osipov GA, Gorlenko VM (2006) Thiobacillus sajanensis sp. nov., a new obligately autotrophic sulfur-oxidizing bacterium isolated from Khoito-Gol hydrogen-sulfide springs, Buryatia. Microbiology 75:582–592CrossRefGoogle Scholar
  11. Ehrlich HL, Brierley CL (1990) Microbial mineral recovery. McGraw-Hill, New York, p 454Google Scholar
  12. Garrity GM, Bell JA, Lilburn T (2005) Family I. Hydrogenophilaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey‘s manual of systematic bacteriology, 2nd edn, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). Springer, New York, p 770Google Scholar
  13. Gevertz D, Telang AJ, Voordouw G, Jenneman GE (2000) Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66:2491–2501PubMedCentralPubMedCrossRefGoogle Scholar
  14. Goto E, Kodama T, Minoda Y (1977) Isolation and culture conditions of thermophilic hydrogen bacteria. Agric Biol Chem 41:685–690CrossRefGoogle Scholar
  15. Goto E, Kodama T, Minoda Y (1978) Growth and taxonomy of thermophilic hydrogen bacteria. Agric Biol Chem 42:1305–1308CrossRefGoogle Scholar
  16. Hayashi NR, Ishida T, Yokota A, Kodama T, Igarashi Y (1999) Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithotrophic, hydrogen-oxidizing bacterium. Int J Syst Evol Microbiol 49:783–786Google Scholar
  17. Hayashi NR, Igarashi Y (2002) ATP binding and hydrolysis and autophosphorylation of CbbQ encoded by the gene located downstream of RubisCO genes. Biochem Biophys Res Commun 290:1434–1440PubMedCrossRefGoogle Scholar
  18. Hirashi A, Imhoff JF (2005) Genus II. Acidiphilium Harrison 1981. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey‘s manual of systematic bacteriology, vol 2 part C, 2nd edn. Springer, New York, pp 54–62CrossRefGoogle Scholar
  19. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology 3b, pp 117–132. Academic Press Inc., New YorkGoogle Scholar
  20. Kanagawa T, Kelly DP (1986) Breakdown of dimethyl sulphide by mixed cultures and by Thiobacillus thioparus. FEMS Microbiol Lett 34:13–19CrossRefGoogle Scholar
  21. Kanagawa T, Mikami E (1989) Removal of methanethiol, dimethyl sulphide, dimethyl disulphide, and hydrogen sulphide from contaminated air by Thiobacillus thioparus TK-M. Appl Environ Microbiol 55:555–558PubMedCentralPubMedGoogle Scholar
  22. Katayama Y, Kuraishi H (1978) Characteristics of Thiobacillus thioparus and its thiocyanate assimilation. Can J Microbiol 24:804–810PubMedCrossRefGoogle Scholar
  23. Katayama Y, Uchino Y, Wood AP, Kelly DP (2006) Confirmation of Thiomonas delicata (formerly Thiobacillus delicatus) as a distinct species of the genus Thiomonas Moreira and Amils 1997 with comments on some species currently assigned to the genus. Int J Syst Evol Microbiol 56:2553–2557PubMedCrossRefGoogle Scholar
  24. Kellerman C, Griebler C (2009) Thiobacillus thiophilus sp. nov., a chemolithotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. Int J Syst Evol Microbiol 59:583–588CrossRefGoogle Scholar
  25. Kellermann C, Selesi D, Lee N, Hügler M, Esperschütz J, Hartmann A, Griebler C (2012) Microbial CO2 fixation potential in a tar-oil-contaminated porous aquifer. FEMS Microbiol Ecol 81:172–187PubMedCrossRefGoogle Scholar
  26. Kelly DP (1985) Metallgewinnung aus Erzen durch bakerielles Auslagen: gegenwartiger Stand und Zukunftige Aufgaben. In: Kuster E (ed) Mikrobiologie und Umweltschutz. Wissenschaftliche Buchgesellschaft, Darmstadt, pp 161–182Google Scholar
  27. Kelly DP, McDonald IR, Wood AP (2000) Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen. nov., comb. nov., in the α subclass of the Proteobacteria. Int J Syst Evol Microbiol 50:1797–1802PubMedCrossRefGoogle Scholar
  28. Kelly DP, Wood AP, Stackebrandt E (2005) Genus II Thiobacillus Beijerinck 1904. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2 part C, 2nd edn. Springer, New York, pp 764–769CrossRefGoogle Scholar
  29. Kelly DP, Uchino Y, Huber H, Amils R, Wood AP (2007) Reassessment of the phylogenetic relationship of Thiomonas cuprina. Int J Syst Evol Microbiol 56:2720–2724CrossRefGoogle Scholar
  30. Kelly DP, Wood AP (1998) Microbes in the sulfur cycle. In: Burlage RS, Atlas R, Stahl D, Geese G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, New York, pp 31–57Google Scholar
  31. Kelly DP, Wood AP (2000a) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516PubMedCrossRefGoogle Scholar
  32. Kelly DP, Wood AP (2000b) Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the β-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain. Int J Syst Evol Microbiol 50:547–550PubMedCrossRefGoogle Scholar
  33. Kelly DP (2010) Global consequences of the microbial production and consumption of inorganic and organic sulfur compounds. In: Timmins KN (ed) Microbiology of hydrocarbons, oils, lipids, chapter 53. Springer, Heidelberg, pp 3087–3095CrossRefGoogle Scholar
  34. Kim HS, Kim YJ, Chung JS, Xie Q (2002) Long-term operation of a biofilter for simultaneous removal of H2S and NH3. Air Waste Manage 52:1389–1398CrossRefGoogle Scholar
  35. Kleerebezem R, Mendez R (2002) Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Water Sci Technol 45:349–356PubMedGoogle Scholar
  36. Kojima H, Fukui M (2010) Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 60:2826–2866CrossRefGoogle Scholar
  37. Loo C-Y, Sudesh K (2007) Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malaysian Polymer Journal 2:31–57Google Scholar
  38. Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek 77:103–116PubMedCrossRefGoogle Scholar
  39. Manaia CM, Moore ERB (2002) Pseudomonas thermotolerans ap. nov., a thermotolerant species of the genus Pseudomonas sensu stricto. Int J Syst Evol Microbiol 52:2203–2209PubMedGoogle Scholar
  40. Manaia CM, Nogales B, Nunes OC (2003) Tepidiphilus margaritifer gen. nov., sp. nov., isolated from a thermophilic aerobic digester. Int J Syst Evol Microbiol 53:1405–1410PubMedCrossRefGoogle Scholar
  41. Matin A, Rittenberg SC (1971) Enzymes of carbohydrate metabolism in Thiobacillus species. J Bacteriol 107:179–186PubMedCentralPubMedGoogle Scholar
  42. Miykae D, Ichiki S, Tanabe M, Oda T, Kuroda H, Nishihara H, Sambongi Y (2007) Thiosulfate oxidation by a moderately thermophilic hydrogen-oxidizing bacterium, Hydrogenophilus thermoluteolus. Arch Microbiol 188:199–204CrossRefGoogle Scholar
  43. Nakamura S, Ichiki S, Takashima H, Uchiyama S, Hasegawa J, Kobayashi Y, Sambongi Y, Ohkubo T (2006) Structure of cytochrome c552 from a moderate thermophilic bacterium, Hydrogenophilus thermoluteolus: comparative study on the thermostability of cytochrome c. Biochemistry 45:6115–6123PubMedCrossRefGoogle Scholar
  44. Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269CrossRefGoogle Scholar
  45. Oyarzún P, Arancibia F, Canales C, Aroca GE (2003) Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus. Process Biochem 39:165–170CrossRefGoogle Scholar
  46. Ramirez M, Gomez JM, Aroca G, Cantero D (2009) Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam. Bioresour Technol 100:4989–4995PubMedCrossRefGoogle Scholar
  47. Rawlings DE (2002) Heavy metal mining using microbes. Ann Rev Micorbiol 56:65–91CrossRefGoogle Scholar
  48. Robertsson LA, Kuenen JG (2006) The genus Thiobacillus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes. Springer, Berlin, pp 812–827CrossRefGoogle Scholar
  49. Salinas MB, Fardeau M-L, Cayol J-L, Casalot L, Patel BKC, Thomas P, Garcia J-L, Ollivier B (2004) Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from an Australian oil well. Int J Syst Evol Microbiol 54:645–649PubMedCrossRefGoogle Scholar
  50. Soreanu G, Al-Jamal M, Béland M (2005) Biogas treatment using an anaerobic biosystem. In: Proceedings of the 3rd Canadian organic residuals and biosolids management conference. Calgary, pp 502–513Google Scholar
  51. Starkey RL (1934) Cultivation of organisms concerned in the oxidation of thiosulfate. J Bacteriol 28:365–386PubMedCentralPubMedGoogle Scholar
  52. Stöhr R, Waberski A, Liesack W, Völker H, Wehmeyer U, Thomm M (2001) Hydrogenophilus hirshii sp. nov., a novel thermophilic hydrogen-oxidizing β-proteobacterium isolated from Yellowstone National Park. Int J Syst Evol Microbiol 51:481–488PubMedCrossRefGoogle Scholar
  53. Sublette KL, Sylvester ND (1987) Oxidation of hydrogen sulfide by Thiobacillus denitrificans: desulfurization of natural gas. Biotechnol Bioeng 29:249–257PubMedCrossRefGoogle Scholar
  54. Sublette KL, Kolhatkar R, Raterman K (1998) Technological aspects of the microbial treatment of sulfide-rich wastewaters: a case study. Biodegradation 9:259–271PubMedCrossRefGoogle Scholar
  55. Syed M, Soreanu G, Falletta P, Béland M (2006) Removal of hydrogen sulfide from gas streams using biological processes – A review. Can Biosyst Eng 48:1–14Google Scholar
  56. Taga N, Tanaka K, Ishizaki A (1997) Effects of rheological conditions in the culture medium on the autotrophic production of poly-(D-3-hydroxybutyric acid) in air-lift fermenter. J Fac Agricult Kyushu Univ 40:197–207Google Scholar
  57. Tang Y-Q, Matsui T, Morimura S, Wu XL, Kida K (2008) Effect of temperature on microbial community of a glucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation. J Biosci Bioeng 106:180–187PubMedCrossRefGoogle Scholar
  58. Vesteinsdottir H, Reynisdottir DB, Orlygsson J (2011) Hydrogenophilus islandicus sp. nov., a thermophilic hydrogen-oxidizing bacterium isolated from an Icelandic hot spring. Int J Syst Evol Microbiol 61:290–294PubMedCrossRefGoogle Scholar
  59. Vishniac W, Santer M (1957) The thiobacilli. Bacteriol Rev 21:195–213PubMedCentralPubMedGoogle Scholar
  60. Voodouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62:1623–1629Google Scholar
  61. Wang WD, Yan L, Cui ZJ, Gao YM, Wang YJ, Jing RY (2011) Characterization of a microbial consortium capable of degrading lignocellulose. Bioresource Tech 102:9321–9324CrossRefGoogle Scholar
  62. Widdel F, Bak F (1992) Gram-negative mesotrophic sulfate reducing bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes. Springer, Verlag, New YorkGoogle Scholar
  63. Wood AP, Kelly DP (1988) Isolation and physiological characterization of Thiobacillus aquaesulis sp. nov., a novel facultative autotrophic moderate thermophile. Arch Microbiol 149:339–343CrossRefGoogle Scholar
  64. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living-Tree Project based on 16S and 23S rRNA sequence analyses. System Appl Microbiol 33:291–299CrossRefGoogle Scholar
  65. Zhang L, De Schryver P, De Gusseme B, De Muynck W, Boon N, Verstraete W (2008) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Res 42:1–12PubMedCrossRefGoogle Scholar
  66. Zhang ZY, Lei ZF, He XY, Zhang ZY, Yang YN (2009) Nitrate removal by Thiobacillus denitrificans immobilized on poly(vinyl alcohol) carriers. J. Hazard Mater 163:1090–1095CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.University of AkureyriAkureyriIceland
  2. 2.Prokazyme ehfReykjavikIceland

Personalised recommendations