Advertisement

The Family Coriobacteriaceae

  • Thomas ClavelEmail author
  • Patricia Lepage
  • Cédric Charrier
Reference work entry

Abstract

Coriobacteriaceae is a family within the order Coriobacteriales (phylum Actinobacteria), which includes 30 species belonging to 14 genera: Adlercreutzia, Asaccharobacter, Atopobium, Collinsella, Coriobacterium (type genus), Cryptobacterium, Denitrobacterium, Eggerthella, Enterorhabdus, Gordonibacter, Olsenella, Paraeggerthella, Parvibacter, and Slackia. These bacteria are normal dwellers of mammalian body habitats such as the oral cavity, the gastrointestinal tract, and the genital tract. In the gut, Coriobacteriaceae carry out functions of importance such as the conversion of bile salts and steroids as well as the activation of dietary polyphenols. However, they can also be considered as pathobionts, because their occurrence has been associated with a range of pathologies such as bacteremia, periodontitis, and vaginosis. Coriobacteriaceae are usually nonmotile, nonspore-forming, nonhemolytic, and strictly anaerobic bacteria that grow as small rods; stain Gram-positive; are negative for oxidase, urease, and indole production; and are characterized by a high G+C content of DNA (around 60 mol%). Many species are asaccharolytic and possess a variety of aminopeptidases. Typical cellular fatty acids are C18:1w9c as well as saturated fatty acids (C14:0, C16:0, C18:0) and derivatives thereof. The production of menaquinone-6 homologues of vitamin K2 seems also to be an attribute of the family. Taking into account the aforementioned metabolic functions of Coriobacteriaceae, their clinical relevance and the fact that an increasing number of novel species have been described very recently, this bacterial family will surely gain an increasing attention in the field of host/bacteria interactions in the near future.

References

  1. Aas JA, Griffen AL, Dardis SR et al (2008) Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 46:1407–1417PubMedCentralPubMedCrossRefGoogle Scholar
  2. Al-Jashamy K, Murad A, Zeehaida M et al (2010) Prevalence of colorectal cancer associated with Streptococcus bovis among inflammatory bowel and chronic gastrointestinal tract disease patients. Asian Pac J Cancer Prev 11:1765–1768PubMedGoogle Scholar
  3. Anderson RC, Rasmussen MA, Allison MJ (1996) Enrichment and isolation of a nitropropanol-metabolizing bacterium from the rumen. Appl Environ Microbiol 62:3885–3886PubMedCentralPubMedGoogle Scholar
  4. Anderson RC, Rasmussen MA, Jensen NS et al (2000) Denitrobacterium detoxificans gen. nov., sp. nov., a ruminal bacterium that respires on nitrocompounds. Int J Syst Evol Microbiol 50(2):633–638PubMedGoogle Scholar
  5. Anderson RC, Majak W, Rassmussen MA et al (2005) Toxicity and metabolism of the conjugates of 3-nitropropanol and 3-nitropropionic acid in forages poisonous to livestock. J Agric Food Chem 53:2344–2350PubMedCrossRefGoogle Scholar
  6. Angelakis E, Roux V, Raoult D et al (2009) Human case of Atopobium rimae bacteremia. Emerg Infect Dis 15:354–355PubMedCentralPubMedCrossRefGoogle Scholar
  7. Axelson M, Setchell KD (1981) The excretion of lignans in rats—evidence for an intestinal bacterial source for this new group of compounds. FEBS Lett 123:337–342PubMedCrossRefGoogle Scholar
  8. Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75PubMedCentralPubMedCrossRefGoogle Scholar
  9. Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bailey GD, Love DN (1986) Eubacterium fossor sp. nov. An agar-corroding organism from normal pharynx and oral and respiratory tract lesions of horses. Int J Syst Bacteriol 36:383–387CrossRefGoogle Scholar
  11. Batchelor JM, Grindlay DJ, Williams HC (2010) What’s new in atopic eczema? An analysis of systematic reviews published in 2008 and 2009. Clin Exp Dermatol 35:823–827PubMedCrossRefGoogle Scholar
  12. Becker N, Kunath J, Loh G et al (2011) Human intestinal microbiota: characterization of a simplified and stable gnotobiotic rat model. Gut Microbes 2:25–33PubMedCrossRefGoogle Scholar
  13. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R et al (2012) The oral metagenome in health and disease. ISME J 6:46–56PubMedCentralPubMedCrossRefGoogle Scholar
  14. Benson AK, Kelly SA, Legge R et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA 107:18933–18938PubMedCentralPubMedCrossRefGoogle Scholar
  15. Blaut M, Clavel T (2007) Metabolic diversity of the intestinal microbiota: implications for health and disease. J Nutr 137:751S–755SPubMedGoogle Scholar
  16. Bok CW, Ng YS (2009) Eggerthella lenta as a cause of anaerobic spondylodiscitis. Singapore Med J 50:e393–e396PubMedGoogle Scholar
  17. Bokkenheuser VD, Winter J, Dehazya P et al (1977) Isolation and characterization of human fecal bacteria capable of 21-dehydroxylating corticoids. Appl Environ Microbiol 34:571–575PubMedCentralPubMedGoogle Scholar
  18. Bokkenheuser VD, Winter J, Finegold SM et al (1979) New markers for Eubacterium lentum. Appl Environ Microbiol 37:1001–1006PubMedCentralPubMedGoogle Scholar
  19. Bokkenheuser VD, Winter J, O’Rourke S et al (1980) Isolation and characterization of fecal bacteria capable of 16 alpha-dehydroxylating corticoids. Appl Environ Microbiol 40:803–808PubMedCentralPubMedGoogle Scholar
  20. Borriello SP, Setchell KD, Axelson M et al (1985) Production and metabolism of lignans by the human faecal flora. J Appl Bacteriol 58:37–43PubMedCrossRefGoogle Scholar
  21. Bradshaw CS, Pirotta M, De Guingand D et al (2012) Efficacy of oral metronidazole with vaginal clindamycin or vaginal probiotic for bacterial vaginosis: randomised placebo-controlled double-blind trial. PLoS One 7:e34540PubMedCentralPubMedCrossRefGoogle Scholar
  22. Braun M, Sun B, Anselment B et al (2012) Novel whole-cell biocatalysts with recombinant hydroxysteroid dehydrogenases for the asymmetric reduction of dehydrocholic acid. Appl Microbiol Biotechnol 95:1457–1468PubMedCrossRefGoogle Scholar
  23. Brew BK, Allen CW, Toelle BG et al (2011) Systematic review and meta-analysis investigating breast feeding and childhood wheezing illness. Paediatr Perinat Epidemiol 25:507–518PubMedCrossRefGoogle Scholar
  24. Bryant MP, Robinson IM (1961) Some nutritional requirements of the genus Ruminococcus. Appl Microbiol 9:91–95PubMedCentralPubMedGoogle Scholar
  25. Cato EP (1983) Transfer of Peptostreptococcus parvulus (Weinberg, Nativelle, and Prévot 1937) Smith 1957 to the Genus Streptococcus: Streptococcus parvulus (Weinberg, Nativelle, and Prévot 1937) comb. nov., nom. rev., emend. Int J Syst Bacteriol 33:82–84CrossRefGoogle Scholar
  26. Chan RC, Mercer J (2008) First Australian description of Eggerthella lenta bacteraemia identified by 16S rRNA gene sequencing. Pathology 40:409–410PubMedCrossRefGoogle Scholar
  27. Chan JF, Lau SK, Curreem SO et al (2012) First report of spontaneous intrapartum Atopobium vaginae bacteremia. J Clin Microbiol 50:2525–2528PubMedCentralPubMedCrossRefGoogle Scholar
  28. Chavez de Paz LE, Molander A, Dahlen G (2004) Gram-positive rods prevailing in teeth with apical periodontitis undergoing root canal treatment. Int Endod J 37:579–587PubMedCrossRefGoogle Scholar
  29. Chen W, Liu F, Ling Z et al (2012) Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 7:e39743PubMedCentralPubMedCrossRefGoogle Scholar
  30. Choi EJ (2009) Evaluation of equol function on anti- or prooxidant status in vivo. J Food Sci 74:H65–H71PubMedCrossRefGoogle Scholar
  31. Chow J, Tang H, Mazmanian SK (2011) Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol 23:473–480PubMedCentralPubMedCrossRefGoogle Scholar
  32. Chung HY, Sung H, Lee MY et al (2007) A case of bacteremia by Atopobium rimae in a patient with liver cirrhosis. Korean J Lab Med 27:351–354PubMedCrossRefGoogle Scholar
  33. Claus SP, Ellero SL, Berger B et al (2011) Colonization-induced host-gut microbial metabolic interaction. MBio 2:e00271–00210PubMedCentralPubMedCrossRefGoogle Scholar
  34. Clavel T (2006) Metabolism of the dietary lignan secoisolariciresinol diglucoside by human intestinal bacteria. Logos Verlag, Berlin. ISBN 3-8325-1192-XGoogle Scholar
  35. Clavel T, Mapesa JO (2013) Phenolics in human nutrition: importance of the intestinal microbiome for isoflavone and lignan bioavailability. In: Ramawat KG, Merillon JM (eds) Handbook of natural products. Elsevier, AmsterdamGoogle Scholar
  36. Clavel T, Fallani M, Lepage P et al (2005) Isoflavones and functional foods alter the dominant intestinal microbiota in postmenopausal women. J Nutr 135:2786–2792PubMedGoogle Scholar
  37. Clavel T, Dore J, Blaut M (2006) Bioavailability of lignans in human subjects. Nutr Res Rev 19:187–196PubMedCrossRefGoogle Scholar
  38. Clavel T, Charrier C, Braune A et al (2009) Isolation of bacteria from the ileal mucosa of TNFdeltaARE mice and description of Enterorhabdus mucosicola gen. nov., sp. nov. Int J Syst Evol Microbiol 59:1805–1812PubMedGoogle Scholar
  39. Clavel T, Duck W, Charrier C et al (2010) Enterorhabdus caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse model of spontaneous colitis, and emended description of the genus Enterorhabdus Clavel et al. 2009. Int J Syst Evol Microbiol 60:1527–1531PubMedCentralPubMedGoogle Scholar
  40. Clavel T, Charrier C, Wenning M et al (2013) Parvibacter caecicola gen. nov., sp. nov., a new bacterium of the family Coriobacteriaceae isolated from the caecum of a mouse. Int J Syst Evol Microbiol 63(7):2642–2648PubMedGoogle Scholar
  41. Collado MC, Sanz Y (2007a) Quantification of mucosa-adhered microbiota of lambs and calves by the use of culture methods and fluorescent in situ hybridization coupled with flow cytometry techniques. Vet Microbiol 121:299–306PubMedCrossRefGoogle Scholar
  42. Collado MC, Sanz Y (2007b) Characterization of the gastrointestinal mucosa-associated microbiota of pigs and chickens using culture-based and molecular methodologies. J Food Prot 70:2799–2804PubMedGoogle Scholar
  43. Collins MD, Wallbanks S (1992) Comparative sequence analyses of the 16S rRNA genes of Lactobacillus minutus, Lactobacillus rimae and Streptococcus parvulus: proposal for the creation of a new genus Atopobium. FEMS Microbiol Lett 74:235–240PubMedGoogle Scholar
  44. Copeland A, Sikorski J, Lapidus A, Nolan M, Del Rio TG, Lucas S, Chen F, Tice H, Pitluck S, Cheng JF, Pukall R, Chertkov O, Brettin T, Han C, Detter JC, Kuske C, Bruce D, Goodwin L, Ivanova N, Mavromatis K, Mikhailova N, Chen A, Palaniappan K, Chain P, Rohde M, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Detter JC (2009) Complete genome sequence of Atopobium parvulum type strain (IPP 1246). Stand Genomic Sci 1(2):166–173. doi: 10.4056/sigs.29547. PubMed PMID: 21304653; PubMed Central PMCID: PMC3035223Google Scholar
  45. Credito KL, Appelbaum PC (2004) Activity of OPT-80, a novel macrocycle, compared with those of eight other agents against selected anaerobic species. Antimicrob Agents Chemother 48:4430–4434PubMedCentralPubMedCrossRefGoogle Scholar
  46. Danielsson D, Teigen PK, Moi H (2011) The genital econiche: focus on microbiota and bacterial vaginosis. Ann N Y Acad Sci 1230:48–58PubMedCrossRefGoogle Scholar
  47. Dawson KA, Allison MJ, Hartman PA (1980) Characteristics of anaerobic oxalate-degrading enrichment cultures from the rumen. Appl Environ Microbiol 40:840–846PubMedCentralPubMedGoogle Scholar
  48. De Backer E, Verhelst R, Verstraelen H et al (2006) Antibiotic susceptibility of Atopobium vaginae. BMC Infect Dis 6:51PubMedCentralPubMedCrossRefGoogle Scholar
  49. Devkota S, Wang Y, Musch MW et al (2012) Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487:104–108PubMedCentralPubMedGoogle Scholar
  50. Dewhirst FE, Paster BJ, Tzellas N et al (2001) Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of Olsenella gen. nov., reclassification of Lactobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov. Int J Syst Evol Microbiol 51:1797–1804PubMedGoogle Scholar
  51. Duboc H, Rajca S, Rainteau D et al (2013) Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62(4):531–539PubMedCrossRefGoogle Scholar
  52. Duck LW, Walter MR, Novak J et al (2007) Isolation of flagellated bacteria implicated in Crohn’s disease. Inflamm Bowel Dis 13:1191–1201PubMedCrossRefGoogle Scholar
  53. Eggerth AH (1935) The gram-positive non-spore-bearing anaerobic bacilli of human feces. J Bacteriol 30:277–299PubMedCentralPubMedGoogle Scholar
  54. Eschenlauer SC, McKain N, Walker ND et al (2002) Ammonia production by ruminal microorganisms and enumeration, isolation, and characterization of bacteria capable of growth on peptides and amino acids from the sheep rumen. Appl Environ Microbiol 68:4925–4931PubMedCentralPubMedCrossRefGoogle Scholar
  55. Eyssen H, Verhulst A (1984) Biotransformation of linoleic acid and bile acids by Eubacterium lentum. Appl Environ Microbiol 47:39–43PubMedCentralPubMedGoogle Scholar
  56. Ezaki T, Yabuuchi E (1986) Transfer of Peptococcus heliotrinreducens corrig. to the Genus Peptostreptococcus: Peptostreptococcus heliotrinreducens Lanigan 1983 comb. nov. Int J Syst Bacteriol 36:107–108CrossRefGoogle Scholar
  57. Ferris MJ, Masztal A, Martin DH (2004) Use of species-directed 16S rRNA gene PCR primers for detection of Atopobium vaginae in patients with bacterial vaginosis. J Clin Microbiol 42:5892–5894PubMedCentralPubMedCrossRefGoogle Scholar
  58. Finegold SM, Sutter VL, Mathisen GE (1983) Normal indigenous intestinal flora. In: Henteges DJ (ed) Human intestinal microflora in health and disease. Academic, New York, pp 3–31CrossRefGoogle Scholar
  59. Geissdorfer W, Bohmer C, Pelz K et al (2003) Tuboovarian abscess caused by Atopobium vaginae following transvaginal oocyte recovery. J Clin Microbiol 41:2788–2790PubMedCentralPubMedCrossRefGoogle Scholar
  60. Gillespie JJ, Wattam AR, Cammer SA et al (2011) PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infect Immun 79:4286–4298PubMedCentralPubMedCrossRefGoogle Scholar
  61. Gnewuch C, Liebisch G, Langmann T et al (2009) Serum bile acid profiling reflects enterohepatic detoxification state and intestinal barrier function in inflammatory bowel disease. World J Gastroenterol 15:3134–3141PubMedCentralPubMedCrossRefGoogle Scholar
  62. Goker M, Held B, Lucas S et al (2010) Complete genome sequence of Olsenella uli type strain (VPI D76D-27C). Stand Genomic Sci 3:76–84PubMedCentralPubMedCrossRefGoogle Scholar
  63. Goldstein EJ, Citron DM, Merriam CV et al (2003) In vitro activities of dalbavancin and nine comparator agents against anaerobic gram-positive species and corynebacteria. Antimicrob Agents Chemother 47:1968–1971PubMedCentralPubMedCrossRefGoogle Scholar
  64. Haas F, König H (1988) Coriobacterium glomerans gen. nov., sp. nov. from the intestinal tract of the red soldier bug. Int J Syst Bacteriol 38:382–384CrossRefGoogle Scholar
  65. Harmsen HJ, Wildeboer-Veloo AC, Grijpstra J et al (2000) Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 66:4523–4527PubMedCentralPubMedCrossRefGoogle Scholar
  66. Hauduroy P, Ehringer G, Urbain A et al (1937) Dictionnaire des bactéries pathogènes. Masson et Cie, ParisGoogle Scholar
  67. Hirano S, Masuda N (1982) Enhancement of the 7 alpha-dehydroxylase activity of a gram-positive intestinal anaerobe by Bacteroides and its significance in the 7-dehydroxylation of ursodeoxycholic acid. J Lipid Res 23:1152–1158PubMedGoogle Scholar
  68. Hirokawa Y, Kinoshita H, Tanaka T et al (2008) Water-soluble pleuromutilin derivative with excellent in vitro and in vivo antibacterial activity against gram-positive pathogens. J Med Chem 51:1991–1994PubMedCrossRefGoogle Scholar
  69. Holdeman LV, Cato EP, Moore WE (1977) Anaerobe laboratory manual, 4th edn. Virginia Polytechnic and State University, Blacksburg, VAGoogle Scholar
  70. Hormannsperger G, Clavel T, Haller D (2012) Gut matters: microbe-host interactions in allergic diseases. J Allergy Clin Immunol 129:1452–1459PubMedCrossRefGoogle Scholar
  71. Hovermale JT, Craig AM (2002) Metabolism of pyrrolizidine alkaloids by Peptostreptococcus heliotrinreducens and a mixed culture derived from ovine ruminal fluid. Biophys Chem 101–102:387–399PubMedCrossRefGoogle Scholar
  72. Hristov AN, Callaway TR, Lee C et al (2012) Rumen bacterial, archaeal, and fungal diversity of dairy cows in response to lauric or myristic acids ingestion. J Anim Sci 90(12):4449–4457PubMedCrossRefGoogle Scholar
  73. Hsiao WW, Li KL, Liu Z et al (2012) Microbial transformation from normal oral microbiota to acute endodontic infections. BMC Genomics 13:345PubMedCentralPubMedCrossRefGoogle Scholar
  74. Jin JS, Kitahara M, Sakamoto M et al (2010) Slackia equolifaciens sp. nov., a human intestinal bacterium capable of producing equol. Int J Syst Evol Microbiol 60:1721–1724PubMedGoogle Scholar
  75. Joossens M, Huys G, Cnockaert M et al (2011) Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60:631–637PubMedCrossRefGoogle Scholar
  76. Kageyama A, Benno Y (2000) Emendation of genus Collinsella and proposal of Collinsella stercoris sp. nov. and Collinsella intestinalis sp. nov. Int J Syst Evol Microbiol 50(5):1767–1774PubMedGoogle Scholar
  77. Kageyama A, Benno Y (2001) Rapid detection of human fecal Eubacterium species and related genera by nested PCR method. Microbiol Immunol 45:315–318PubMedCrossRefGoogle Scholar
  78. Kageyama A, Benno Y, Nakase T (1999a) Phylogenetic and phenotypic evidence for the transfer of Eubacterium aerofaciens to the genus Collinsella as Collinsella aerofaciens gen. nov., comb. nov. Int J Syst Bacteriol 49(2):557–565PubMedCrossRefGoogle Scholar
  79. Kageyama A, Benno Y, Nakase T (1999b) Phylogenic and phenotypic evidence for the transfer of Eubacterium fossor to the genus Atopobium as Atopobium fossor comb. nov. Microbiol Immunol 43:389–395PubMedCrossRefGoogle Scholar
  80. Kageyama A, Benno Y, Nakase T (1999c) Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49(4):1725–1732PubMedCrossRefGoogle Scholar
  81. Kageyama A, Sakamoto M, Benno Y (2000) Rapid identification and quantification of Collinsella aerofaciens using PCR. FEMS Microbiol Lett 183:43–47PubMedCrossRefGoogle Scholar
  82. Kaltenpoth M, Winter SA, Kleinhammer A (2009) Localization and transmission route of Coriobacterium glomerans, the endosymbiont of pyrrhocorid bugs. FEMS Microbiol Ecol 69:373–383PubMedCrossRefGoogle Scholar
  83. Kim KS, Rowlinson MC, Bennion R et al (2010) Characterization of Slackia exigua isolated from human wound infections, including abscesses of intestinal origin. J Clin Microbiol 48:1070–1075PubMedCentralPubMedCrossRefGoogle Scholar
  84. Kitahara M, Takamine F, Imamura T et al (2000) Assignment of Eubacterium sp. VPI 12708 and related strains with high bile acid 7alpha-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 50(3):971–978PubMedGoogle Scholar
  85. Knoester M, Lashley LE, Wessels E et al (2011) First report of Atopobium vaginae bacteremia with fetal loss after chorionic villus sampling. J Clin Microbiol 49:1684–1686PubMedCentralPubMedCrossRefGoogle Scholar
  86. Kostelac D, Rechkemmer G, Briviba K (2003) Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem 51:7632–7635PubMedCrossRefGoogle Scholar
  87. Kostic AD, Gevers D, Pedamallu CS et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298PubMedCentralPubMedCrossRefGoogle Scholar
  88. Kraatz M, Taras D (2008) Veillonella magna sp. nov., isolated from the jejunal mucosa of a healthy pig, and emended description of Veillonella ratti. Int J Syst Evol Microbiol 58:2755–2761PubMedGoogle Scholar
  89. Kraatz M, Wallace RJ, Svensson L (2011) Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa. Int J Syst Evol Microbiol 61:795–803PubMedGoogle Scholar
  90. Kuiper GG, Lemmen JG, Carlsson B et al (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252–4263PubMedGoogle Scholar
  91. Kumar PS, Griffen AL, Barton JA et al (2003) New bacterial species associated with chronic periodontitis. J Dent Res 82:338–344PubMedCrossRefGoogle Scholar
  92. Kumar PS, Griffen AL, Moeschberger ML et al (2005) Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol 43:3944–3955PubMedCentralPubMedCrossRefGoogle Scholar
  93. Kutschera M, Engst W, Blaut M et al (2011) Isolation of catechin-converting human intestinal bacteria. J Appl Microbiol 111:165–175PubMedCrossRefGoogle Scholar
  94. Lamont RF, Sobel JD, Akins RA et al (2011) The vaginal microbiome: new information about genital tract flora using molecular based techniques. BJOG 118:533–549PubMedCentralPubMedCrossRefGoogle Scholar
  95. Landais C, Doudier B, Imbert G et al (2007) Application of rrs gene sequencing to elucidate the clinical significance of Eggerthela lenta infection. J Clin Microbiol 45:1063–1065PubMedCentralPubMedCrossRefGoogle Scholar
  96. Lanigan GW (1976) Peptococcus heliotrinreducans, sp. nov., a cytochrome-producing anaerobe which metabolizes pyrrolizidine alkaloids. J Gen Microbiol 94:1–10PubMedCrossRefGoogle Scholar
  97. Larkin TA, Price WE, Astheimer LB (2007) Increased probiotic yogurt or resistant starch intake does not affect isoflavone bioavailability in subjects consuming a high soy diet. Nutrition 23:709–718PubMedCrossRefGoogle Scholar
  98. Lau SK, Woo PC, Fung AM et al (2004a) Anaerobic, non-sporulating, gram-positive bacilli bacteraemia characterized by 16S rRNA gene sequencing. J Med Microbiol 53:1247–1253PubMedCrossRefGoogle Scholar
  99. Lau SK, Woo PC, Woo GK et al (2004b) Eggerthella hongkongensis sp. nov. and Eggerthella sinensis sp. nov., two novel Eggerthella species, account for half of the cases of Eggerthella bacteremia. Diagn Microbiol Infect Dis 49:255–263PubMedCrossRefGoogle Scholar
  100. Lawson PA, Greetham HL, Gibson GR et al (2005) Slackia faecicanis sp. nov., isolated from canine faeces. Int J Syst Evol Microbiol 55:1243–1246PubMedGoogle Scholar
  101. Lee MR, Huang YT, Liao CH et al (2012) Clinical and microbiological characteristics of bacteremia caused by Eggerthella, Paraeggerthella, and Eubacterium species at a university hospital in Taiwan from 2001 to 2010. J Clin Microbiol 50:2053–2055PubMedCentralPubMedCrossRefGoogle Scholar
  102. Liderot K, Larsson M, Borang S et al (2010) Polymicrobial bloodstream infection with Eggerthella lenta and Desulfovibrio desulfuricans. J Clin Microbiol 48:3810–3812PubMedCentralPubMedCrossRefGoogle Scholar
  103. Lima KC, Coelho LT, Pinheiro IV et al (2011) Microbiota of dentinal caries as assessed by reverse-capture checkerboard analysis. Caries Res 45:21–30PubMedCrossRefGoogle Scholar
  104. Liu B, Faller LL, Klitgord N et al (2012) Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One 7:e37919PubMedCentralPubMedCrossRefGoogle Scholar
  105. Lyra A, Forssten S, Rolny P et al (2012) Comparison of bacterial quantities in left and right colon biopsies and faeces. World J Gastroenterol 18:4404–4411PubMedCentralPubMedCrossRefGoogle Scholar
  106. Mabrok HB, Klopfleisch R, Ghanem KZ et al (2012) Lignan transformation by gut bacteria lowers tumor burden in a gnotobiotic rat model of breast cancer. Carcinogenesis 33:203–208PubMedCrossRefGoogle Scholar
  107. Magee PJ, Raschke M, Steiner C et al (2006) Equol: a comparison of the effects of the racemic compound with that of the purified S-enantiomer on the growth, invasion, and DNA integrity of breast and prostate cells in vitro. Nutr Cancer 54:232–242PubMedCrossRefGoogle Scholar
  108. Marchesi JR, Dutilh BE, Hall N et al (2011) Towards the human colorectal cancer microbiome. PLoS One 6:e20447PubMedCentralPubMedCrossRefGoogle Scholar
  109. Martinez I, Wallace G, Zhang C et al (2009) Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol 75:4175–4184PubMedCentralPubMedCrossRefGoogle Scholar
  110. Martinez I, Lattimer JM, Hubach KL et al (2013) Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J 7(2):269–280PubMedCentralPubMedCrossRefGoogle Scholar
  111. Maruo T, Sakamoto M, Ito C et al (2008) Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol 58:1221–1227PubMedGoogle Scholar
  112. Mathey J, Mardon J, Fokialakis N et al (2007) Modulation of soy isoflavones bioavailability and subsequent effects on bone health in ovariectomized rats: the case for equol. Osteoporos Int 18:671–679PubMedCrossRefGoogle Scholar
  113. Matthies A, Clavel T, Gutschow M et al (2008) Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl Environ Microbiol 74:4847–4852PubMedCentralPubMedCrossRefGoogle Scholar
  114. Matthies A, Blaut M, Braune A (2009) Isolation of a human intestinal bacterium capable of daidzein and genistein conversion. Appl Environ Microbiol 75:1740–1744PubMedCentralPubMedCrossRefGoogle Scholar
  115. McLellan SL, Huse SM, Mueller-Spitz SR et al (2010) Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12:378–392PubMedCentralPubMedCrossRefGoogle Scholar
  116. Merriam CV, Citron DM, Tyrrell KL et al (2006) In vitro activity of azithromycin and nine comparator agents against 296 strains of oral anaerobes and 31 strains of Eikenella corrodens. Int J Antimicrob Agents 28:244–248PubMedCrossRefGoogle Scholar
  117. Messina M (2010) A brief historical overview of the past two decades of soy and isoflavone research. J Nutr 140:1350S–1354SPubMedCrossRefGoogle Scholar
  118. Mimouni Bloch A, Mimouni D, Mimouni M et al (2002) Does breastfeeding protect against allergic rhinitis during childhood? A meta-analysis of prospective studies. Acta Paediatr 91:275–279PubMedCrossRefGoogle Scholar
  119. Minamida K, Tanaka M, Abe A et al (2006) Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine. J Biosci Bioeng 102:247–250PubMedCrossRefGoogle Scholar
  120. Minamida K, Ota K, Nishimukai M et al (2008) Asaccharobacter celatus gen. nov., sp. nov., isolated from rat caecum. Int J Syst Evol Microbiol 58:1238–1240PubMedGoogle Scholar
  121. Moore WE, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979PubMedCentralPubMedGoogle Scholar
  122. Moore WEC, Cato EP, Holdeman LV (1971) Eubacterium lentum (Eggerth) Prévot 1938: emendation of description and designation of the neotype strain. Int J Syst Bacteriol 21:299–303CrossRefGoogle Scholar
  123. Moore WE, Holdeman LV, Smibert RM et al (1982) Bacteriology of experimental gingivitis in young adult humans. Infect Immun 38:651–667PubMedCentralPubMedGoogle Scholar
  124. Moore WE, Holdeman LV, Cato EP et al (1983) Bacteriology of moderate (chronic) periodontitis in mature adult humans. Infect Immun 42:510–515PubMedCentralPubMedGoogle Scholar
  125. Mosca A, Summanen P, Finegold SM et al (1998) Cellular fatty acid composition, soluble-protein profile, and antimicrobial resistance pattern of Eubacterium lentum. J Clin Microbiol 36:752–755PubMedCentralPubMedGoogle Scholar
  126. Mavrommatis K, Pukall R, Rohde C, Chen F, Sims D, Brettin T, Kuske C, Detter JC, Han C, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Lucas S, Tice H, Cheng JF, Bruce D, Goodwin L, Pitluck S, Ovchinnikova G, Pati A, Ivanova N, Chen A, Palaniappan K, Chain P, D'haeseleer P, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Rohde M, Klenk HP, Kyrpides NC (2009) Complete genome sequence of Cryptobacterium curtum type strain (12-3). Stand Genomic Sci 1(2):93–100. doi: 10.4056/sigs.12260. PubMed PMID: 21304644; PubMed Central PMCID: PMC3035227PubMedCentralPubMedCrossRefGoogle Scholar
  127. Nadal I, Donat E, Ribes-Koninckx C et al (2007) Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 56:1669–1674PubMedCrossRefGoogle Scholar
  128. Nadkarni MA, Simonian MR, Harty DW et al (2010) Lactobacilli are prominent in the initial stages of polymicrobial infection of dental pulp. J Clin Microbiol 48:1732–1740PubMedCentralPubMedCrossRefGoogle Scholar
  129. Nagai F, Watanabe Y, Morotomi M (2010) Slackia piriformis sp. nov. and Collinsella tanakaei sp. nov., new members of the family Coriobacteriaceae, isolated from human faeces. Int J Syst Evol Microbiol 60:2639–2646PubMedGoogle Scholar
  130. Nakazawa F, Hoshino E (2004) DNA-DNA relatedness and phylogenetic positions of Slackia exigua, Slackia heliotrinireducens, Eggerthella lenta, and other related bacteria. Oral Microbiol Immunol 19:343–346PubMedCrossRefGoogle Scholar
  131. Nakazawa F, Poco SE, Ikeda T et al (1999) Cryptobacterium curtum gen. nov., sp. nov., a new genus of gram-positive anaerobic rod isolated from human oral cavities. Int J Syst Bacteriol 49(3):1193–1200PubMedCrossRefGoogle Scholar
  132. Olsen I, Johnson JL, Moore LV et al (1991) Lactobacillus uli sp. nov. and Lactobacillus rimae sp. nov. from the human gingival crevice and emended descriptions of Lactobacillus minutus and Streptococcus parvulus. Int J Syst Bacteriol 41:261–266PubMedCrossRefGoogle Scholar
  133. Poco SE Jr, Nakazawa F, Ikeda T et al (1996) Eubacterium exiguum sp. nov., isolated from human oral lesions. Int J Syst Bacteriol 46:1120–1124PubMedCrossRefGoogle Scholar
  134. Polatti F (2012) Bacterial vaginosis, Atopobium vaginae and nifuratel. Curr Clin Pharmacol 7:36–40PubMedCentralPubMedCrossRefGoogle Scholar
  135. Preza D, Olsen I, Aas JA et al (2008) Bacterial profiles of root caries in elderly patients. J Clin Microbiol 46:2015–2021PubMedCentralPubMedCrossRefGoogle Scholar
  136. Pukall R, Lapidus A, Nolan M, Copeland A, Glavina Del Rio T, Lucas S, Chen F, Tice H, Cheng JF, Chertkov O, Bruce D, Goodwin L, Kuske C, Brettin T, Detter JC, Han C, Pitluck S, Pati A, Mavrommatis K, Ivanova N, Ovchinnikova G, Chen A, Palaniappan K, Schneider S, Rohde M, Chain P, D’haeseleer P, Göker M, Bristow J, Eisen JA, Markowitz V, Kyrpides NC, Klenk HP, Hugenholtz P (2009) Complete genome sequence of Slackia heliotrinireducens type strain (RHS 1). Stand Genomic Sci 1(3):234–241. doi: 10.4056/sigs.37633. PubMed PMID: 21304663; PubMed Central PMCID: PMC3035243PubMedCentralPubMedCrossRefGoogle Scholar
  137. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65PubMedCentralPubMedCrossRefGoogle Scholar
  138. Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60PubMedCrossRefGoogle Scholar
  139. Rainey FA, Weiss N, Stackebrandt E (1994) Coriobacterium and Atopobium are phylogenetic neighbors within the Actinomycetes line of descent. Syst Appl Microbiol 17:202–205CrossRefGoogle Scholar
  140. Rakoff-Nahoum S, Medzhitov R (2007) Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317:124–127PubMedCrossRefGoogle Scholar
  141. Rautio M, Saxen H, Siitonen A et al (2000) Bacteriology of histopathologically defined appendicitis in children. Pediatr Infect Dis J 19:1078–1083PubMedCrossRefGoogle Scholar
  142. Ravel J, Gajer P, Abdo Z et al (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA 108(Suppl 1):4680–4687PubMedCentralPubMedCrossRefGoogle Scholar
  143. Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259PubMedCrossRefGoogle Scholar
  144. Rodriguez Jovita M, Collins MD, Sjoden B et al (1999) Characterization of a novel Atopobium isolate from the human vagina: description of Atopobium vaginae sp. nov. Int J Syst Bacteriol 49(4):1573–1576PubMedCrossRefGoogle Scholar
  145. Rowland IR, Wiseman H, Sanders TA et al (2000) Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer 36:27–32PubMedCrossRefGoogle Scholar
  146. Salimnia H, Noronha A, Sobel JD et al (2008) Sepsis associated with a new Atopobium species, provisionally named Atopobium detroiti: case report and review of the current status of the species Atopobium. Scand J Infect Dis 40:679–681PubMedCrossRefGoogle Scholar
  147. Santiago GL, Tency I, Verstraelen H et al (2012) Longitudinal qPCR study of the dynamics of L. crispatus, L. iners, A. vaginae, (sialidase positive) G. vaginalis, and P. bivia in the vagina. PLoS One 7:e45281PubMedCrossRefGoogle Scholar
  148. Sato T, Hoshino E, Uematsu H et al (1993) Predominant obligate anaerobes in necrotic pulps of human deciduous teeth. Microbiol Ecol Health Dis 6:269–275CrossRefGoogle Scholar
  149. Sato T, Sato M, Matsuyama J et al (1998) Restriction fragment-length polymorphism analysis of 16S rDNA from oral asaccharolytic Eubacterium species amplified by polymerase chain reaction. Oral Microbiol Immunol 13:23–29PubMedCrossRefGoogle Scholar
  150. Saunders E, Pukall R, Abt B et al (2009) Complete genome sequence of Eggerthella lenta type strain (IPP VPI 0255). Stand Genomic Sci 1:174–182PubMedCentralPubMedCrossRefGoogle Scholar
  151. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedCentralPubMedGoogle Scholar
  152. Schwiertz A, Le Blay G, Blaut M (2000) Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 66:375–382PubMedCentralPubMedCrossRefGoogle Scholar
  153. Setchell KD, Lawson AM, Mitchell FL et al (1980) Lignans in man and in animal species. Nature 287:740–742PubMedCrossRefGoogle Scholar
  154. Setchell KD, Lawson AM, Borriello SP et al (1981) Lignan formation in man–microbial involvement and possible roles in relation to cancer. Lancet 2:4–7PubMedCrossRefGoogle Scholar
  155. Setchell KD, Gosselin SJ, Welsh MB et al (1987) Dietary estrogens—a probable cause of infertility and liver disease in captive cheetahs. Gastroenterology 93:225–233PubMedGoogle Scholar
  156. Setchell KD, Clerici C, Lephart ED et al (2005) S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am J Clin Nutr 81:1072–1079PubMedGoogle Scholar
  157. Shinkaruk S, Carreau C, Flouriot G et al (2010) Comparative effects of R- and S-equol and implication of transactivation functions (AF-1 and AF-2) in estrogen receptor-induced transcriptional activity. Nutrients 2:340–354PubMedCentralPubMedCrossRefGoogle Scholar
  158. Siqueira JF Jr, Rocas IN (2005) Uncultivated phylotypes and newly named species associated with primary and persistent endodontic infections. J Clin Microbiol 43:3314–3319PubMedCentralPubMedCrossRefGoogle Scholar
  159. Smibert RM, Holdeman LV (1976) Clinical isolates of anaerobic gram-negative rods with a formate-fumarate energy metabolism: Bacteroides corrodens, Vibrio succionogenes, and unidentified strains. J Clin Microbiol 3:432–437PubMedCentralPubMedGoogle Scholar
  160. Sneath PHA, Mair NS, Elisabeth Sharpe M (1986) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, BaltimoreGoogle Scholar
  161. Sobhani I, Tap J, Roudot-Thoraval F et al (2011) Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 6:e16393PubMedCentralPubMedCrossRefGoogle Scholar
  162. Sperry JF, Wilkins TD (1976a) Arginine, a growth-limiting factor for Eubacterium lentum. J Bacteriol 127:780–784PubMedCentralPubMedGoogle Scholar
  163. Sperry JF, Wilkins TD (1976b) Cytochrome spectrum of an obligate anaerobe, Eubacterium lentum. J Bacteriol 125:905–909PubMedCentralPubMedGoogle Scholar
  164. Srinivasan S, Hoffman NG, Morgan MT et al (2012) Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS One 7:e37818PubMedCentralPubMedCrossRefGoogle Scholar
  165. Stackebrandt E, Ludwig W (1994) The importance of using outgroup reference organisms in phylogenetic studies: the Atopobium case. Syst Appl Microbiol 17:39–43CrossRefGoogle Scholar
  166. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491CrossRefGoogle Scholar
  167. Stitch SR, Toumba JK, Groen MB et al (1980) Excretion, isolation and structure of a new phenolic constituent of female urine. Nature 287:738–740PubMedCrossRefGoogle Scholar
  168. Subramanian K, Mickel AK (2009) Molecular analysis of persistent periradicular lesions and root ends reveals a diverse microbial profile. J Endod 35:950–957PubMedCrossRefGoogle Scholar
  169. Swidsinski A, Mendling W, Loening-Baucke V et al (2005) Adherent biofilms in bacterial vaginosis. Obstet Gynecol 106:1013–1023PubMedCrossRefGoogle Scholar
  170. Swidsinski A, Dorffel Y, Loening-Baucke V et al (2011) Response of Gardnerella vaginalis biofilm to 5 days of moxifloxacin treatment. FEMS Immunol Med Microbiol 61:41–46PubMedCrossRefGoogle Scholar
  171. Takamine F, Imamura T (1995) Isolation and characterization of bile acid 7-dehydroxylating bacteria from human feces. Microbiol Immunol 39:11–18PubMedCrossRefGoogle Scholar
  172. Tanaka K, Mikamo H, Nakao K et al (2006) In vitro antianaerobic activity of DX-619, a new des-fluoro(6) quinolone. Antimicrob Agents Chemother 50:3908–3913PubMedCentralPubMedCrossRefGoogle Scholar
  173. Tap J, Mondot S, Levenez F et al (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11:2574–2584PubMedCrossRefGoogle Scholar
  174. Thompson-Chagoyan OC, Fallani M, Maldonado J et al (2011) Faecal microbiota and short-chain fatty acid levels in faeces from infants with cow’s milk protein allergy. Int Arch Allergy Immunol 156:325–332PubMedCrossRefGoogle Scholar
  175. Thota VR, Dacha S, Natarajan A et al (2011) Eggerthella lenta bacteremia in a Crohn’s disease patient after ileocecal resection. Future Microbiol 6:595–597PubMedCrossRefGoogle Scholar
  176. Tjalsma H, Boleij A, Marchesi JR et al (2012) A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 10:575–582PubMedCrossRefGoogle Scholar
  177. Togni G, Battini V, Bulgheroni A et al (2011) In vitro activity of nifuratel on vaginal bacteria: could it be a good candidate for the treatment of bacterial vaginosis? Antimicrob Agents Chemother 55:2490–2492PubMedCentralPubMedCrossRefGoogle Scholar
  178. Tsuji H, Moriyama K, Nomoto K et al (2010) Isolation and characterization of the equol-producing bacterium Slackia sp. strain NATTS. Arch Microbiol 192:279–287PubMedCrossRefGoogle Scholar
  179. Uematsu H, Sato N, Djais A et al (2006) Degradation of arginine by Slackia exigua ATCC 700122 and Cryptobacterium curtum ATCC 700683. Oral Microbiol Immunol 21:381–384PubMedCrossRefGoogle Scholar
  180. Verhelst R, Verstraelen H, Claeys G et al (2004) Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol 4:16PubMedCentralPubMedCrossRefGoogle Scholar
  181. Wade WG, Downes J, Dymock D et al (1999) The family Coriobacteriaceae: reclassification of Eubacterium exiguum (Poco et al. 1996) and Peptostreptococcus heliotrinreducens (Lanigan 1976) as Slackia exigua gen. nov., comb. nov. and Slackia heliotrinireducens gen. nov., comb. nov., and Eubacterium lentum (Prevot 1938) as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49(2):595–600PubMedCrossRefGoogle Scholar
  182. Walker AW, Ince J, Duncan SH et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:220–230PubMedCentralPubMedCrossRefGoogle Scholar
  183. Wang XL, Hur HG, Lee JH et al (2005) Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol 71:214–219PubMedCentralPubMedCrossRefGoogle Scholar
  184. Wang XL, Kim HJ, Kang SI et al (2007) Production of phytoestrogen S-equol from daidzein in mixed culture of two anaerobic bacteria. Arch Microbiol 187:155–160PubMedCrossRefGoogle Scholar
  185. Wang T, Cai G, Qiu Y et al (2012) Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 6:320–329PubMedCentralPubMedCrossRefGoogle Scholar
  186. Weinberg M, Nativelle R, Prévot AR (1937) Les microbes anaérobies. Masson et Cie, ParisGoogle Scholar
  187. Werner T, Wagner SJ, Martinez I et al (2011) Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut 60:325–333PubMedCrossRefGoogle Scholar
  188. White WB, Coleman JP, Hylemon PB (1988) Molecular cloning of a gene encoding a 45,000-Da polypeptide associated with bile acid 7-dehydroxylation in Eubacterium sp. strain VPI 12708. J Bacteriol 170:611–616PubMedCentralPubMedGoogle Scholar
  189. Woo PC, Lau SK, Teng JL et al (2008) Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 14:908–934PubMedCrossRefGoogle Scholar
  190. Woo PC, Teng JL, Lam KK et al (2010) First report of Gordonibacter pamelaeae bacteremia. J Clin Microbiol 48:319–322PubMedCentralPubMedCrossRefGoogle Scholar
  191. Woting A, Clavel T, Loh G et al (2010) Bacterial transformation of dietary lignans in gnotobiotic rats. FEMS Microbiol Ecol 72:507–514PubMedCrossRefGoogle Scholar
  192. Wu S, Rhee KJ, Albesiano E et al (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15:1016–1022PubMedCentralPubMedCrossRefGoogle Scholar
  193. Würdemann D, Tindall BJ, Pukall R et al (2009) Gordonibacter pamelaeae gen. nov., sp. nov., a new member of the Coriobacteriaceae isolated from a patient with Crohn’s disease, and reclassification of Eggerthella hongkongensis Lau et al. 2006 as Paraeggerthella hongkongensis gen. nov., comb. nov. Int J Syst Evol Microbiol 59:1405–1415PubMedGoogle Scholar
  194. Xu X, Harris KS, Wang HJ et al (1995) Bioavailability of soybean isoflavones depends upon gut microflora in women. J Nutr 125:2307–2315PubMedGoogle Scholar
  195. Yamagishi Y, Mikamo H, Tanaka K et al (2011) A case of uterine endometritis caused by Atopobium vaginae. J Infect Chemother 17:119–121PubMedCrossRefGoogle Scholar
  196. Yokoyama S, Suzuki T (2008) Isolation and characterization of a novel equol-producing bacterium from human feces. Biosci Biotechnol Biochem 72:2660–2666PubMedCrossRefGoogle Scholar
  197. Yokoyama S, Oshima K, Nomura I et al (2011) Complete genomic sequence of the equol-producing bacterium Eggerthella sp. strain YY7918, isolated from adult human intestine. J Bacteriol 193:5570–5571PubMedCentralPubMedCrossRefGoogle Scholar
  198. Yu ZT, Yao W, Zhu WY (2008) Isolation and identification of equol-producing bacterial strains from cultures of pig faeces. FEMS Microbiol Lett 282:73–80PubMedCrossRefGoogle Scholar
  199. Zhang H, DiBaise JK, Zuccolo A et al (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 106:2365–2370PubMedCentralPubMedCrossRefGoogle Scholar
  200. Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608PubMedGoogle Scholar
  201. Zhou X, Bent SJ, Schneider MG et al (2004) Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology 150:2565–2573PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Clavel
    • 1
    Email author
  • Patricia Lepage
    • 2
  • Cédric Charrier
    • 3
  1. 1.Junior Research Group Intestinal Microbiome, ZIEL – Research Center for Nutrition and Food SciencesTechnische Universität MünchenFreising-WeihenstephanGermany
  2. 2.INRA, AgroParisTechJouy-en-JosasFrance
  3. 3.Redx Anti-infectives LtdAlderley EdgeUK

Personalised recommendations