The Family Acidothermaceae

  • Alison M. Berry
  • Ravi D. Barabote
  • Philippe Normand
Reference work entry


Family Acidothermaceae, within the order Actinomycetales, contains thermophilic bacteria isolated from thermal springs and placed in genus Acidothermus. Genus Acidothermus was found and isolated from Yellowstone National Park, Wyoming, USA, in the course of a search for thermostable cellulases (Mohagheghi et al. Int J Syst Bacteriol 36:435–443, 1986). Acidothermus cellulolyticus is presently the sole species, in the sole genus of the family Acidothermaceae. A 16S rRNA-based phylogenetic study has found Acidothermus to be most closely related to Frankia; however, other genes have yielded different topologies. The genome of A. cellulolyticus strain 11B has been sequenced recently. Several genes for plant biomass degradation have been characterized; the thermostable properties of A. cellulolyticus enzymes for both cellulose and hemicellulose degradation have value for biotechnological applications.

The family Acidothermaceae was initially described as phylogenetically close to Frankia (Frankiaceae), Cryptosporangium (Cryptosporangiaceae), Geodermatophilaceae, (Geodermatophilaceae), Nakamurella (Nakamurellaceae), and Sporichthya (Sporichthyaceae) and grouped into suborder Frankineae. However, this suborder is now an order, Frankiales, and now considered to contain six families: besides the Frankiaceae the Acidothermaceae, the Cryptosporangiaceae, the Geodermatophilaceae, the Nakamurellaceae, and the Sporichthyaceae (Normand P et al. 2012).


Thermal Spring Synonymous Codon Usage Muramic Acid Transgenic Rice Seed Soil Organic Matter Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alloisio N, Marechal J, Heuvel B, Normand P, Berry A (2005) Characterization of a gene locus containing squalene-hopene cyclase (shc) in Frankia alni ACN14a, and an shc homolog in Acidothermus cellulolyticus. Symbiosis 39:83–90Google Scholar
  2. Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Daubin V et al (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19:1033–1043PubMedCentralPubMedCrossRefGoogle Scholar
  3. Brunecky R, Selig MJ, Vinzant TB, Himmel ME, Lee D, Blaylock MJ, Decker SR (2011) In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize. Biotechnol Biofuels 4:1PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chou HL, Dai Z, Hsieh CW, Ku MS (2011) High level expression of Acidothermus cellulolyticus beta-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid. Biotechnol Biofuels 4:58PubMedCentralPubMedCrossRefGoogle Scholar
  5. Clawson ML, Bourret A, Benson DR (2004) Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. Mol Phylogenet Evol 31:131–138PubMedCrossRefGoogle Scholar
  6. Hamana K, Niitsu M, Samejima K, Matsuzaki S (1991) Polyamine distributions in thermophilic eubacteria belonging to Thermus and Acidothermus. J Biochem (Tokyo) 109:444–449Google Scholar
  7. Hurst LD, Merchant AR (2001) High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. Proc Biol Sci 268:493–497PubMedCentralPubMedCrossRefGoogle Scholar
  8. Joh LD, Rezaei F, Barabote RD, Parales JV, Parales RE, Berry AM, Vandergheynst JS (2011) Effects of phenolic monomers on growth of Acidothermus cellulolyticus. Biotechnol Prog 27:23–31PubMedCrossRefGoogle Scholar
  9. Marechal J, Clement B, Nalin R, Gandon C, Orso S, Cvejic JH et al (2000) A recA gene phylogenetic analysis confirms the close proximity of Frankia to Acidothermus. Int J Syst Evol Microbiol 50:781–785PubMedCrossRefGoogle Scholar
  10. McCarter SL, Adney WS, Vinzant TB, Jennings E, Eddy FP, Decker SR et al (2002) Exploration of cellulose surface-binding properties of Acidothermus cellulolyticus Cel5A by site-specific mutagenesis. Appl Biochem Biotechnol 98–100:273–287PubMedCrossRefGoogle Scholar
  11. Mohagheghi A, Grohmann K, Himmel M, Leighton L, Updegraff DM (1986) Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int J Syst Bacteriol 36:435–443CrossRefGoogle Scholar
  12. Normand P, Benson DR (2012) Order VI Frankiales ord. nov. In: Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Suzuki KI, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5, The Actinobacteria. Bergey’s Manual Trust, Springer, Athens, pp 509–511Google Scholar
  13. Normand P, Berry A, Benson DR (2012) Family II. Acidothermaceae Rainey, Ward-Rainey and Stackebrandt 1997, 487VP. In: Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Suzuki KI, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5, The Actinobacteria. Bergey’s Manual Trust, Springer, Athens, p 520Google Scholar
  14. Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J et al (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9PubMedCrossRefGoogle Scholar
  15. Ochman H, Elwyn S, Moran NA (1999) Calibrating bacterial evolution. Proc Natl Acad Sci USA 96:12638–12643PubMedCentralPubMedCrossRefGoogle Scholar
  16. Rainey F, Stackebrandt E (1993) Phylogenetic evidence for the classification of Acidothermus cellulolyticus into the subphylum of actinomycetes. FEMS Microbiol Lett 108:27–30CrossRefGoogle Scholar
  17. Rezaei F, Joh LD, Kashima H, Reddy AP, VanderGheynst JS (2011) Selection of conditions for cellulase and xylanase extraction from switchgrass colonized by Acidothermus cellulolyticus. Appl Biochem Biotechnol 164:793–803PubMedCentralPubMedCrossRefGoogle Scholar
  18. Sabath N, Ferrada E, Barve A, Wagner A (2013) Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. Genome Biol Evol 5:966–977PubMedCentralPubMedCrossRefGoogle Scholar
  19. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plant. Nature 363:67–69CrossRefGoogle Scholar
  20. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491CrossRefGoogle Scholar
  21. Talia P, Sede SM, Campos E, Rorig M, Principi D, Tosto D et al (2012) Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Res Microbiol 163:221–232PubMedCrossRefGoogle Scholar
  22. Tucker MP, Mohagheghi A, Grohmann K, Himmel ME (1989) Ultra thermostable cellulases from Acidothermus cellulolyticus: comparison of temperature optima with previously reported cellulases. Bio/Technol 7:817–820CrossRefGoogle Scholar
  23. Usuki H, Yamamoto Y, Arima J, Iwabuchi M, Miyoshi S, Nitoda T, Hatanaka T (2011) Peptide bond formation by aminolysin-A catalysis: a simple approach to enzymatic synthesis of diverse short oligopeptides and biologically active puromycins. Org Biomol Chem 9:2327–2335PubMedCrossRefGoogle Scholar
  24. Winter RT, Heuts DP, Rijpkema EM, van Bloois E, Wijma HJ, Fraaije MW (2012) Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B. Appl Microbiol Biotechnol 95:389–403PubMedCentralPubMedCrossRefGoogle Scholar
  25. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN et al (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060PubMedCentralPubMedCrossRefGoogle Scholar
  26. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  27. Zhang Q, Zhang W, Lin C, Xu X, Shen Z (2012) Expression of an Acidothermus cellulolyticus endoglucanase in transgenic rice seeds. Protein Expr Purif 82:279–283PubMedCrossRefGoogle Scholar
  28. Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608PubMedCrossRefGoogle Scholar
  29. Zou G, Shi S, Jiang Y, van den Brink J, de Vries RP, Chen L et al (2012) Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering. Microb Cell Fact 11:21PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alison M. Berry
    • 1
  • Ravi D. Barabote
    • 2
  • Philippe Normand
    • 3
  1. 1.Department of Plant SciencesUniversity of CaliforniaDavisUSA
  2. 2.Department of Biological SciencesUniversity of ArkansasFayettevilleUSA
  3. 3.Ecologie MicrobienneCentre National de la Recherche Scientifique UMR 5557, Université Lyon I, Université LyonVilleurbanneFrance

Personalised recommendations