Halophilic and Haloalkaliphilic Sulfur-Oxidizing Bacteria

Reference work entry


Chemotrophic sulfur-oxidizing bacteria (SOB) represent an important functional group of microorganisms responsible for the dark oxidation of reduced sulfur compounds generated by sulfidogens. Until recently, only a single genus of halophilic SOB (Halothiobacillus) has been described, and nothing was known about the ability of this group to grow at high pH.

Investigation of soda lakes, unique extremely alkaline and saline habitats, led to the discovery of a novel ecotype of natronophilic SOB. In contrast to the previously known neutrophilic ecotype, this group cannot grow at neutral pH, but grows optimally in soda brines at pH values around 10. They were the first chemolithoautotrophs among the described alkaliphiles. The group, so far, includes four novel genera within the Gammaproteobacteria. The genera Thioalkalimicrobium and Thioalkalispira represent low salt-tolerant alkaliphiles tolerating up to 1.5 M Na+. The genus Thioalkalibacter is a high salt-tolerant facultative alkaliphile. The genus Thioalkalivibrio is the most diverse and includes aerobic extremely salt-tolerant members and moderately salt-tolerant thiocyanate-utilizing and facultatively anaerobic denitrifying strains. The genome sequence of two Thioalkalivibrio strains revealed the presence of a truncated Sox system lacking the SoxCD component which is typical for gammaproteobacterial SOB. Bioenergetic studies of high salt-tolerant Thioalkalivibrio strains showed an obligate sodium dependence for respiratory activity implying the presence of sodium-dependent elements.

Investigation of hypersaline inland chloride-sulfate lakes and hypersaline brines of marine origin with neutral pH revealed an unexpectedly high culturable diversity of halophilic obligately chemolithoautotrophic SOB comprising seven different groups within the Gammaproteobacteria. Two groups of strictly aerobic moderate halophiles were represented by the known genera Halothiobacillus and Thiomicrospira. Under denitrifying conditions and with thiocyanate as e-donor, three novel groups of moderately halophilic SOB were represented by the genera Thiohalomonas, Thiohalophilus, and Thiohalobacter. At 4 M NaCl, two groups of extremely halophilic SOB (a type not known before among the SOB) had been discovered. The obligately aerobic extreme halophiles comprised a novel genus Thiohalospira, and the facultatively anaerobic nitrate-reducing extreme halophiles—a novel deep-lineage genus Thiohalorhabdus.

Overall, the investigation of hypersaline and (halo)alkaline habitats uncovered a novel and diverse world of extremophilic SOB with properties previously unknown for chemolithoautotrophic bacteria.


Soda Lake Mono Lake Hypersaline Lake Extreme Halophile Moderate Halophile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank our colleagues B.E. Jones, W.D. Grant, and G.A. Zavarzin for providing samples from the Kenyan soda lakes. The work was supported by grants from RFBR (recent grant 10-04-00152) and from the Dutch Science Foundations (NWO and STW).


  1. Antipov AN, Sorokin DY, L’vov NP, Kuenen JG (2003) New enzyme belonging to the family of molybdenum-free nitrate reductases. Biochem J 369:185–189PubMedCrossRefGoogle Scholar
  2. Banciu H, Sorokin DY, Galinski EA, Muyzer G, Kleerebezem R, Kuenen JG (2004a) Thioalkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic facultatively alkaliphilic and extremely salt-tolerant sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 8:325–334PubMedGoogle Scholar
  3. Banciu H, Sorokin DY, Kleerebezem R, Muyzer G, Galinski EA, Kuenen JG (2004b) Influence of sodium on the growth of haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15 in continuous culture. Extremophiles 8:185–192PubMedCrossRefGoogle Scholar
  4. Banciu H, Sorokin DY, Tourova TP, Galinski EA, Muntyan MS, Kuenen JG, Muyzer G (2008) Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sulfur-oxidizing gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from south-western Siberian soda lakes. Extremophiles 12:391–404PubMedCrossRefGoogle Scholar
  5. Baumgarte S (2003) Microbial diversity of soda lake habitats. PhD thesis, Carolo-Wilhelmina University, Braunschweig, Germany, pp 79–81Google Scholar
  6. Bezsudnova EY, Sorokin DY, Tichonova TV, Popov VO (2007) System of primary thiocyanate degradation in a novel halophilic sulfur-oxidizing bacterium Thiohalophilus thiocyanoxidans. BBA Protein Proteom 1774:1563–1570CrossRefGoogle Scholar
  7. Da Costa MA, Rainey FA, Nobre MF (2006) The genus Thermus and relatives. Prokaryotes 7:797–812CrossRefGoogle Scholar
  8. De Kruyff CD, van der Walt JI, Schwartz HM (1957) The utilization of thiocyanate and nitrate by thiobacilli. Antonie van Leeuwenhoek 23:305–316CrossRefGoogle Scholar
  9. Durand P, Reysenbach A-L, Prieur D, Pace N (1993) Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch Microbiol 159:39–44CrossRefGoogle Scholar
  10. Eugster HP (1970) Chemistry and origins of the brines of Lake Magadi. Mineral Soc Am Spec Publ 3:215–235Google Scholar
  11. Foti M, Ma S, Sorokin DY, Rademaker JLW, Kuenen JG, Muyzer G (2006) Genetic diversity and biogeography of haloalkaliphilic sulfur-oxidizing bacteria belonging to the genus Thioalkalivibrio. FEMS Microbiol Ecol 56:95–101PubMedCrossRefGoogle Scholar
  12. Foti M, Sorokin DY, Lomans B, Mussman M, Zakharova EE, Pimenov NV, Kuenen JG, Muyzer G (2007) Diversity, activity and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 73:2093–2100PubMedCrossRefGoogle Scholar
  13. Foti M, Sorokin DY, Zakharova EE, Pimenov NV, Kuenen JG, Muyzer G (2008) Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda Steppe (Altai, Russia). Extremophiles 12:133–145PubMedCrossRefGoogle Scholar
  14. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882PubMedCrossRefGoogle Scholar
  15. Giri BJ, Bano N, Hollibaugh JT (2004) Distribution of RuBisCO genotypes along a redox gradient in Mono Lake. California Appl Environ Microbiol 70:3443–3448CrossRefGoogle Scholar
  16. Gorlenko VM, Namsaraev BB, Kulyrova AV, Zavarzina DG, Zhilina TN (1999) Activity of sulfate-reducing bacteria in the sediments of the soda lakes in south-east Transbaikal area. Microbiology 68:580–586Google Scholar
  17. Granada C, Revah S, Le Borgne S (2009) Diversity of culturable bacteria in an alkaliphilic sulfur-oxidizing microbial consortium. Adv Mater Res 71–73:137–140CrossRefGoogle Scholar
  18. Grant WD, Tindall BJ (1986) The alkaline saline environment. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic, London, pp 25–54Google Scholar
  19. Grischuk YV, Muntyan MS, Popova IV, Sorokin DY (2003) Ion transport coupled to terminal oxidase functioning in the extremely alkaliphilic halotolerant bacterium Thioalkalivibrio. Biochemistry 68:385–390 (Moscow, English Translation)PubMedGoogle Scholar
  20. Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitas A (2000) Hypersaline waters in salterns as natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240Google Scholar
  21. Horikoshi K (1991) Microorganisms in alkaline environments. Kodansha, TokyoGoogle Scholar
  22. Huber R, Eder W (2006) Aquificales. Prokaryotes 7:925–938CrossRefGoogle Scholar
  23. Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042PubMedCrossRefGoogle Scholar
  24. Imhoff JF (2006) The family Ectothiorhodospiraceae. Prokaryotes 6:874–886CrossRefGoogle Scholar
  25. Imhoff JF, Sahl HG, Soliman GSH, Trüper HG (1979) The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1:219–234CrossRefGoogle Scholar
  26. Isachenko BL (1951) Chloride, sulfate and soda lakes of Kulunda steppe and its biogenic processes [in Russian]. In: Selected works, vol 2. Academy of Sciences USSR, Leningrad, pp 143–162Google Scholar
  27. Janssen AJH, Lens P, Stams AJM, Plugge CM, Sorokin DY, Muyzer G, Dijkman H, van Zessen E, Luimes P, Buisman CJN (2009) Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Sci Total Environ 407:1333–1343PubMedCrossRefGoogle Scholar
  28. Johnson DB, Joulian C, D’hugues P, Hallberg KB (2008) Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations. Extremophiles 12:789–798PubMedCrossRefGoogle Scholar
  29. Jones BF, Eugster HP, Rettig SL (1977) Hydrochemistry of the Lake Magadi basin, Kenya. Geochim Cosmochim Acta 41:53–72CrossRefGoogle Scholar
  30. Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200PubMedCrossRefGoogle Scholar
  31. Kaplan A, Zenvirth D, Reinhold L, Berry JA (1982) Involvement of a primary electrogenic pump in the mechanism of HCO3 uptake by the cyanobacterium Anabaena variabilis. Plant Physiol 69:978–982PubMedCrossRefGoogle Scholar
  32. Kappler U, Dahl C (2001) Enzymology and molecular biology of sulfite oxidation. FEMS Microbiol Lett 203:1–9PubMedGoogle Scholar
  33. Katayama Y, Matsushita Y, Kaneko M, Kondo M, Mizuno T, Nyunoya H (1998) Cloning of genes coding for the subunits of thiocyanate hydrolase of Thiobacillus thioparus THI 115 and their evolutionary relationships to nitrile hydratase. J Bacteriol 180:2583–2589PubMedGoogle Scholar
  34. Kelly DP, Baker SC (1990) The organosulfur cycle: aerobic and anaerobic processes leading to turnover of C1-sulfur compounds. FEMS Microbiol Rev 87:241–246CrossRefGoogle Scholar
  35. Kelly DP, Stackebrandt E, Burghardt J, Wood AP (1998) Confirmation that Thiobacillus halophilus and Thiobacillus hydrothermalis are distinct species within the γ-subclass of the Proteobacteria. Arch Microbiol 170:138–140PubMedCrossRefGoogle Scholar
  36. Kelly DP, Shergill JK, Lu W-P, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71:95–107PubMedCrossRefGoogle Scholar
  37. Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen nov. Int J Syst Evol Microbiol 50:511–516PubMedCrossRefGoogle Scholar
  38. Kletzin A, Urich T, Müller F, Bandeiras TM, Gomes CM (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36:77–91PubMedCrossRefGoogle Scholar
  39. Kovaleva OL, Tourova TP, Muyzer G, Kolganova TV, Sorokin DY (2011) Diversity of RuBisCO and ATP citrate lyase genes in soda lake sediments. FEMS Microbiol Ecol 35:37–47CrossRefGoogle Scholar
  40. Ma Y, Zhang W, Xue Y, Zhou P, Ventosa A, Grant WD (2004) Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analysis. Extremophiles 8:45–51PubMedCrossRefGoogle Scholar
  41. Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryote diversity in water and sediments of the alkaline hypersaline lakes of the Wadi An Natrun Egypt. Microb Ecol 54:598–617PubMedCrossRefGoogle Scholar
  42. Mori K, Suzuki K, Urabe T, Sugihara M, Tanaka K, Hamada M, Hanada S (2011) Thioprofundum hispidum sp. nov., an obligately chemolithoautotrophic sulfur-oxidizing bacterium of class Gammaproteobacteria isolated from the hydrothermal field in Suiyo Seamount, and proposal of Thioalkalispiraceae fam nov. in the order of Chromatiales. Int J Syst Evol Microbiol 61:2412–2418PubMedCrossRefGoogle Scholar
  43. Muyzer G, Sorokin DY, Mavromatis K, Lapidus A, Clum A, Ivanova N, Pati A, d’Haeseleer P, Woyke T, Kyrpides NC (2011) Complete genome sequence of Thioalkalivibrio sulfidophilus HL-EbGr7. Stand Genomic Sci 4:23–35PubMedCrossRefGoogle Scholar
  44. Muyzer G, Sorokin DY, Mavromatis K, Lapidus A, Clum A, Ivanova N, Pati A, d’Haeseleer P, Woyke T, Kyrpides NC (2012) Complete genome sequence of Thioalkalivibrio sp. K90mix. Stand Genom Sci 5:341–355CrossRefGoogle Scholar
  45. Nercessian O, Fouquet Y, Pierre C, Prieur D, Jeanthon C (2005) Diversity of Bacteria and Archaea associated with a carbonate-rich metalliferous sediment sample from the Rainbow vent field on the Mid-Atlantic Ridge. Environ Microbiol 7:698–714PubMedCrossRefGoogle Scholar
  46. Nelson DC, Jorgensen BB, Revsbech NP (1986) Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients. Appl Environ Microbiol 52:225–233PubMedGoogle Scholar
  47. Oren A (2002) Halophilic microorganisms and their environments. Kluwer, DordrechtCrossRefGoogle Scholar
  48. Pfennig N, Lippert KD (1966) Über das Vitamin B12-bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256CrossRefGoogle Scholar
  49. Pronk JT, Meulenburg R, Hazeu W, Bos P, Kuenen JG (1990) Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75:293–306CrossRefGoogle Scholar
  50. Rees HC, Grant WD, Jones BE, Heaphy S (2004) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71PubMedCrossRefGoogle Scholar
  51. Robertson LA, Kuenen JG (2006) The genus Thiobacillus. Prokaryotes 5:812–827CrossRefGoogle Scholar
  52. Scott KM et al (2006) The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2. PLoS Biol 4:2196–2212CrossRefGoogle Scholar
  53. Sorokin DY, de Jong A, Robertson LA, Kuenen JG (1998) Purification and partial characterizaton of sulfide dehydrogenase from alkaliphilic obligately autotrophic sulfur oxidizing bacterium. FEBS Lett 427:11–14PubMedCrossRefGoogle Scholar
  54. Sorokin DY, Robertson LA, Kuenen JG (2000) Isolation and characterization of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria. Antonie van Leeuwenhoek 77:251–260PubMedCrossRefGoogle Scholar
  55. Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen JG (2001a) Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580PubMedGoogle Scholar
  56. Sorokin DY, Kuenen JG, Jetten M (2001b) Denitrification at extremely alkaline conditions in obligately autotrophic alkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio denitrificans. Arch Microbiol 175:94–101PubMedCrossRefGoogle Scholar
  57. Sorokin DY, Tourova TP, Lysenko AM, Kuenen JG (2001c) Microbial thiocyanate utilization under highly alkaline conditions. Appl Environ Microbiol 67:528–538PubMedCrossRefGoogle Scholar
  58. Sorokin DY, Gorlenko VM, Tourova TP, Kolganova TV, Tsapin AI, Nealson KH, Kuenen JG (2002a) Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., new species of alkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from a hypersaline alkaline Mono Lake (California). Int J Syst Evol Microbiol 52:913–920PubMedCrossRefGoogle Scholar
  59. Sorokin DY, Tourova TP, Lysenko AM, Mityushina LL, Kuenen JG (2002b) Thioalkalivibrio thiocyanooxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria from the soda lakes able to grow with thiocyanate. Int J Syst Evol Microbiol 52:657–664PubMedGoogle Scholar
  60. Sorokin DY, Tourova TP, Kolganova TV, Sjollema KA, Kuenen JG (2002c) Thioalkalispira microaerophila gen nov., sp. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake. Int J Syst Evol Microbiol 52:2175–2182PubMedCrossRefGoogle Scholar
  61. Sorokin DY, Antipov AN, Kuenen JG (2003a) Complete denitrification in coculture of obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria from a hypersaline soda lake. Arch Microbiol 180:127–133PubMedCrossRefGoogle Scholar
  62. Sorokin DY, Tourova TP, Sjollema KA, Kuenen JG (2003b) Thioalkalivibrio nitratireducens sp. nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake. Int J Syst Evol Microbiol 53:1779–1783PubMedCrossRefGoogle Scholar
  63. Sorokin DY, Banciu H, van Loosdrecht M, Kuenen JG (2003c) Growth physiology and competitive interaction of obligately chemolithoautotrophic, haloalkaliphilic, sulfur-oxidizing bacteria from soda lakes. Extremophiles 7:195–203PubMedGoogle Scholar
  64. Sorokin DY, Gorlenko VM, Namsaraev BB, Namsaraev ZB, Lysenko AM, Eshinimaev BT, Khmelenina VN, Trotsenko YA, Kuenen JG (2004a) Prokaryotic communities of the north-eastern Mongolian soda lakes. Hydrobiologia 522:235–248CrossRefGoogle Scholar
  65. Sorokin DY, Tourova TP, Antipov AN, Muyzer G, Kuenen JG (2004b) Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidising bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate. Microbiology 150:2435–2442PubMedCrossRefGoogle Scholar
  66. Sorokin DY, Tourova TP, Muyzer G (2005) Oxidation of thiosulfate to tetrathionate by a haloarchaeon from hypersaline habitat. Extremophiles 9:501–504PubMedCrossRefGoogle Scholar
  67. Sorokin DY, Tourova TP, Lysenko AM, Muyzer G (2006a) Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitat. Microbiology 152:3013–3023PubMedCrossRefGoogle Scholar
  68. Sorokin DY, Tourova TP, Kolganova TV, Spiridonova EM, Berg IA, Muyzer G (2006b) Thiomicrospira halophila sp. nov., a novel, moderately halophilic, obligately chemolithoautotrophic sulfur-oxidizing bacterium from hypersaline lakes. Int J Syst Evol Microbiol 56:2375–2380PubMedCrossRefGoogle Scholar
  69. Sorokin DY, Tourova TP, Bracker G, Muyzer G (2007a) Thiohalomonas denitrificans gen. no. sp. nov., and Thiohalomonas nitratireducens sp. nov., novel obligately chemolitho-autotrophic moderately halophilic thiodenitrifying Gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 57:1582–1589PubMedCrossRefGoogle Scholar
  70. Sorokin DY, Tourova TP, Bezsoudnova EY, Pol A, Muyzer G (2007b) Denitrification in a binary culture and thiocyanate metabolism in Thiohalophilus thiocyanatoxidans gen. nov. sp. nov. – a moderately halophilic chemolithoautotrophic sulfur-oxidizing Gammaproteobacterium from hypersaline lakes. Arch Microbiol 187:441–450PubMedCrossRefGoogle Scholar
  71. Sorokin DY (2008) Diversity of halophilic sulfur-oxidizing bacteria in hypersaline habitats. In: Dahl C, Friedrich CG (eds) Microbial sulfur metabolism. Proceedings of the international symposium on microbial sulfur metabolism, Münster, Germany, 29 June–02 July 2006. Springer, Berlin, pp 225–237Google Scholar
  72. Sorokin DY, Tourova TP, Muyzer G, Kuenen JG (2008a) Thiohalospira halophila gen. nov. sp. nov., and Thiohalospira alkaliphila sp. nov., novel obligately chemolithoautotrophic extremely halophilic sulfur-oxidizing Gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 58:1685–1692PubMedCrossRefGoogle Scholar
  73. Sorokin DY, Tourova TP, Galinski EA, Muyzer G, Kuenen JG (2008b) Thiohalorhabdus denitrificans gen. nov. sp. nov., an extremely halophilic obligately chemolithoautotrophic and facultatively anaerobic sulfur-oxidizing deep-lineage gammaproteobacterium from hypersaline habitats. Int J Syst Evol Microbiol 58:2890–2897PubMedCrossRefGoogle Scholar
  74. Sorokin DY, Rusanov II, Pimenov NV, Tourova TP, Abbas B, Muyzer G (2010) Sulfidogenesis at extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol Ecol 73:278–290PubMedGoogle Scholar
  75. Sorokin DY, Kuenen JG, Muyzer G (2011) The microbial sulfur cycle in soda lakes. Front Microbial 2:44Google Scholar
  76. Sorokin DY, Panteleeva AN, Muntyan MS, Muyzer G (2012) Thioalkalivibrio sulfidophilus sp. nov., a haloalkaliphilic sulfur-oxidizing gammaproteobacterium from alkaline habitats. Int J Syst Evol Microbiol 62:1884–1889PubMedCrossRefGoogle Scholar
  77. Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365PubMedCrossRefGoogle Scholar
  78. Stott MB, Franzmann PD, Zappia LR, Watling HR, Quan LP, Clark BJ, Houchin MR, Miller PC, Williams TL (2001) Thiocyanate removal from saline CIP process water by a rotating biological contactor, with reuse of the water for bioleaching. Hydrometallurgy 62:93–105CrossRefGoogle Scholar
  79. Takaichi S, Maoka T, Akimoto N, Sorokin DY, Banciu H, Kuenen JG (2004) Two novel yellow pigments natronochrome and chloronatronochrome from the natrono(alkali)philic sulfur-oxidizing bacterium Thialkalivibrio versutus ALJ 15. Tetrahedron Lett 45:303–305CrossRefGoogle Scholar
  80. Tikhonova T, Slutsky A, Antipov AN, Boyko KM, Polyakov KM, Sorokin DY, Zvyagilskaya RA, Popov VO (2006) Molecular and catalytic properties of a novel cytochrome c nitrite reductase from nitrate-reducing haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens. BBA Proteins Proteom 1764:715–723CrossRefGoogle Scholar
  81. Tindall BJ (1988) Procaryotic life in the alkaline, saline, athalassic environment. In: Rodriguez-Valera F (ed) Halophilic bacteria. CRC Press, Boca Raton, pp 31–67Google Scholar
  82. Tourova TP, Spiridonova EM, Berg IA, Kuznetsov BB, Sorokin DY (2006) Occurrence, phylogeny and evolution of ribulose-1,5-bisphosphate carboxylase/oxygenase genes in obligately chemolithoautotrophic sulfur-oxidizing bacteria of the genera Thiomicrospira and Thioalkalimicrobium. Microbiology 152:2159–2169PubMedCrossRefGoogle Scholar
  83. Tourova TP, Spiridonova EM, Berg IA, Slobodova NV, Boulygina ES, Sorokin DY (2007) Phylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL and nifH gene sequences. Int J Syst Evol Microbiol 57:2387–2398PubMedCrossRefGoogle Scholar
  84. Tourova TP, Kovaleva OL, Sorokin DY, Muyzer G (2010) Ribulose-1,5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 156:2016–2025PubMedCrossRefGoogle Scholar
  85. Van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SV, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123PubMedCrossRefGoogle Scholar
  86. Visser JM, de Jong GAH, Robertson LA, Kuenen JG (1997) A novel membrane-bound flavocytochrome c sulfide dehydrogenase from the colorless sulfur bacterium Thiobacillus sp. W5. Arch Microbiol 167:295–301PubMedCrossRefGoogle Scholar
  87. Watling HR, Watkin ELJ, Ralph DE (2010) The resilience and versatility of acidophiles that contribute to the bio-assisted extraction of metals from mineral sulphides. Environ Technol 31:915–933CrossRefGoogle Scholar
  88. Wood AP, Kelly DP (1991) Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulfur-oxidizing autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156:277–280CrossRefGoogle Scholar
  89. Youatt JB (1954) Studies on the metabolism of Thiobacillus thiocyanooxidans. J Gen Microbiol 11:139–149PubMedGoogle Scholar
  90. Zavarzin GA (ed) (2007) Alkaliphilic microbial communities, vol XIV, Trans Winogradsky Inst Microbiol. Nauka, Moscow (in Russian)Google Scholar
  91. Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology 68:503–521 (Moscow, English Translation)Google Scholar
  92. Zavarzin GA, Zhilina TN (2000) Anaerobic chemotrophic alkaliphiles. In: Seckbach J (ed) Journey to diverse microbial world. Kluwer, Dordrecht, pp 191–208CrossRefGoogle Scholar
  93. Zhang G, Dong H, Xu X, Zhao D, Zhang C (2005) Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese continental scientific drilling project in China. Appl Environ Microbiol 71:3213–3227PubMedCrossRefGoogle Scholar
  94. Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EF, Osipov GA, Kostrikina NA (1997) Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic sulfate reducing bacterium. Int J Syst Evol Microbiol 47:144–149Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
  3. 3.Faculty of Biology and GeologyBabes-Bolyai UniversityCluj-NapocaRomania
  4. 4.Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia
  5. 5.Department of Aquatic MicrobiologyInstitute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations