Advertisement

The Family Comamonadaceae

  • Anne WillemsEmail author
Reference work entry

Abstract

The family Comamonadaceae is a large and diverse bacterial family belonging to the order Burkholderiales. It is regularly enlarged with new genera and species and currently comprises over 100 species in the following 29 genera: Acidovorax, Albidiferax, Alicycliphilus, Brachymonas, Caenimonas, Comamonas, Curvibacter, Delftia, Diaphorobacter, Extensimonas, Giesbergeria, Hydrogenophaga, Hylemonella, Lampropedia, Limnohabitans, Macromonas, Malikia, Ottowia, Polaromonas, Pseudacidovorax, Pseudorhodoferax, Ramlibacter, Rhodoferax, Simplicispira, Tepidicella, Variovorax, Verminephrobacter, Xenophilus, and Xylophilus. These genera form a phylogenetic cluster with a relative level of 16S rRNA gene sequence similarity of 93–97 %, yet harbor a remarkable phenotypic diversity that includes aerobic organotrophs, anaerobic denitrifiers and Fe3+-reducing bacteria, hydrogen oxidizers, photoautotrophic and photoheterotrophic bacteria, and fermentative bacteria. Most are environmental bacteria from water and soil habitats; however, some Comamonadaceae are also pathogens, and others have been described from earthworms, rumen fluid, and human clinical samples. Most are mesophiles, although a few have been found in Antarctic habitats and some in hot springs.

References

  1. Andersson S, Dalhammar G, Kuttuva Rajarao G (2011) Influence of microbial interactions and EPS/polysaccharide composition on nutrient removal activity in biofilms formed by strains found in wastewater treatment systems. Microbiol Res 166:449–457Google Scholar
  2. Bathe S (2004) Conjugal transfer of plasmid pNB2 to activated sludge bacteria leads to 3-chloroaniline degradation in enrichment cultures. Lett Appl Microbiol 38:527–531PubMedCrossRefGoogle Scholar
  3. Blümel S, Busse HJ, Stolz A, Kämpfer P (2001) Xenophilus azovorans gen. nov., sp. nov., a soil bacterium that is able to degrade azo dyes of the Orange II type. Int J Syst Evol Microbiol 51:1831–1837PubMedCrossRefGoogle Scholar
  4. Brown SD, Utturkar SM, Klingeman DM, Johnson CM, Martin SL, Land ML, Lu TY, Schadt CW, Doktycz MJ, Pelletier DA (2012) Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides. J Bacteriol 194:5991–5993PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bruland N, Bathe S, Willems A, Steinbüchel A (2009) Pseudorhodoferax soli gen. nov., sp. nov. and Pseudorhodoferax caeni sp. nov., two members of the class Betaproteobacteria belonging to the family Comamonadaceae. Int J Syst Evol Microbiol 59:2702–2707PubMedCrossRefGoogle Scholar
  6. Byrne-Bailey KG, Weber KA, Chair AH, Bose S, Knox T, Spanbauer TL, Chertkov O, Coates JD (2010) Completed genome sequence of the anaerobic iron-oxidizing bacterium Acidovorax ebreus strain TPSY. J Bacteriol 192:1475–1476PubMedCentralPubMedCrossRefGoogle Scholar
  7. Canale-Parola E, Rosenthal SL, Kupfer DG (1966) Morphological and physiological characteristics of Spirillum gracile sp. n. Antonie van Leeuwenhoek. J Microbiol Serol 32:113–124Google Scholar
  8. Castagnola E, Conte M, Venzano P, Garaventa A, Viscoli C, Barretta MA, Pescetto L, Tasso L, Nantron M, Milanaccio C, Giacchino R (1997) Broviac catheter-related bacteraemias due to unusual pathogens in children with cancer: case reports with literature review. J Infect 34:215–218PubMedCrossRefGoogle Scholar
  9. Chang YH, Han J, Chun J, Lee KC, Rhee MS, Kim YB, Bae KS (2002) Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int J Syst Evol Microbiol 52:377–381PubMedCrossRefGoogle Scholar
  10. Chen WM, Lin YS, Sheu DS, Sheu SY (2012) Delftia litopenaei sp. nov., a poly-beta-hydroxybutyrate-accumulating bacterium isolated from a freshwater shrimp culture pond. Int J Syst Evol Microbiol 62:2315–2321PubMedCrossRefGoogle Scholar
  11. Chen WM, Lin YS, Young CC, Sheu SY (2013) Pseudorhodoferax aquiterrae sp. nov., isolated from groundwater. Int J Syst Evol Microbiol 63:169–174PubMedCrossRefGoogle Scholar
  12. Chitpirom K, Tanasupawat S, Akaracharanya A, Leepepatpiboon N, Prange A, Kim KW, Chul Lee K, Lee JS (2012) Comamonas terrae sp. nov., an arsenite-oxidizing bacterium isolated from agricultural soil in Thailand. J Gen Appl Microbiol 58:245–251CrossRefGoogle Scholar
  13. Choi JH, Kim MS, Roh SW, Bae JW (2010) Acidovorax soli sp. nov., isolated from landfill soil. Int J Syst Evol Microbiol 60:2715–2718PubMedCrossRefGoogle Scholar
  14. Chou JH, Sheu SY, Lin KY, Chen WM, Arun AB, Young CC (2007) Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus. Int J Syst Evol Microbiol 57:887–891PubMedCrossRefGoogle Scholar
  15. Chung BS, Ryu SH, Park M, Jeon Y, Chung YR, Jeon CO (2007) Hydrogenophaga caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 57:1126–1130PubMedCrossRefGoogle Scholar
  16. Contzen M, Moore ERB, Blümel S, Stolz A, Kämpfer P (2000) Hydrogenophaga intermedia sp. nov., a 4-aminobenzenesulfonate degrading organism. Syst Appl Microbiol 23:487–493PubMedCrossRefGoogle Scholar
  17. Cooper GR, Staples ED, Iczkowski KA, Clancy CJ (2005) Comamonas (Pseudomonas) testosteroni endocarditis. Cardiovasc Pathol 14:145–149PubMedCrossRefGoogle Scholar
  18. Dangel W, Tschech A, Fuchs G (1988) Anaerobic metabolism of cyclohexanol by denitrifying bacteria. Arch Microbiol 150:358–362PubMedCrossRefGoogle Scholar
  19. Darcy JL, Lynch RC, King AJ, Robeson MS, Schmidt SK (2011) Global distribution of Polaromonas phylotypes – evidence for a highly successful dispersal capacity. PLoS ONE 6:e23742PubMedCentralPubMedCrossRefGoogle Scholar
  20. Davidson SK, Stahl DA (2006) Transmission of nephridial bacteria of the earthworm Eisenia fetida. Appl Environ Microbiol 72:769–775PubMedCentralPubMedCrossRefGoogle Scholar
  21. Davidson SK, Stahl DA (2008) Selective recruitment of bacteria during embryogenesis of an earthworm. ISME J 2:510–518PubMedCrossRefGoogle Scholar
  22. Davis GHG, Park RWA (1962) A taxonomic study of certain bacteria currently classified as Vibrio species. J Gen Microbiol 27:101–119Google Scholar
  23. Davis DH, Stanier RY, Doudoroff M, Mandel M (1970) Taxonomic studies on some Gram negative polarly flagellated “hydrogen bacteria” and related species. Arch Mikrobiol 70:1–13PubMedCrossRefGoogle Scholar
  24. Degryse E, Glansdorff N, Pierard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117:189–196PubMedCrossRefGoogle Scholar
  25. Delafield FP, Doudoroff M, Palleroni NJ, Lusty CJ, Contopoulos R (1965) Decomposition of poly-β-hydroxybutyrate by pseudomonads. J Bacteriol 90:1455–1466PubMedCentralPubMedGoogle Scholar
  26. De Luca G, Barakat M, Ortet P, Fochesato S, Jourlin-Castelli C, Ansaldi M, Py B, Fichant G, Coutinho PM, Voulhoux R, Bastien O, Maréchal E, Henrissat B, Quentin Y, Noirot P, Filloux A, Méjean V, DuBow MS, Barras F, Barbe V, Weissenbach J, Mihalcescu I, Verméglio A, Achouak W, Heulin T (2011) The cyst-dividing bacterium Ramlibacter tataouinensis TTB310 genome reveals a well-stocked toolbox for adaptation to a desert environment. PLoS One 6:e23784PubMedCentralPubMedCrossRefGoogle Scholar
  27. den Dooren de Jong LE (1926) Bijdrage tot de kennis van het mineralisatieproces. Nijgh en Van Ditmar, RotterdamGoogle Scholar
  28. De Vos P, De Ley J (1983) Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 33:487–509CrossRefGoogle Scholar
  29. De Vos P, Kersters K, Falsen E, Pot B, Gillis M, Segers P, De Ley J (1985) Comamonas Davis and Park 1962 gen. nov., norn. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., norn. rev. Int J Syst Bacteriol 35:443–453CrossRefGoogle Scholar
  30. Ding L, Yokota AA (2004) Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int J Syst Evol Microbiol 54:2223–2230PubMedCrossRefGoogle Scholar
  31. Ding L, Yokota A (2010) Curvibacter fontana sp. nov., a microaerobic bacteria isolated from well water. J Gen Appl Microbiol 56:267–271PubMedCrossRefGoogle Scholar
  32. Dreo T, Gruden K, Manceau C, Janse JD, Ravnikar M (2007) Development of a real-time PCR-based method for detection of Xylophilus ampelinus. Plant Pathol 56:9–16CrossRefGoogle Scholar
  33. Dubinina GA, Rainey FA, Kuenen JG (2005) Genus VII. Macromonas Utermöhl and Koppe in Koppe 1924. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2C, 2nd edn. Springer, New York, pp 721–724CrossRefGoogle Scholar
  34. Dullius CH, Chen CY, Schink B (2011) Nitrate-dependent degradation of acetone by Alicycliphilus and Paracoccus strains and comparison of acetone carboxylase enzymes. Appl Environ Microbiol 77:6821–6825PubMedCentralPubMedCrossRefGoogle Scholar
  35. Eisenstadt E, Carlton BC, Brown BJ (1994) Gene mutation. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 297–316Google Scholar
  36. Ender PT, Dooley DP, Moore RH (1996) Vascular catheter-related Comamonas acidovorans bacteremia managed with preservation of the catheter. Pediatr Infect Dis J 15:918–920PubMedCrossRefGoogle Scholar
  37. Etchebehere C, Errazquin MI, Dabert P, Moletta R, Muxi L (2001) Comamonas nitrativorans sp. nov., a novel denitrifier isolated from a denitrifying reactor treating landfill leachate. Int J Syst Evol Microbiol 51:977–983PubMedCrossRefGoogle Scholar
  38. Felföldi T, Kéki Z, Sipos R, Márialigeti K, Tindall BJ, Schumann P, Tóth EM (2011) Ottowia pentelensis sp. nov., a floc-forming Betaproteobacterium isolated from an activated sludge system treating coke plant effluent. Int J Syst Evol Microbiol 61:2146–2150PubMedCrossRefGoogle Scholar
  39. Felföldi T, Székely AJ, Gorál R, Barkács K, Scheirich G, András J, Rácz A, Márialigeti K (2010) Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent. Bioresour Technol 101:3406–3414PubMedCrossRefGoogle Scholar
  40. Finneran KT, Johnson CV, Loveley DR (2003) Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53:669–673PubMedCrossRefGoogle Scholar
  41. França L, Rainey FA, Nobre MF, Da Costa MS (2006) Tepidicella xavieri gen. nov., sp. nov., a Betaproteobacterium isolated from a hot spring runoff. Int J Syst Evol Microbiol 56:907–912PubMedCrossRefGoogle Scholar
  42. Franzetti F, Cernuschi M, Esposito R, Moroni M (1992) Pseudomonas infections in patients with AIDS and AIDS-related complex. J Intern Med 231:437–443PubMedCrossRefGoogle Scholar
  43. Frette L, Johnsen K, Jørgensen NOG, Nybroe O, Kroer N (2004) Functional characteristics of culturable bacterioplankton from marine and estuarine environments. Int Microbiol 7:219–227PubMedGoogle Scholar
  44. Gan HM, Chew TH, Tay YL, Lye SF, Yahya A (2012) Genome sequence of Hydrogenophaga sp. strain PBC, a 4-aminobenzenesulfonate-degrading bacterium. J Bacteriol 194:4759–4760PubMedCentralPubMedCrossRefGoogle Scholar
  45. Gardan L, Dauga C, Prior P, Gillis M, Saddler GS (2000) Acidovorax anthurii sp. nov., a new phytopathogenic bacterium which causes bacterial leaf-spot of anthurium. Int J Syst Evol Microbiol 50:235–246PubMedCrossRefGoogle Scholar
  46. Gardan L, Stead DE, Dauga C, Gillis M (2003) Acidovorax valerianellae sp. nov., a novel pathogen of lamb’s lettuce [Valerianella locusta (L.) Laterr.]. Int J Syst Evol Microbiol 53:795–800PubMedCrossRefGoogle Scholar
  47. Gomila M, Pinhassi J, Falsen E, Moore ERB, Lalucat J (2010) Kinneretia asaccharophila gen. nov., sp. nov., isolated from a freshwater lake, a member of the Rubrivivax branch of the family Comamonadaceae. Int J Syst Evol Microbiol 60:809–814PubMedCrossRefGoogle Scholar
  48. Gong W, Kisiela M, Schilhabel MB, Xiong G, Maser E (2012) Genome sequence of Comamonas testosteroni ATCC 11996, a representative strain involved in steroid degradation. J Bacteriol 194:1633–1634PubMedCentralPubMedCrossRefGoogle Scholar
  49. Gosink JJ, Staley JT (1995) Biodiversity of gas vacuolated bacteria from Antarctic sea-ice and water. Appl Environ Microbiol 61:3486–3489PubMedCentralPubMedGoogle Scholar
  50. Gottlieb Y, Lavy E, Kaufman M, Markovics A, Ghanim M, Aroch I (2012) A novel bacterial symbiont in the nematode Spirocerca lupi. BMC Microbiol 12:133PubMedCentralPubMedCrossRefGoogle Scholar
  51. Grabovich M, Gavrish E, Kuever J, Lysenko A, Podkopaeva D, Dubinina G (2006) Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov. Int J Syst Evol Microbiol 56:569–576PubMedCrossRefGoogle Scholar
  52. Gray PHH, Thornton HG (1928) Soil bacteria that decompose certain aromatic compounds. Zentralbl Bakteriol Parasitenk Abt 2 73:74–96Google Scholar
  53. Gul M, Ciragil P, Bulbuloglu E, Aral M, Alkis S, Ezberci F (2007) Comamonas testosteroni bacteremia in a patient with perforated acute appendicitis. Acta Microbiol Immunol Hung 54:317–321PubMedCrossRefGoogle Scholar
  54. Gumaelius L, Magnusson G, Pettersson B, Dalhammar G (2001) Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 51:999–1006PubMedCrossRefGoogle Scholar
  55. Hahn MW, Kasalicky V, Jezbera J, Brandt U, Jezberova J, Simek K (2010a) Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 60:1358–1365PubMedCentralPubMedCrossRefGoogle Scholar
  56. Hahn MW, Kasalicky V, Jezbera J, Brandt U, Simek K (2010b) Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2946–2950PubMedCentralPubMedCrossRefGoogle Scholar
  57. Hahn MW, Stadler P, Wu QL, Pöckl M (2004) The filtration acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57:379–390PubMedCrossRefGoogle Scholar
  58. Halet D, Defoirdt T, Van Damme P, Vervaeren H, Forrez I, Van de Wiele T, Boon N, Sorgeloos P, Bossier P, Verstraete W (2007) Poly-beta-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. FEMS Microbiol Ecol 60:363–369PubMedCrossRefGoogle Scholar
  59. Halpern M, Shakèd T, Schumann P (2009) Brachymonas chironomi sp. nov., isolated from a chironomid egg mass, and emended description of the genus Brachymonas. Int J Syst Evol Microbiol 59:3025–3029PubMedCrossRefGoogle Scholar
  60. Hamana K, Sakane T, Yokota A (1994) Polyamine analysis of the genera Aquaspirillum, Magnetospirillum, Oceanospirillum and Spirillum. J Gen Appl Microbiol 40:75–82CrossRefGoogle Scholar
  61. Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28:66–76PubMedCrossRefGoogle Scholar
  62. Han Y-K, Han K-S, Lee S-C, Kim S (2012) First report of bacterial black spot disease in watermelon caused by Acidovorax valerianellae in Korea. Plant Dis 96:759–760CrossRefGoogle Scholar
  63. Heulin T, Barakat M, Christen R, Lesourd M, Sutra L, De Luca G, Achouak W (2003) Ramlibacter tataouinensis gen. nov., sp. nov., and Ramlibacter henchirensis sp. nov., cyst-producing bacteria isolated from sub-desert soil in Tunisia. Int J Syst Evol Microbiol 53:589–594PubMedCrossRefGoogle Scholar
  64. Heylen K, Lebbe L, De Vos P (2008) Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. Int J Syst Evol Microbiol 58:73–77PubMedCrossRefGoogle Scholar
  65. Himananto O, Thummabenjapone P, Luxananil P, Kumpoosiri M, Hongprayoon R, Kositratana W, Gajanandana O (2011) Novel and highly specific monoclonal antibody to Acidovorax citrulli and development of ELISA-based detection in Cucurbit leaves and seed. Plant Disease 95:1172–1178CrossRefGoogle Scholar
  66. Hiraishi A, Hoshino Y, Satoh T (1991) Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch Microbiol 155:330–336CrossRefGoogle Scholar
  67. Hiraishi A, Kahn ST (2003) Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl Microbiol Biotechnol 61:103–109PubMedCrossRefGoogle Scholar
  68. Hiraishi A, Imhoff JF (2005) Genus IX. Rhodoferax Hiraishi, Hosino and Satoh 1992. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2C, 2nd edn. Springer, New York, pp 727–732CrossRefGoogle Scholar
  69. Hiraishi A, Shin YK, Sugiyama J (1995) Brachymonas denitrificans gen. nov., sp. nov., an aerobic chemoorganotrophic bacterium which contains rhodoquinones, and evolutionary relationships of rhodoquinone producers to bacterial species with various quinone classes. J Gen Appl Microbiol 41:99–117CrossRefGoogle Scholar
  70. Horowitz H, Gilroy S, Feinstein S, Gilardi G (1990) Endocarditis associated with Comamonas acidovorans. J Clin Microbiol 28:143–145PubMedCentralPubMedGoogle Scholar
  71. Huang Y, Li H, Rensing C, Zhao K, Johnstone L, Wang G (2012) Genome sequence of the facultative anaerobic arsenite-oxidizing and nitrate-reducing bacterium Acidovorax sp. strain NO1. J Bacteriol 194:1635–1636PubMedCentralPubMedCrossRefGoogle Scholar
  72. Hylemon PB, Wells JS Jr, Krieg NR, Jannasch HW (1973) The genus Spirillum: a taxonomic study. Int J Syst Bacteriol 23:340–380CrossRefGoogle Scholar
  73. Im WT, Liu QM, Lee KJ, Kim SY, Lee ST, Yi TH (2010) Variovorax ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60:1565–1569PubMedCrossRefGoogle Scholar
  74. Irgens RL, Gosink JJ, Staley JT (1996) Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int J Syst Bacteriol 46:822–826PubMedCrossRefGoogle Scholar
  75. Irgens RL, Suzuki I, Staley JT (1989) Gas vacuolate bacteria obtained from marine waters of Antarctica. Curr Microbiol 18:261–265CrossRefGoogle Scholar
  76. Jenni B, Isch C, Aragno M (1989) Nitrogen fixation by new strains of Pseudomonas pseudoflava and related bacteria. J Gen Microbiol 135:461–467Google Scholar
  77. Jeon CO, Park W, Ghiorse WC, Madsen EL (2004) Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54:93–97PubMedCrossRefGoogle Scholar
  78. Jin L, Kim KK, Ahn CY, Oh HM (2012) Variovorax defluvii sp. nov., isolated from sewage. Int J Syst Evol Microbiol 62:1779–1783PubMedCrossRefGoogle Scholar
  79. Jørgensen NOG, Brandt KK, Nybroe O, Hansen M (2009) Delftia lacustris sp. nov., a peptidoglycan-degrading bacterium from fresh water, and emended description of Delftia tsuruhatensis as a peptidoglycan-degrading bacterium. Int J Syst Evol Microbiol 59:2195–2199PubMedCrossRefGoogle Scholar
  80. Kahn ST, Horiba Y, Takahashi N, Hiraishi A (2007) Activity and community composition of denitrifying bacteria in poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-using solid-phase denitrification processes. Microbe Environ 22:20–31CrossRefGoogle Scholar
  81. Kämpfer P, Busse HJ, Falsen E (2006) Polaromonas aquatica sp. nov., isolated from tap water. Int J Syst Evol Microbiol 56:605–608PubMedCrossRefGoogle Scholar
  82. Kämpfer P, Schulze R, Jäckel U, Malik KA, Amann R, Spring S (2005) Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 55:341–344PubMedCrossRefGoogle Scholar
  83. Kämpfer P, Thummes K, Chu HI, Tan CC, Arun AB, Chen WM, Lai WA, Shen FT, Rekha PD, Young CC (2008) Pseudacidovorax intermedius gen. nov., sp. nov., a novel nitrogen-fixing Betaproteobacterium isolated from soil. Int J Syst Evol Microbiol 58:491–495PubMedCrossRefGoogle Scholar
  84. Kasalicky V (2012) Ecophysiological characteristics of key members of Betaproteobacteria in freshwater bacterioplankton. PhD thesis, Series No. 7. University of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Sciences, České Budějovice, Czech Republic, 132 ppGoogle Scholar
  85. Kasalicky V, Jezbera J, Simek K, Hahn MW (2010) Limnohabitans planktonicus sp. nov., and Limnohabitans parvus sp. nov., novel planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2710–2714PubMedCentralPubMedCrossRefGoogle Scholar
  86. Khan ST, Hiraishi A (2002) Diaphorobacter nitroreducens gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. J Gen Appl Microbiol 48:299–308PubMedCrossRefGoogle Scholar
  87. Khardenavis AA, Kapley A, Purohit HJ (2007) Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Appl Microbiol Biotechnol 77:403–409PubMedCrossRefGoogle Scholar
  88. Kim SJ, KIM YS, Weon HY, Anandham R, Noh HJ, Kwon SW (2010) Xenophilus aerolatus sp. nov., isolated from air. Int J Syst Evol Microbiol 60:327–330PubMedCrossRefGoogle Scholar
  89. Kim KH, Ten LN, Liu QM, Im WT, Lee ST (2008) Comamonas granuli sp. nov., isolated from granules used in a wastewater treatment plant. J Microbiol 46:390–395PubMedCrossRefGoogle Scholar
  90. Kim SJ, Weon HY, Kim YS, Moon JY, Seok SJ, Hong SB, Kwon SW (2012) Caenimonas terrae sp. nov., isolated from a soil sample in Korea, and emended description of the genus Caenimonas Ryu et al. 2008. J Microbiol 50:864–868PubMedCrossRefGoogle Scholar
  91. Kim BY, Weon HY, Yoo SH, Lee SY, Kwon SW, Go SJ, Stackebrandt E (2006) Variovorax soli sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 56:2899–2901PubMedCrossRefGoogle Scholar
  92. Kjeldsen KU, Bataillon T, Pinel N, De Mita S, Lund MB, Panitz F, Bendixen C, Stahl DA, Schramm A (2012) Purifying selection and molecular adaptation in the genome of Verminephrobacter, the heritable symbiotic bacteria of earthworms. Genome Biol Evol 4:307–315PubMedCentralPubMedCrossRefGoogle Scholar
  93. Klankeo P, Nopcharoenkul W, Pinyakong O (2009) Two novel pyrene-degrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil. J Biosci Bioeng 108:488–495PubMedCrossRefGoogle Scholar
  94. Krieg NR (1976) Biology of the chemoheterotrophic spirilla. Bacteriol Rev 40:55–115PubMedCentralPubMedGoogle Scholar
  95. Kulla HG, Krieg R, Zimmermann T, Leisinger T (1984) Experimental evolution of azo dye-degrading bacteria. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 663–667Google Scholar
  96. Lair MI, Bentolila S, Grenet D, Cahen P, Honderlick P (1996) Oerskovia turbata and Comamonas acidovorans bacteremia in a patient with AIDS. Eur J Clin Microbiol Infect Dis 15:424–426PubMedCrossRefGoogle Scholar
  97. Lalucat J, Parés R, Schlegel HG (1982) Pseudomonas taeniospiralis sp. nov., an R-body-containing hydrogen bacterium. Int J Syst Bacteriol 32:332–338CrossRefGoogle Scholar
  98. Le Moal G, Paccalin M, Breux JP, Roblot F, Roblot P, Becq-Giraudon B (2001) Central venous catheter-related infection due to Comamonas testosteroni in a woman with breast cancer. Scand J Infect Dis 33:627–628PubMedCrossRefGoogle Scholar
  99. Lee SM, Kim MK, Lee JL, Wee WR, Lee JH (2008) Experience of Comamonas acidovorans keratitis with delayed onset and treatment response in immunocompromised cornea. Korean J Ophthalmol 22:49–52PubMedCentralPubMedCrossRefGoogle Scholar
  100. Lee N, Cellamare CM, Bastianutti C, Rossello-Mora R, Kämpfer P, Ludwig W, Schleifer KH, Stante L (2004) Emended description of the species Lampropedia hyaline. Int J Syst Evol Microbiol 54:1709–1715PubMedCrossRefGoogle Scholar
  101. Leifson E (1962a) Pseudomonas spinosa n. sp. Int Bull Bacteriol Nomen Tax 12:89–92CrossRefGoogle Scholar
  102. Leifson E (1962b) The bacterial flora of distilled and stored water. III. New species of the genera Corynebacterium, Flavobacterium, Spirillum and Pseudomonas. Int Bull Bacteriol Nomen Tax 12:161–170CrossRefGoogle Scholar
  103. Leifson E (1962c) The bacterial flora of distilled and stored water. I. General observations, techniques and ecology. Int Bull Bacteriol Nomen Tax 12:133–153CrossRefGoogle Scholar
  104. Lema I, Gómez-Torreiro M, Rodríguez-Ares MT (2001) Comamonas acidovorans keratitis in a hydrogel contact lens wearer. CLAO J 27:55–56PubMedGoogle Scholar
  105. Leta S, Gumaelius L, Assefa F, Dalhammar G (2004) Identification of efficient denitrifying bacteria from tannery wastewaters in Ethiopia and a study of the effects of chromium III and sulfide on their denitrification rate. World J Microbiol Biotechnol 20:405–411CrossRefGoogle Scholar
  106. Li D, Rothballer M, Schmid M, Esperschütz J, Hartmann A (2011) Acidovorax radicis sp. nov., a wheat-root-colonizing bacterium. Int J Syst Evol Microbiol 61:2589–2594PubMedCrossRefGoogle Scholar
  107. Li D, Rothballer M, Engel M, Hoser J, Schmidt T, Kuttler C, Schmid M, Schloter M, Hartmann A (2012a) Phenotypic variation in Acidovorax radicis N35 influences plant growth promotion. FEMS Microbiol Ecol 7:751–762CrossRefGoogle Scholar
  108. Li H, Xing P, Wu QL (2012b) Characterization of the bacterial community composition in a hypoxic zone induced by Microcystis blooms in Lake Taihu, China. FEMS Microbiol Ecol 79:773–784PubMedCrossRefGoogle Scholar
  109. Liang B, Yang CL, Gong MB, Zhao YF, Zhang J, Zhu CX, Jiang JD, Li SP (2011) Adsorption and degradation of triazophos, chlorpyrifos and their main hydrolytic metabolites in paddy soil from Chaohu Lake, China. J Environ Manage 92:2229–2234PubMedCrossRefGoogle Scholar
  110. Lovley DR, Giovannoni SJ, White DC, Champine JE, Philips EJP, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344PubMedCrossRefGoogle Scholar
  111. Lu SP, Ryu SH, Chung BS, Chung YR, Park W, Jeon CO (2007) Simplicispira limi sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 57:31–34PubMedCrossRefGoogle Scholar
  112. Lund MB, Schätzle S, Schramm A, Kjeldsen KU (2012) Verminephrobacter aporrectodeae sp. nov. subsp. tuberculatae and subsp. caliginosae, the specific nephridial symbionts of the earthworms Aporrectodea tuberculata and A. caliginosa. Antonie Van Leeuwenhoek Int. J Gen Mol Microbiol 101:507–514Google Scholar
  113. Lütke-Eversloh T, Elbanna K, Cnockaert MC, Mergaert J, Swings J, Manaia CM, Steinbüchel A (2004) Caenibacterium thermophilum is a later synonym of Schlegelella thermodepolymerans. Int J Syst Evol Microbiol 54:1933–1935PubMedCrossRefGoogle Scholar
  114. Ma JY, Quan QC, Yang ZF, Li AJ (2012) Biodegradation of a mixture of 2,4-dichlorophenoxyacetic acid and multiple chlorophenols by aerobic granules cultivated through plasmid pJP4 mediated bioaugmentation. Chem Engin J 181:144–151CrossRefGoogle Scholar
  115. Ma YF, Zhang Y, Zhang JY, Chen DW, Zhu Y, Zheng H, Wang SY, Jiang CY, Zhao GP, Liu SJ (2009) The complete genome of Comamonas testosteroni reveals its genetic adaptations to changing environments. Appl Environ Microbiol 75:6812–6819PubMedCentralPubMedCrossRefGoogle Scholar
  116. Madigan MT, Jung DO, Woese CR, Achenbach LA (2000) Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol 173:269–277PubMedCrossRefGoogle Scholar
  117. Malkan AD, Strollo W, Scholand SJ, Dudrick SJ (2009) Implanted-port catheter-related sepsis caused by Acidovorax avenae and methicillin-sensitive Staphylococcus aureus. J Clin Microbiol 47:3358–3361PubMedCentralPubMedCrossRefGoogle Scholar
  118. Manaia CM, Nunes OC, Nogales B (2003) Caenibacterium thermophilum gen. nov., sp. nov., isolated from a thermophilic aerobic digester of municipal sludge. Int J Syst Evol Microbiol 53:1375–1382PubMedCrossRefGoogle Scholar
  119. Margesin R, Spröer C, Zhang DC, Busse HJ (2012) Polaromonas glacialis sp. nov. and Polaromonas cryoconiti sp. nov., isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 62:2662–2668PubMedCrossRefGoogle Scholar
  120. Mechichi T, Stackebrandt E, Fuchs G (2003) Alicycliphilus denitrificans gen. nov. sp. nov., a cyclohexanol-degrading, nitrate-reducing Betaproteobacterium. Int J Syst Evol Microbiol 53:147–152PubMedCrossRefGoogle Scholar
  121. Meyer O, Schlegel HG (1983) Biology of aerobic carbon monoxide-oxidizing bacteria. Ann Rev Microbiol 37:227–310CrossRefGoogle Scholar
  122. Michaud L, Caruso C, Mangano S, Interdonato F, Bruni V, Lo Giudice A (2012) Predominance of Flavobacterium, Pseudomonas, and Polaromonas within the prokaryotic community of freshwater shallow lakes in the northern Victoria Land, East Antarctica. FEMS Microbiol Ecol 82:391–404PubMedCrossRefGoogle Scholar
  123. Miño de Kaspar H, Grasbon T, Kampik A (2000) Automated surgical equipment requires routine disinfection of vacuum control manifold to prevent postoperative endophthalmitis. Ophthalmology 107:685–690PubMedCrossRefGoogle Scholar
  124. Miwa H, Ahmed I, Yoon J, Yokota A, Fujiwara T (2008) Variovorax boronicumulans sp. nov., a boron-accumulating bacterium isolated from soil. Int J Syst Evol Microbiol 58:286–289PubMedCrossRefGoogle Scholar
  125. Mohn WW (1995) Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid. Appl Environ Microbiol 61:2145–2150PubMedCentralPubMedGoogle Scholar
  126. Murray RGE (2005) Genus VI. Lampropedia Schroeter 1886. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2C, 2nd edn. Springer, New York, pp 716–721CrossRefGoogle Scholar
  127. Narayan KD, Pandey SK, Das SK (2010) Characterization of Comamonas thiooxidans sp. nov., and comparison of thiosulfate oxidation with Comamonas testosteroni and Comamonas composti. Curr Microbiol 61:248–253PubMedCrossRefGoogle Scholar
  128. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49PubMedCentralPubMedCrossRefGoogle Scholar
  129. Nseir W, Khateeb J, Awawdeh M, Ghali M (2011) Catheter-related bacteremia caused by Comamonas testosteroni in a hemodialysis patient. Hemodial Int 15:293–296PubMedCrossRefGoogle Scholar
  130. Ohtsubo Y, Maruyama F, Mitsui H, Nagata Y, Tsuda M (2012) Complete genome sequence of Acidovorax sp. strain KKS102, a polychlorinated-biphenyl degrader. J Bacteriol 194:6970–6971PubMedCentralPubMedCrossRefGoogle Scholar
  131. Oosterkamp MJ, Veuskens T, Plugge CM, Langenhoff AA, Gerritse J, van Berkel WJ, Pieper DH, Junca H, Goodwin LA, Daligault HE, Bruce DC, Detter JC, Tapia R, Han CS, Land ML, Hauser LJ, Smidt H, Stams AJ (2011) Genome sequences of Alicycliphilus denitrificans strains BC and K601T. J Bacteriol 193:5028–5029PubMedCentralPubMedCrossRefGoogle Scholar
  132. Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339CrossRefGoogle Scholar
  133. Palleroni NJ (1984) Genus I. Pseudomonas Migula 1894. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 141–199Google Scholar
  134. Palleroni NJ, Doudoroff M (1972) Some properties and taxonomic subdivision of the genus Pseudomonas. Annu Rev Phytopathol 10:73–100CrossRefGoogle Scholar
  135. Pandey SK, Narayan KD, Bandyopadhyay S, Nayak KC, Das SK (2009) Thiosulfate oxidation by Comamonas sp. S23 isolated from a sulphur spring. Curr Microbiol 58:516–521PubMedCrossRefGoogle Scholar
  136. Pelz O, Cifuentes LA, Hammer BT, Kelley CA, Coffin RB (1998) Tracing the assimilation of organic compounds using δ13C analysis of unique amino acids in the bacterial peptidoglycan cell wall. FEMS Microbiol Ecol 25:229–240Google Scholar
  137. Pérez-Pantoja D, Donoso R, Agulló L, Córdova M, Seeger M, Pieper DH, González B (2012) Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 14:1091–1117PubMedCrossRefGoogle Scholar
  138. Pfennig N (1978) Rhodocyclus purpureus gen. nov. and sp. nov., a ring shaped, vitamin B12-requiring member of the Rhodospirillaceae. Int J Syst Bacteriol 28:283–288CrossRefGoogle Scholar
  139. Pham VH, Park SJ, Roh Y, Roh DH, Rhee SK (2009) Diaphorobacter oryzae sp. nov., isolated from a thiosulfate-oxidizing enrichment culture. Int J Syst Evol Microbiol 59:218–221PubMedCrossRefGoogle Scholar
  140. Pinel N, Davidson SK, Stahl DA (2008) Verminephrobacter eiseniae gen. nov., sp. nov., a nephridial symbiont of the earthworm Eisenia foetida (Savigny). Int J Syst Evol Microbiol 58:2147–2157PubMedCrossRefGoogle Scholar
  141. Ramana CV, Sasikala C (2009) Albidoferax, a new genus of Comamonadaceae and reclassification of Rhodoferax ferrireducens (Finneran et al., 2003) as Albidoferax ferrireducens comb. nov. J Gen Appl Microbiol 55:301–304PubMedCrossRefGoogle Scholar
  142. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7PubMedCentralPubMedGoogle Scholar
  143. Reddy AK, Murthy SI, Jalali S, Gopinathan U (2009) Post-operative endophthalmitis due to an unusual pathogen, Comamonas testosteroni. J Med Microbiol 58:374–375PubMedCrossRefGoogle Scholar
  144. Robert-Gero M, Poiret M, Stanier RY (1969) The function of the β-ketoadipate pathway in Pseudomonas acidovorans. J Gen Microbiol 57:207–214PubMedCrossRefGoogle Scholar
  145. Rouf MA, Stokes JL (1964) Morphology, nutrition and physiology of Sphaerotilus discophorus. Arch Microbiol 49:132–149Google Scholar
  146. Rouvière PE, Chen MW (2003) Isolation of Brachymonas petroleovorans CHX, a novel cyclohexane-degrading β-proteobacterium. FEMS Microbiol Lett 227:101–106PubMedCrossRefGoogle Scholar
  147. Ryu SH, Lee DS, Park M, Wang Q, Jang HH, Park W, Jeon CO (2008) Caenimonas koreensis gen. nov., sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 58:1064–1068PubMedCrossRefGoogle Scholar
  148. Sakane T, Yokota A (1994) Chemotaxonomic investigation of heterotrophic, aerobic and microaerophilic Spirilla, the genera Aquaspirillum, Magnetospirillum and Oceanospirillum. Syst Appl Microbiol 17:128–134CrossRefGoogle Scholar
  149. Schaad NW, Postnikova E, Sechler A, Claflin LE, Vidaver AK, Jones JB, Agarkova I, Ignatov A, Dickstein E, Ramundo BA (2008) Reclassification of subspecies of Acidovorax avenae as A. avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli Schaad et al. 2009, 1978) comb. nov., and proposal of A. oryzae sp. nov. Syst Appl Microbiol 31:434–446PubMedCrossRefGoogle Scholar
  150. Schlegel HG, Kaltwasser H, Gottschalk G (1961) A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies. Arch Mikrobiol 38:209–222PubMedCrossRefGoogle Scholar
  151. Schulze R, Spring S, Amann R, Huber I, Ludwig W, Schleifer KH, Kämpfer P (1999) Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov. Syst Appl Microbiol 22:204–214CrossRefGoogle Scholar
  152. Schroeter J (1886) In: Cohn F (ed) Kryptogamenflora von Schlesien. Band 3, Heft 3, Pilze. J.U. Kern’s Verlag, Breslau, pp 1–814Google Scholar
  153. Shetty A, Barnes RA, Healy B, Groves P (2005) A case of sepsis caused by Acidovorax. J Infect 51:e171–e172PubMedCrossRefGoogle Scholar
  154. Shigematsu T, Yumihara K, Ueda Y, Numaguchi M, Morimura S, Kida K (2003) Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 53:1479–1483PubMedCrossRefGoogle Scholar
  155. Siebor E, Llanes C, Lafon I, Ogier-Desserrey A, Duez JM, Pechinot A, Caillot D, Grandjean M, Sixt N, Neuwirth C (2007) Presumed pseudobacteremia outbreak resulting from contamination of proportional disinfectant dispenser. Eur J Clin Microbiol Infect Dis 26:195–198PubMedCrossRefGoogle Scholar
  156. Simek K, Pernthaler J, Weinbauer MG, Hornak K, Dolan JR, Nedoma J, Masin M, Amann R (2001) Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microbiol 67:2723–2733PubMedCentralPubMedCrossRefGoogle Scholar
  157. Sizova M, Panikov N (2007) Polaromonas hydrogenivorans sp. nov., a psychrotolerant hydrogen-oxidizing bacterium from Alaskan soil. Int J Syst Evol Microbiol 57:616–619PubMedCrossRefGoogle Scholar
  158. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420CrossRefGoogle Scholar
  159. Smith MD, Gradon JD (2003) Bacteremia due to Comamonas species possibly associated with exposure to tropical fish. South Med J 96:815–817PubMedCrossRefGoogle Scholar
  160. Spring S, Jäckel U, Wagner M, Kämpfer P (2004) Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. Int J Syst Evol Microbiol 54:99–106PubMedCrossRefGoogle Scholar
  161. Spring S, Wagner M, Schumann P, Kämpfer P (2005) Malikia granosa gen. nov., sp. nov., a novel polyhydroxyalkanoate- and polyphosphate-accumulating bacterium isolated from activated sludge, and reclassification of Pseudomonas spinosa as Malikia spinosa comb. nov. Int J Syst Evol Microbiol 55:621–629PubMedCrossRefGoogle Scholar
  162. Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271PubMedCrossRefGoogle Scholar
  163. Stonecipher KG, Jensen HG, Kastl PR, Faulkner A, Rowsey JJ (1991) Ocular infections associated with Comamonas acidovorans. Am J Ophthalmol 112:46–49PubMedCrossRefGoogle Scholar
  164. Streger S, Vainberg HS, Dong HL, Hatzinger PB (2002) Enhancing transport of Hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether. Appl Eviron Microbiol 68:5571–5579CrossRefGoogle Scholar
  165. Sun LN, Zhang J, Chen Q, He J, Li QF, Li SP (2013) Comamonas jiangduensis sp. nov., a biosurfactant-producing bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 63(Pt 6):2168–2173. doi:10.1099/ijs.0.045716-0PubMedCrossRefGoogle Scholar
  166. Sun WJ, Sierra-Alvarez R, Fernandez N, Sanz JL, Amils R, Legatzki A, Maier RM, Field JA (2009) Molecular characterization and in situ quantification of anoxic arsenite-oxidizing denitrifying enrichment cultures. FEMS Microbiol Ecol 68:72–85PubMedCentralPubMedCrossRefGoogle Scholar
  167. Tago Y, Yokota A (2004) Comamonas badia sp. nov., a floc-forming bacterium isolated from activated sludge. J Gen Appl Microbiol 50:243–248PubMedCrossRefGoogle Scholar
  168. Takeda M, Kamagata Y, Ghiorse WC, Hanada S, Koizumi J (2002) Caldimonas manganoxidans gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading, manganese-oxidizing thermophile. Int J Syst Evol Microbiol 52:895–900PubMedGoogle Scholar
  169. Tamaoka J, Ha D, Komagata K (1987) Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. Int J Syst Bacteriol 37:52–59CrossRefGoogle Scholar
  170. Taylor BF, Curry RW, Corcoran EF (1981) Potential for biodegradation of phthalic acid esters in marine regions. Appl Environ Microbiol 42:590–595PubMedCentralPubMedGoogle Scholar
  171. Terasaki Y (1970) Ueber die Anhaüfung von Süsswasserun Meerwasser vorkommenden Spirillum. Bull Suzugamine Women’s Coll Nat Sci 15:1–7Google Scholar
  172. Terasaki Y (1979) Transfer of five species and two subspecies of Spirillum to other genera (Aquaspirillum and Oceanospirillum), with emended descriptions of the species and subspecies. Int J Syst Bacteriol 29:130–144CrossRefGoogle Scholar
  173. Thiele K, Smalla K, Kropf KS, Rabenstein F (2012) Detection of Acidovorax valerianellae, the causing agent of bacterial leaf spots in corn salad [Valerianella locusta (L.) Laterr.], in corn salad seeds. Lett Appl Microbiol 54:112–118PubMedCrossRefGoogle Scholar
  174. Thomas P, Soly TA (2009) Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. Grand Naine and the affinity of endophytes to the host. Microb Ecol 58:952–964PubMedCrossRefGoogle Scholar
  175. Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167CrossRefGoogle Scholar
  176. Tsui TL, Tsao SM, Liu KS, Chen TY, Wang YL, Teng YH, Lee YT (2011) Comamonas testosteroni infection in Taiwan: reported two cases and literature review. J Microbiol Immunol Infect 44:67–71PubMedCrossRefGoogle Scholar
  177. Utermöhl H, Koppe F (1924) Genus Macromonas. In: Koppe F (ed) Die Schlammflora der ostholsteinischen Seen und des Bodensees, vol 14, Arch Hydrobiol., pp 619–672Google Scholar
  178. Vaneechoutte M, Janssens M, Avesani V, Delmée M, Deschaght P (2013) Description of Acidovorax wautersii sp. nov. to accommodate clinical isolates and an environmental isolate, most closely related to A. avenae. Int J Syst Evol Microbiol 63(Pt 6):2203–2206. doi:10.1099/ijs.0.046102-0PubMedCrossRefGoogle Scholar
  179. Volk M, Meyer O, Frunzke K (1994) Metabolic relationship between the CO dehydrogenase molybdenum cofactor and the excretion of urothione by Hydrogenophaga pseudoflava. Eur J Biochem 225:1063–1071PubMedCrossRefGoogle Scholar
  180. Wagner M, Amann R, Kämpfer P, Assmus B, Hartmann A, Hutzler P, Springer N, Schleifer KH (1994) Identification and in situ detection of gram-negative filamentous bacteria in activated sludge. Syst Appl Microbiol 17:405–417CrossRefGoogle Scholar
  181. Wang L, An D-S, Kim S-G, Jin F-X, Kim S-C, Lee S-T, Im W-T (2012) Ramlibacter ginsenosidimutans sp. nov., with ginsenoside-converting activity. J Microbiol Biotechnol 22:311–315PubMedCrossRefGoogle Scholar
  182. Wauters G, De Baere T, Willems A, Falsen E, Vaneechoutte M (2003) Description of Comamonas aquatica comb. nov. and Comamonas kerstersii sp. nov. for two subgroups of Comamonas terrigena and emended description of Comamonas terrigena. Int J Syst Evol Microbiol 53:859–862PubMedCrossRefGoogle Scholar
  183. Weelink SAB, Tan NCG, ten Broeke H, van den Kieboom C, van Doesburg W, Langenhoff AAM, Gerritse J, Junca H, Stams AJM (2008) Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with chlorate as the electron acceptor. Appl Environ Microbiol 74:6672–6681PubMedCentralPubMedCrossRefGoogle Scholar
  184. Wen A, Fegan M, Hayward C, Chakraborty S, Sly LI (1999) Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int J Syst Bacteriol 49:567–576PubMedCrossRefGoogle Scholar
  185. Weon HY, Yoo SH, Hong SB, Kwon SW, Stackebrandt E, Go SJ, Koo BS (2008) Polaromonas jejuensis sp. nov., isolated from soil in Korea. Int J Syst Evol Microbiol 58:1525–1528PubMedCrossRefGoogle Scholar
  186. Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294CrossRefGoogle Scholar
  187. Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen E, Hoste B, Gillis M, Kersters K, Auling G, De Ley J (1989) Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”) and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 39:319–333 (aquaticum, E. Falsen group 10, and other clinical isolates. Int J Syst Bacteriol 41:427–444)CrossRefGoogle Scholar
  188. Willems A, De Ley J, Gillis M, Kersters K (1991a) Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis) 1969. Int J Syst Bacteriol 41:445–450CrossRefGoogle Scholar
  189. Willems A, Gillis M (2005) Genus II. Acidovorax. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2C, 2nd edn. Springer, New York, pp 696–703CrossRefGoogle Scholar
  190. Willems A, Falsen E, Pot B, Jantzen E, Hoste B, Vandamme P, Gillis M, Kersters K, De Ley J (1990) Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int J Syst Bacteriol 40:384–398PubMedCrossRefGoogle Scholar
  191. Willems A, Gillis M, De Ley J (1991b) Transfer of Rhodocyclus gelatinosus to Rubrivivax gelatinosus gen. nov., comb. nov., and phylogenetic relationships with Leptothrix, Sphaerotilus natans, Pseudomonas saccharophila, and Alcaligenes latus. Int J Syst Bacteriol 41:65–73CrossRefGoogle Scholar
  192. Willems A, Pot B, Falsen E, Vandamme P, Gillis M, Kersters K, De Ley J (1991c) Polyphasic taxonomic study of the emended genus Comamonas: relationship to Aquaspirillum aquaticum, E. Falsen group 10, and other clinical isolates. Int J Syst Bacteriol 41:427–444CrossRefGoogle Scholar
  193. Willems A, Gillis M, Kersters K, Van den Broecke L, De Ley J (1987) Transfer of Xanthomonas ampelina Panagopoulos 1969 to a new genus, Xylophilus gen. nov., as Xylophilus ampelinus (Panagopoulos 1969) comb. nov. Int J Syst Bacteriol 37:422–430CrossRefGoogle Scholar
  194. Willems A, Goor M, Thielemans S, Gillis M, Kersters K, De Ley J (1992) Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov. comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int J Syst Bacteriol 42:107–119PubMedCrossRefGoogle Scholar
  195. Williams MA, Rittenberg SC (1957) A taxonomic study of the genus Spirillum Ehrenberg. Int Bull Bacteriol Nomencl Taxon 7:49–111Google Scholar
  196. Williams RAD, Da Costa MS (1992) The genus Thermus and related microorganisms. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The Prokaryotes, 2nd edn. Springer, New York, pp 3745–3753CrossRefGoogle Scholar
  197. Wu CY, Zhuang L, Zhou SG, Li FB, Li XM (2009) Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. FEMS Microbiol Ecol 71:106–113CrossRefGoogle Scholar
  198. Wu WZ, Yang LH, Wang JL (2013) Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor. Environ Sci Pollut Res 20:333–339CrossRefGoogle Scholar
  199. Xie GL, Zhang GQ, Liu H, Lou MM, Tian WX, Li B, Zhou XP, Zhu B, Jin GL (2011) Genome sequence of the rice-pathogenic bacterium Acidovorax avenae subsp. avenae RS-1. J Bacteriol 193:5013–5014PubMedCentralPubMedCrossRefGoogle Scholar
  200. Yagi JM, Sims D, Brettin T, Bruce D, Madsen EL (2009) The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ Microbiol 11:2253–2270PubMedCrossRefGoogle Scholar
  201. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  202. Yoon JH, Kang SJ, Oh TK (2006) Variovorax dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:811–814PubMedCrossRefGoogle Scholar
  203. Yoon JH, Kang SJ, Ryu SH, Jeon CO, Oh TK (2008) Hydrogenophaga bisanensis sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 58:393–397PubMedCrossRefGoogle Scholar
  204. Young CC, Chou JH, Arun AB, Yen WS, Sheu SY, Shen FT, Lai WA, Rekha PD, Chen WM (2008) Comamonas composti sp. nov., isolated from food waste compost. Int J Syst Evol Microbiol 58:251–256PubMedCrossRefGoogle Scholar
  205. Yu XY, Li YF, Zheng JW, Li Y, Li L, He J, Li SP (2011) Comamonas zonglianii sp. nov., isolated from phenol-contaminated soil. Int J Syst Evol Microbiol 61:255–258PubMedCrossRefGoogle Scholar
  206. Zein MM, Suidan MT, Venosa AD (2004) MtBE biodegradation in a gravity flow, high-biomass retaining bioreactor. Environ Sci Technol 38:3449–3456PubMedCrossRefGoogle Scholar
  207. Zeng Y, Kasalicky V, Simek K, Koblizek M (2012) Genome sequences of two freshwater Betaproteobacterial isolates, Limnohabitans species strains Rim28 and Rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers. J Bacteriol 194:6302–6303PubMedCentralPubMedCrossRefGoogle Scholar
  208. Zhang LH, Chen SF (2012) Pseudacidovorax intermedius NH-1, a novel marine nitrogen-fixing bacterium isolated from the South China Sea. World J Microbiol Biotech 28:2839–2847CrossRefGoogle Scholar
  209. Zhang J, Wang YQ, Zhou SG, Wu CY, He J, Li FB (2013a) Comamonas guangdongensis sp. nov., isolated from subterranean forest sediment, and emended description of the genus Comamonas. Int J Syst Evol Microbiol 63:809–814PubMedCrossRefGoogle Scholar
  210. Zhang T, Ren HF, Liu Y, Zhu BL, Liu ZP (2010) A novel degradation pathway of chloroaniline in Diaphorobacter sp PCA039 entails initial hydroxylation. World J Microbiol Biotechnol 26:665–673CrossRefGoogle Scholar
  211. Zhang W-Y, Fang M-X, Zhang W-W, Xiao C, Zhang X-Q, Yu Z-P, Zhu X-F, Wu M (2013b) Extensimonas vulgaris gen. nov., sp. nov., a novel member of the family Comamonadaceae. Int J Syst Evol Microbiol 63(Pt 6):2062–2068. doi:10.1099/ijs.0.038158-0PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of ScienceGhent UniversityGhentBelgium

Personalised recommendations