Advertisement

The Family Micrococcaceae

  • Syed G. DastagerEmail author
  • Srinivasan Krishnamurthi
  • N. Rameshkumar
  • Mahesh Dharne
Reference work entry

Abstract

The family Micrococcaceae is well-defined family within the order Actinomycetales. Members of the family are defined by a wide range of morphological and chemotaxonomic properties, such as polar lipids, fatty acids, amino acids of peptidoglycan, and whole-cell sugars which are used for the delineation of genera and species. All genera of the family Micrococcaceae are characterized by the occurrence of L-lysine as diagnostic diamino acid of the type A peptidoglycan and predominance of iso- and anteiso-branched cellular fatty acids but differ markedly in the structures of their interpeptide bridges and in the composition of their respiratory quinones predominantly with 7–10 isoprenoid units in the side chain, which are either completely unsaturated, dihydrogenated, or a combination of both. Polar lipid profiles usually contain phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, and unknown glycolipid(s). Genera affiliated with this family are Acaricomes, Arthrobacter, Auritidibacter, Citricoccus, Enteractinococcus, Kocuria, Micrococcus, Nesterenkonia, Renibacterium, Rothia, Sinomonas, Yaniella, and Zhihengliuella. Members of the family are mainly found in mammalian skin, clinical specimen, blood cultures, and in various soil samples as well as marine environments (Collins et al., Int J Syst Evol Microbiol 50:1247–1251, 2000; Garrity et al. (2005) The revised road map to the manual. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn. The Proteobacteria, vol 2. Part A, Introductory essays. Springer, New York, pp 159–206; Zhou et al., J Syst Evol Microbiol 58:1304–1307, 2009).

References

  1. Addis E, Fleet GH, Cox JM, Kolak D, Leung T (2001) The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses. Int J Food Microbiol 69:25–36PubMedCrossRefGoogle Scholar
  2. Albertson D, Natsios GA, Gleckman R (1978) Septic shock with Micrococcus luteus. Arch Intern Med 138:487–488PubMedCrossRefGoogle Scholar
  3. Al-Tai AM, Ruan JS (1994) Nocardiopsis halophila sp. nov., a new halophilic actinomycete isolated from soil. Int J Syst Bacteriol 44:474–478CrossRefGoogle Scholar
  4. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J (1996) Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52CrossRefGoogle Scholar
  5. Altenburger P, Kämpfer P, Akimov VN, Lubitz W, Busse H-J (1997) Polyamine distribution in actinomycetes with group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium, and Tsukamurella. Int J Syst Bacteriol 47:270–277CrossRefGoogle Scholar
  6. Altenburger P, Kämpfer P, Schumann P, Steiner R, Lubitz W, Busse H-J (2002) Citricoccus muralis gen. nov., sp. nov., a novel actinobacterium isolated from a medieval wall painting. Int J Syst Evol Microbiol 52:2095–2100PubMedCrossRefGoogle Scholar
  7. Altuntas F, Yildiz O, Eser B, Gundogan K, Sumerkan B, Cetin M (2004) Catheter-related bacteremia due to Kocuria rosea in a patient undergoing peripheral blood stem cell transplantation. BMC Infect Dis 4:62PubMedCentralPubMedCrossRefGoogle Scholar
  8. Anihouvi VB, Sakyi-Dawson E, Ayernor GS, Hounhouigan JD (2007) Microbiological changes in naturally fermented cassava fish (Pseudotolithus sp.) for lanhouin production. Int J Food Microbiol 116:287–291PubMedCrossRefGoogle Scholar
  9. Austin B (2012) Genus Rothia. In: Whitman WB, Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 5 Pt A. Springer, New York, pp 646–650Google Scholar
  10. Austin B, Embley TM, Goodfellow M (1983) Selective isolation of Renibacterium-Salmoninarum. FEMS Microbiol Lett 17:111–114CrossRefGoogle Scholar
  11. Aziz RK, Daniela B, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75PubMedCentralPubMedCrossRefGoogle Scholar
  12. Baik KS, Lim CH, Park SC, Choe HN, Kim HJ, Kim D, Lee KH, Seong CN (2011) Zhihengliuella aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Bacteriol 61:1671–1676CrossRefGoogle Scholar
  13. Baker JS (1984) Comparison of various methods for differentiation of Staphylococci and Micrococci. J Clin Microbiol 19:875–879PubMedCentralPubMedGoogle Scholar
  14. Basaglia G, Carretto E, Barbarini D, Moras L, Scalone S, Marone P, De Paoli P (2002) Catheter-related bacteremia due to Kocuria kristinae in a patient with ovarian cancer. J Clin Microbiol 40:311–313PubMedCentralPubMedCrossRefGoogle Scholar
  15. Belding DL, Merriii B (1935) A preliminary report upon a hatchery disease of the Salmonidae. Trans Am Fish Soc 66:76–84CrossRefGoogle Scholar
  16. Ben-Ami R, Navon-Venezia S, Schwartz D, Carmeli Y (2003) Infection of a ventriculoatrial shunt with phenotypically variable Staphylococcus epidermidis masquerading as polymicrobial bacteremia due to various coagulase-negative staphylococci and Kocuria varians. J Clin Microbiol 41:2444–2447PubMedCentralPubMedCrossRefGoogle Scholar
  17. Bergan T, Kocur M (1982) Stomatococcus mucilaginosus gen. nov., sp. nov., ep. rev., a member of the family Micrococcaceae. Int J Syst Bacteriol 32:374–377CrossRefGoogle Scholar
  18. Bjørnson S, Schütte C (2003) Pathogens of mass-produced natural enemies and pollinators. In: van Lenteren JC (ed) Quality control and production of biological control agents – theory and testing procedures. CAB International, Wallingford, pp 133–165CrossRefGoogle Scholar
  19. Borsodi AK, Micsinai A, Rusznyak A, Vladar P, Kovacs G, Toth EM, Marialigeti K (2005) Diversity of alkaliphilic and alkalitolerant bacteria cultivated from decomposing reed rhizomes in a Hungarian soda lake. Microb Ecol 50:9–18PubMedCrossRefGoogle Scholar
  20. Borsodi AK, Rusznyák A, Molnár P, Vladár P, Reskóné MN, Tóth EM, Sipos R, Gedeon G, Márialigeti K (2007) Metabolic activity and phylogenetic diversity of reed (Phragmites australis) periphyton bacterial communities in a Hungarian shallow soda lake. Microb Ecol 53:612–620PubMedCrossRefGoogle Scholar
  21. Borsodi AK, Kiss RI, Cech G, Vajna B, Tóth EM, Márialigeti K (2010) Diversity and activity of cultivable aerobic planktonic bacteria of a saline Lake located in Sovata, Romania. Folia Microbiol (Praha) 55:461–466CrossRefGoogle Scholar
  22. Brooks WE, Murray RGE, Johnson JL, Stackebrandt E, Woese CR, Fox GE (1981) A study of the red-pigmented micrococci as a basis for taxonomy Int J Syst Bacteriol 30:627–646Google Scholar
  23. Bruno DW (1988) The relationship between Auto-Agglutination, Cell- surface hydrophobicity and virulence of the fish pathogen Renibacterium- Salmoninarum. FEMS Microbiol Lett 51:135–139CrossRefGoogle Scholar
  24. Buchanan RE (1917) Studies in the nomenclature and classification of the Bacteria: II. The primary subdivisions of the schizomycetes. J Bacteriol 2:155–164PubMedCentralPubMedGoogle Scholar
  25. Bullock GL, Stuckey HM, Wolf K (1975) Bacterial kidney disease of salmonid fishes. Fish and Wildlife Service Fish Diseases Leaflet no. 41. US Department of the Interior, Washington, DCGoogle Scholar
  26. Burd G, Ward OP (1996) Physicochemical properties of PM-factor, a surface-active agent produced by Pseudomonas marginalis. Can J Microbiol 42:243–251PubMedCrossRefGoogle Scholar
  27. Busse H-J (2012a) Genus I. Micrococcus. In: Whitman WB, Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 5 Pt A. Springer, New York, pp 571–576Google Scholar
  28. Busse H-J (2012b) Genus Zhihengliuella. In: Whitman WB, Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 5 Pt A. Springer, New York, pp 653–655Google Scholar
  29. Callon C, Duthoit F, Delbes C, Ferrand M, Le Frileux Y, De Cremoux R, Montel MC (2007) Stability of microbial communities in goat milk during a lactation year: molecular approaches. Syst Appl Microbiol 30:547–560PubMedCrossRefGoogle Scholar
  30. Campos-Pérez JJ, Ellis AE, Secombes CJ (1997) Investigation of factors influencing the ability of Renibacterium salmoninarum to stimulate rainbow trout macrophage respiratory burst activity. Fish Shellfish Immunol 7:555–566CrossRefGoogle Scholar
  31. Camuffo D, Brimblecombe P, Van Grieken R, Busse H-J, Sturaro G, Valentino A, Bernardi A, Blades N, Shooter D, De Bock L, Gysels K, Wieser M, Kim O (1999) Indoor air quality at the Correr Museum, Venice, Italy. Sci Total Environ 236:135–152PubMedCrossRefGoogle Scholar
  32. Cao YR, Jiang Y, Jin RX, Han L, He WX, Li YL, Huang XS, Xue QH (2012) Enteractinococcus coprophilus gen. nov., sp. nov., of the family Micrococcaceae, isolated from Panthera tigris amoyensis faeces, and transfer of Yaniella fodinae Dhanjal et al. 2011 to the genus Enteractinococcus as Enteractinococcus fodinae comb. nov. Int J Syst Evol Microbiol 62:2710–2716PubMedCentralPubMedCrossRefGoogle Scholar
  33. Chen HH, Zhao GZ, Park DJ, Zhang YQ, Xu LH, Lee JC, Kim CJ, Li WJ (2009) Micrococcus endophyticus sp. nov., isolated from surface-sterilized Aquilaria sinensis roots. Int J Syst Evol Microbiol 59:1070–1075PubMedCrossRefGoogle Scholar
  34. Chen Y-G, Tang S-K, Zhang Y-Q, Liu Z-X, Chen Q-H, He J-W, Cui X-L, Li W-J (2010) Zhihengliuella salsuginis sp. nov., a moderately halophilic actinobacterium from a subterranean brine. Extremophiles 14:397–402PubMedCrossRefGoogle Scholar
  35. Chou YJ, Chou JH, Lin KY, Lin MC, Wei YH, Arun AB, Young CC, Chen WM (2008) Rothia terrae sp. nov. isolated from soil in Taiwan. Int J Syst Evol Microbiol 58:84–88PubMedCrossRefGoogle Scholar
  36. Christova N, Tuleva B, Lalchev Z, Jordanova A, Jordanov B (2004) Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-hexadecane. Z Naturforsch C 59(1–2):70–74PubMedGoogle Scholar
  37. Cohen-Gonsaud M, Barthe P, Bagneris C, Henderson B, Ward J, Roumestand C, Keep NH (2005) The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes. Nat Struct Mol Biol 12:270–273PubMedCrossRefGoogle Scholar
  38. Cohn F (1872) Untersuchungen über Bakterien. Bertr Biol Pflanz 1(Heft II):127–224Google Scholar
  39. Collins MD, Hutson RA, Båverud V, Falsen E (2000) Characterization of a Rothia-like organism from a mouse: description of Rothia nasimurium sp. nov. and reclassification of Stomatococcus mucilaginosus as Rothia mucilaginosa comb. nov. Int J Syst Evol Microbiol 50:1247–1251PubMedCrossRefGoogle Scholar
  40. Collins MD, Lawson PA, Labrenz M, Tindall BJ, Weiss N, Hirsch P (2002) Nesterenkonia lacusekhoensis sp. nov., isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 52:1145–1150PubMedCrossRefGoogle Scholar
  41. Conn HJ, Dimmick I (1947) Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 54:291–303PubMedCentralPubMedGoogle Scholar
  42. Cook M, Lynch WH (1999) A sensitive nested reverse transcriptase PCR assay to detect viable cells of the fish pathogen Renibacterium salmoninarum in Atlantic salmon (Salmo salar L.). Appl Environ Microbiol 65:3042–3047PubMedCentralPubMedGoogle Scholar
  43. Daly JG, Stevenson RM (1985) Charcoal agar, a new growth medium for the fish disease bacterium Renibacterium salmoninarum. Appl Environ Microbiol 50:868–871PubMedCentralPubMedGoogle Scholar
  44. Daneshvar MI, Hollis DG, Weyant RS, Jordan JG, MacGregor JP, Morey RE, Whitney AM, Brenner DJ, Steigerwalt AG, Helsel LO, Raney PM, Patel JB, Levett PN, Brown JM (2004) Identification of some charcoal-black-pigmented CDC fermentative coryneform group 4 isolates as Rothia dentocariosa and some as Corynebacterium aurimucosum: proposal of Rothia dentocariosa emend. Geora and Brown 1967 Corynebacterium aurimucosum emend. Yassin et al. 2002, and Corynebacterium nigricans Shukla et al. 2003 pro synon. Corynebacterium aurimucosum. J Clin Microbiol 42:4189–4198PubMedCentralPubMedCrossRefGoogle Scholar
  45. Delgado O, Quillaguaman J, Bakhtiar S, Mattiasson B, Gessesse A, Hatti-Kaul R (2006) Nesterenkonia aethiopica sp. nov., an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. Int J Syst Evol Microbiol 56:1229–1232PubMedCrossRefGoogle Scholar
  46. Densmore CL, Smith SA, Holladay SD (1998) In vitro effects of the extracellular protein of Renibacterium salmoninarum on phagocyte function in brook trout (Salvelinus fontinalis). Vet Immunol Immunopathol 62:349–357PubMedCrossRefGoogle Scholar
  47. Dhanjal S, Ruckmani A, Cameotra SS, Pukall R, Klenk H-P, Mayilraj S (2011) Yaniella fodinae sp. nov., isolated from a coal mine. Int J Syst Evol Microbiol 61:535–539PubMedCrossRefGoogle Scholar
  48. Dicke M, Schütte C, Dijkman H (2000) Change in behavioral response to herbivore-induced plant volatiles in a predatory mite population. J Chem Ecol 26:1497–1514CrossRefGoogle Scholar
  49. Ding L, Hirose T, Yokota A (2009) Four novel Arthrobacter species isolated from filtration substrate. Int J Syst Evol Microbiol 59:856–862PubMedCrossRefGoogle Scholar
  50. DSMZ (2001) Catalogue of strains. German collection of microorganisms and cell cultures, 7th edn. DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen, BraunschweigGoogle Scholar
  51. Dürst UN, Bruder E, Egloff L, Wust J, Schneider J, Hirzel HO (1991) Micrococcus luteus: a rare pathogen of valve prosthesis endocarditis. Z Kardiol 80:294–298PubMedGoogle Scholar
  52. Eaton RW (1982) Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. J Bacteriol 151:48–57PubMedCentralPubMedGoogle Scholar
  53. Englander J, Klein E, Brumfeld V, Sharma AK, Doherty AJ, Minsky A (2004) DNA Toroids: framework for DNA repair in Deinococcus radiodurans and in germinating bacterial spores. J Bacteriol 186:5973–5977PubMedCentralPubMedCrossRefGoogle Scholar
  54. Evelyn TPT (1977) An improved growth medium for the kidney bacterium and some notes on using the medium. Bull Off Int Epizoot 87:511–513Google Scholar
  55. Faison BD, Cancel CA, Lewis SN, Adler HI (1990) Binding of dissolved strontium by Micrococcus luteus. Appl Environ Microbiol 56:3649–3656PubMedCentralPubMedGoogle Scholar
  56. Fan Y, Jin Z, Tong J, Li W, Pasciak M, Gamian A, Liu Z, Huang Y (2002) Rothia amarae sp. nov., from sludge of a foul water sewer. Int J Syst Evol Microbiol 52:2257–2260PubMedCrossRefGoogle Scholar
  57. Finnerty WR (1994) Biosurfactants in environmental biotechnology. Curr Opin Biotechnol 5:291–295CrossRefGoogle Scholar
  58. Fleming A (1922) Observations on a bacteriolytic substance (Lysozyme) found in secretions and tissues. Br J Exp Pathol 3:252PubMedCentralGoogle Scholar
  59. Flügge C (1886) Die Mikroorganismen. F.C.W. Vogel, LeipzigGoogle Scholar
  60. Forsyth RB, Candido EPM, Babich SL, Iwama GK (1997) Stress protein expression in Coho Salmon with bacterial kidney disease. J Aquat Anim Health 9:18–25CrossRefGoogle Scholar
  61. Fosse T, Toga B, Peloux Y, Granthil C, Bertrando J, Sethian M (1985) Meningitis due to Micrococcus luteus. Infection 13:280–281PubMedCrossRefGoogle Scholar
  62. Frank DN, Spiegelman GB, Davis W, Wagner E, Lyons E, Pace NR (2003) Culture-independent molecular analysis of microbial constituents of the healthy human outer ear. J Clin Microbiol 41:295–303PubMedCentralPubMedCrossRefGoogle Scholar
  63. Fritz I, (2000). Das Bakterienplankton im Westlichen Mittelmeer. Anaylse der taxonomischen Struktur freilebender und partikelgebundener bakterieller Lebensgemeinschaften mit mikrobiellen und molekularbiologischen Methoden. Ph.D. thesis, Technische Universität Carolina- Wilhelmina Braunschweig, Braunschweig, GermanyGoogle Scholar
  64. García Fontán MC, Lorenzo JM, Parada A, Franco I, Carballo J (2007) Microbiological characteristics of “androlla”, a Spanish traditional pork sausage. Food Microbiol 24:52–58PubMedCrossRefGoogle Scholar
  65. Garrity GM, Bell JA, Lilburn T (2005) The revised road map to the manual. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn. The Proteobacteria, vol 2. Part A, introductory essays. Springer, New York, pp 159–206Google Scholar
  66. Georg LK, Brown JM (1967) Rothia, gen. nov. an anaerobic genus of the family Actinomycetaceae. Int J Syst Bacteriol 17:79–88CrossRefGoogle Scholar
  67. Gerencser MA, Bowden GH (1986) Genus Rothia. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1342–1346Google Scholar
  68. Glupczynski Y, Lagast H, Van der Auwera P, Thys JP, Crokaert F, Yourassowsky E, Meunier-Carpentier F, Klastersky J, Kains JP, Serruys-Schoutens E et al (1986) Clinical evaluation of teicoplanin for therapy of severe infections caused by gram-positive bacteria. Antimicrob Agents Chemother 29:52–57PubMedCentralPubMedCrossRefGoogle Scholar
  69. González M, Sánchez F, Concha MI, Figueroa J, Montecinos MI, León G (1999) Evaluation of the internalization process of the fish pathogen Renibacterium salmoninarum in cultured fish cells. J Fish Dis 22:231–235CrossRefGoogle Scholar
  70. Gorny RL, Dutkiewicz J (2002) Bacterial and fungal aerosols in indoor environment in Central and Eastern European countries. Ann Agric Environ Med 9:17–23PubMedGoogle Scholar
  71. Govender L, Naidoo L, Setati ME (2009) Isolation of hydrolase producing bacteria from Sua pan solar salterns and the production of endo-1, 4-bxylanase from a newly isolated haloalkaliphilic Nesterenkonia sp. Afr J Biotechnol 8(20):5458–5466Google Scholar
  72. Grayson TH, Evenden AJ, Gilpin ML, Munn CB (1995a) Production of a Renibacterium salmoninarum hemolysin fusion protein in Escherichia coli K12. Dis Aquat Org 22:153–156CrossRefGoogle Scholar
  73. Grayson TH, Bruno DW, Evenden AJ, Gilpin ML, Munn CB (1995b) Iron acquisition by Renibacterium salmoninarum: contribution of iron reductase. Dis Aquat Org 22:157–162CrossRefGoogle Scholar
  74. Grayson TH, Alexander SM, Cooper LF, Gilpin ML (2000) Renibacterium salmoninarum isolates from different sources possess two highly conserved copies of the rRNA operon. Antonie Van Leeuwenhoek 78:51–61PubMedCrossRefGoogle Scholar
  75. Grayson TH, Gilpin ML, Evenden AJ, Munn CB (2001) Evidence for the immune recognition of two haemolysins of Renibacterium salmoninarum by fish displaying clinical symptoms of bacterial kidney disease (BKD). Fish Shellfish Immunol 11:367–370PubMedCrossRefGoogle Scholar
  76. Greenblatt CL, Baum J, Klein BY, Nachshon S, Koltunova V, Cano RJ (2004) Micrococcus luteus survival in amber. Microb Ecol 48:120–127PubMedCrossRefGoogle Scholar
  77. Griffiths SG, Olivier G, Fildes J, Lynch WH (1991) Comparison of western blot, direct fluorescent antibody and drop-plate culture methods for the detection of Renibacterium salmoninarum in Atlantic salmon (Salmo salar L.). Aquaculture 97:117–129CrossRefGoogle Scholar
  78. Griffiths SG, Liska K, Lynch WH (1996) Comparison of kidney tissue and ovarian fluid from broodstock Atlantic salmon for detection of Renibacterium salmoninarum, and use of SKDM broth culture with Western blotting to increase detection in ovarian fluid. Dis Aquat Org 24:3–9CrossRefGoogle Scholar
  79. Guha A, Kumari B, Bora TC, Roy MK (1997) Possible involvement of plasmids in degradation of malathion and chlorpyrifos by Micrococcus sp. Folia Microbiol 42:574–576CrossRefGoogle Scholar
  80. Gutenberger SK, Giovannoni SJ, Field KG, Fryer JL, Rohovec JS (1991) A phylogenetic comparison of the 16S rRNA sequence of the fish pathogen, Renibacterium salmoninarum, to Gram-positive bacteria. FEMS Microbiol Lett 61:151–156PubMedCrossRefGoogle Scholar
  81. Gutenberger SK, Dimstra JR, Rohovec JS, Fryer JL (1997) Intracellular survival of Renibacterium salmoninarum in trout mononuclear macrophages. Dis Aquat Org 28:93–106CrossRefGoogle Scholar
  82. Gvozdiak OR, Schumann P, Griepenburg U, Auling G (1998) Polyamine profiles of Gram-positive catalase positive cocci. Syst Appl Microbiol 21:279–284CrossRefGoogle Scholar
  83. Hamana K (1994) Polyamine distribution patterns in aerobic Gram positive cocci and some radio-resistant bacteria. J Gen Appl Microbiol 40:181–195CrossRefGoogle Scholar
  84. Hardie LJ, Ellis AE, Secombes CJ (1996) In vitro activation of rainbow trout macrophages stimulates inhibition of Renibacterium salmoninarum growth concomitant with augmented generation of respiratory burst products. Dis Aquat Org 25:175–183CrossRefGoogle Scholar
  85. Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K (2007) Characterization of diverse hydrocarbon-degrading bacteria isolated from Indonesian seawater. Microbes Environ 22:412–415CrossRefGoogle Scholar
  86. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  87. Hayano-Kanashiro C, López-Arredondo DL, Cruz-Morales P, Alcaraz LD, Olmedo G, Barona-Gómez F, Herrera-Estrella L (2011) First draft genome sequence of a strain from the genus Citricoccus. J Bacteriol 193:6092–6093PubMedCentralPubMedCrossRefGoogle Scholar
  88. Helmerhorst EJ, Oppenheim FG (2012) Rothia species glutamine endopeptidases and use thereof. US Patent US20120230976 A1Google Scholar
  89. Heyrman J, Verbeeren J, Schumann P, Swings J, De Vos P (2005) Six novel Arthrobacter species isolated from deteriorated mural paintings. Int J Syst Evol Microbiol 55:1457–1464PubMedCrossRefGoogle Scholar
  90. Hiromi T, Sekine M, Kosugi H, Matsuo Y, Fujisawa T, Omata S, Kishi E, Shimizu A, Tsukatani N, Tanikawa S, Fujita N, Harayama S (2008) Complete genome sequence of the soil actinomycete Kocuria rhizophila. J Bacteriol 190:4139–4146CrossRefGoogle Scholar
  91. Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO Jr (1996) Rapid identification of intact whole bacteria based on spectral patterns using matrix assisted laser desorption/ionization with time-of-light mass spectrometry. Rapid Commun Mass Spectrom 10:1227–1232PubMedCrossRefGoogle Scholar
  92. Holland RD, Duffy CR, Rafii F, Sutherland JB, Heinze TM, Holder CL, Voorhees KJ, Lay JO Jr (1999) Identification of bacterial proteins observed in MALDI TOF mass spectra from whole cells. Anal Chem 71:3226–3230PubMedCrossRefGoogle Scholar
  93. Hong K, Huiying L, Pengjun S, Yingguo B, Tiezheng Y, Yaru W, Peilong Y, Shouliang D, Bin Y (2010) Gene cloning, expression, and characterization of a thermostable xylanase from Nesterenkonia xinjiangensis CCTCC AA001025. Appl Biochem Biotechnol 162:953–965CrossRefGoogle Scholar
  94. Hozzein WN, Li W-J, Ali MIA, Hammouda O, Mousa AS, Xu L-H, Jiang C-L (2004) Nocardiopsis alkaliphila sp. nov., a novel alkaliphilic actinomycete isolated from desert soil in Egypt. Int J Syst Evol Microbiol 54:247–252PubMedCrossRefGoogle Scholar
  95. Iglewski B (1989) Probing pseudomonas aeruginosa, an opportunistic pathogen. ASM News 55:303–307Google Scholar
  96. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of okhotsk. Appl Environ Microbiol 69:7224–7235PubMedCentralPubMedCrossRefGoogle Scholar
  97. Jansson E, Hongslo T, Höglund J, Ljungberg O (1996) Comparative evaluation of bacterial culture and two ELISA techniques for the detection of Renibacterium salmoninarum antigens in salmonid kidney tissues. Dis Aquat Org 27:197–206CrossRefGoogle Scholar
  98. Karn SK, Chakrabarti SK, Reddy MS (2011) Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill. Biodegradation 22:63–69PubMedCrossRefGoogle Scholar
  99. Kawamura Y, Li Y, Liu H, Huang X, Li Z, Ezaki T (2001) Bacterial population in Russian space station “Mir”. Microbiol Immunol 45:819–828PubMedCrossRefGoogle Scholar
  100. Keddie RM, Collins MD, Jones D (1986) Genus Arthrobacter. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1288–1301Google Scholar
  101. Kell DB, Young M (2000) Bacterial dormancy and culturability: the role of autocrine growth factors. Curr Opin Microbiol 3:238–243PubMedCrossRefGoogle Scholar
  102. Kim SB, Nedashkovskaya OI, Mikhailov VV, Han SK, Kim KO, Rhee MS, Bae KS (2004) Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 54:1617–1620PubMedCrossRefGoogle Scholar
  103. Kim W-J, Kim Y-O, Kim D-S, Choi S-H, Kim D-W, Lee J-S, Kong HJ, Nam B-H, Kim B-S, Lee S-J, Park H-S, Chae S-H (2011) Draft genome sequence of Kocuria rhizophila p 7–4. J Bacteriol 193(16):4286–4287PubMedCentralPubMedCrossRefGoogle Scholar
  104. Kimura T, Yoshimizu M (1981) A coagglutination test with antibody- sensitized staphylococci for rapid and simple diagnosis of bacterial kidney disease (BKD). Dev Biol Stand 49:135–148Google Scholar
  105. Kloos WE, Musselwhite MS (1975) Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Microbiol 30:381–395PubMedCentralPubMedGoogle Scholar
  106. Kloos WE, Tornabene TG, Schleifer KH (1974) Isolation and characterization of micrococci from human skin, including two new species, Micrococcus lylae and Micrococcus kristinae. Int J Syst Bacteriol 24:79–101CrossRefGoogle Scholar
  107. Kloos WE, Musselwhite MS, Zimmerman RJ (1976) A comparison of the distribution of Staphylococcus species on human and animal skin. In: Jeljaszewicz J (ed) Staphylococci and staphylococcal diseases. Gustav Fischer, Stuttgart, pp 967–973Google Scholar
  108. Koch C, Schumann P, Stackebrandt E (1995) Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. Int J Syst Bacteriol 45:837–839PubMedCrossRefGoogle Scholar
  109. Kocur M, Páčová Z, Martinec T (1972) Taxonomic status of Micrococcus luteus (Schroeter 1872) Cohn 1872, and designation of the neotype strains. Int J Syst Bacteriol 22:218–223CrossRefGoogle Scholar
  110. Konigsson MH, Ballagi A, Jansson E, Johansson KE (2005) Detection of Renibacterium salmoninarum in tissue samples by sequence capture and fluorescent PCR based on the 16S rRNA gene. Vet Microbiol 105:235–243PubMedCrossRefGoogle Scholar
  111. Kovács G, Burghardt J, Pradella S, Schumann P, Stackebrandt E, Màrialigeti K (1999) Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol 49:167–173PubMedCrossRefGoogle Scholar
  112. Kozinska A, Pekala A (2005) Investigating and evaluating the ELISA test in detecting Renibacterium salmoninarum in salmonid fish. Med Weter 61:687–690Google Scholar
  113. Krishna P, Amita AM, Sudhakara R (2008) An alkaliphilic and xylanolytic strain of actinomycetes Kocuria sp. RM1 isolated from extremely alkaline bauxite residue sites. World J Microbiol Biotechnol 24:3079–3085CrossRefGoogle Scholar
  114. Kuhn DA, Starr MP (1960) Arthrobacter atrocyaneus, n. sp., and its blue pigment. Arch Mikrobiol 36:175–181PubMedCrossRefGoogle Scholar
  115. Kümmerle M, Scherer S, Seiler H (1998) Rapid and reliable identification of food-borne yeasts by Fourier-transform infrared spectroscopy. Appl Environ Microbiol 64:2207–2214PubMedCentralPubMedGoogle Scholar
  116. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108PubMedCentralPubMedCrossRefGoogle Scholar
  117. Lakshmanan R, Jeya Shakila R, Jeyasekaran G (2002a) Survival of amine-forming bacteria during the ice storage of fish and shrimp. Food Microbiol 19:617–625CrossRefGoogle Scholar
  118. Lakshmanan R, Shakila RJ, Jeyasekaran G (2002b) Changes in the halophilic amine forming bacterial flora during salt-drying of sardines (Sardinella gibbosa). Food Res Int 35:541–546CrossRefGoogle Scholar
  119. Lalević BT, Jović JB, Raičević VB, Kljujev IS, Kiković DD, Hamidović SR (2012) Biodegradation of methyl-tert-butyl ether by Kocuria sp. Hem Ind 66(5):717–722CrossRefGoogle Scholar
  120. Lay CY, Mykytczuk NC, Niederberger TD, Martineau C, Greer CW, Whyte LG (2012) Microbial diversity and activity in hypersaline high Arctic spring channels. Extremophiles 16:177–191PubMedCrossRefGoogle Scholar
  121. Levchenko LA, Sadkov AP, Lariontseva NV, Koldasheva EM, Shilova AK, Shilov AE (2001) Methane oxidation catalyzed by the Au-Protein from Micrococcus luteus. Dokl Biochem Biophys 377:123–124PubMedCrossRefGoogle Scholar
  122. Li WJ, Chen HH, Xu P, Zhang YQ, Schumann P, Tang SK, Xu LH, Jiang CL (2004a) Yania halotolerans gen. nov., sp. nov., a novel member of the suborder Micrococcineae from saline soil in China. Int J Syst Evol Microbiol 54:525–531PubMedCrossRefGoogle Scholar
  123. Li WJ, Chen HH, Zhang YQ, Schumann P, Stackebrandt E, Xu LH, Jiang CL (2004b) Nesterenkonia halotolerans sp. nov. and Nesterenkonia xinjiangensis sp. nov., actinobacteria from saline soils in the west of China. Int J Syst Evol Microbiol 54:837–841PubMedCrossRefGoogle Scholar
  124. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Huang X, Kobayashi K, Ezaki T (2004c) Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. Int J Syst Evol Microbiol 54:827–835PubMedCrossRefGoogle Scholar
  125. Li WJ, Chen HH, Kim CJ, Zhang YQ, Park DJ, Lee JC, Xu LH, Jiang CL (2005a) Nesterenkonia sandarakina sp. nov. and Nesterenkonia lutea sp. nov., novel actinobacteria, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 55:463–466PubMedCrossRefGoogle Scholar
  126. Li WJ, Chen HH, Zhang YQ, Kim CJ, Park DJ, Lee JC, Xu LH, Jiang CL (2005b) Citricoccus alkalitolerans sp. nov., a novel actinobacterium isolated from a desert soil in Egypt. Int J Syst Evol Microbiol 55:87–90PubMedCrossRefGoogle Scholar
  127. Li WJ, Schumann P, Zhang YQ, Xu P, Chen GZ, Xu LH, Stackebrandt E, Jiang CL (2005c) Proposal of Yaniaceae fam. nov. and Yania flava sp. nov. and emended description of the genus Yania. Int J Syst Evol Microbiol 55:1933–1938PubMedCrossRefGoogle Scholar
  128. Li WJ, Zhang YQ, Schumann P, Chen HH, Hozzein WN, Tian XP, Xu LH, Jiang CL (2006) Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. Int J Syst Evol Microbiol 56:733–737PubMedCrossRefGoogle Scholar
  129. Li WJ, Zhi XY, Euzéby JP (2008a) Proposal of Yaniellaceae fam. nov., Yaniella gen. nov. and Sinobaca gen. nov. as replacements for the illegitimate prokaryotic names Yaniaceae Li et al. 2005, Yania Li et al. 2004, emend. Li et al. 2005, and Sinococcus Li et al. 2006, respectively. Int J Syst Evol Microbiol 58:525–527PubMedCrossRefGoogle Scholar
  130. Li WJ, Zhang YQ, Schumann P, Liu HY, Yu LY, Zhang YQ, Stackebrandt E, Xu LH, Jiang CL (2008b) Nesterenkonia halophila sp. nov., a moderately halophilic, alkalitolerant actinobacterium isolated from a saline soil. Int J Syst Evol Microbiol 58:1359–1363PubMedCrossRefGoogle Scholar
  131. Li C, Yuzhi H, Zongze S, Ling L, Xiaoluo H, Pengfu L, Gaobing W, Xin M, Ziduo L (2009) Novel alkali-stable, cellulase-free xylanase from deep-sea Kocuria sp. Mn22. J Microbiol Biotechnol 19(9):873–880CrossRefGoogle Scholar
  132. Liu HC, Xu Y, Ma YH, Zhou PJ (2000) Characterization of Micrococcus antarcticus sp. nov., a psychrophilic bacterium from Antarctica. Int J Syst Evol Microbiol 50:715–719PubMedCrossRefGoogle Scholar
  133. Liu XY, Wang BJ, Jiang CY, Liu SJ (2007) Micrococcus flavus sp. nov., isolated from activated sludge in a bioreactor. Int J Syst Evol Microbiol 57:66–69PubMedCrossRefGoogle Scholar
  134. Lo W, Wong MF, Chua H, Leung CK (2001) Removal and recovery of copper (II) ions by bacterial biosorption. Appl Biochem Biotechnol 92:447–457Google Scholar
  135. Lovely JE, Cabo C, Griffiths SG, Lynch WH (1994) Detection of Renibacterium salmoninarum infection in asymptomatic Atlantic salmon. J Aquat Anim Health 6:126–132CrossRefGoogle Scholar
  136. Lowe TM, Eddy SR (1997) tRNA scan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedCentralPubMedCrossRefGoogle Scholar
  137. Lucretia G, Lureshini N, Mathabatha ES (2009) Isolation of hydrolase producing bacteria from Sua pan solar salterns and the production of endo-1, 4-bxylanase from a newly isolated haloalkaliphilic Nesterenkonia sp. African J Biotechnol 8(20):5458–5466Google Scholar
  138. Luo HY, Miao LH, Fang C, Yang PL, Wang YR, Shi PJ, Yao B, Fan YL (2008) Nesterenkonia flava sp. nov., isolated from paper-mill effluent. Int J Syst Evol Microbiol 58:1927–1930PubMedCrossRefGoogle Scholar
  139. Luo HY, Wang YR, Miao LH, Yang PL, Shi PJ, Fang CX, Yao B, Fan YL (2009) Nesterenkonia alba sp. nov., an alkaliphilic actinobacterium isolated from the black liquor treatment system of a cotton pulp mill. Int J Syst Evol Microbiol 59:863–868PubMedCrossRefGoogle Scholar
  140. Ma ES, Wong CL, Lai KT, Chan EC, Yam WC, Chan AC (2005) Kocuria kristinae infection associated with acute cholecystitis. BMC Infect Dis 5:60PubMedCentralPubMedCrossRefGoogle Scholar
  141. Magee JT, Burnett IA, Hindmarch JM, Spencer RC (1990) Micrococcus and Stomatococcus spp. from human infections. J Hosp Infect 16:67–73PubMedCrossRefGoogle Scholar
  142. Marakushev SA (1991) Geomicrobiology and biochemistry of gold. Nauka, MoscowGoogle Scholar
  143. Mariano AP, Bonotto DM, Angelis DF, Pirollo MPS, Contiero J (2008) Biodegradability of commercial and weathered diesel oils. Braz J Microbiol 39:133–142PubMedCentralPubMedCrossRefGoogle Scholar
  144. Martins RF, Davids W, Abu Al-Soud W, Levander F, Radstrom P, Hatti-Kaul R (2001) Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles 5:135–144PubMedCrossRefGoogle Scholar
  145. Mayilraj S, Kroppenstedt RM, Suresh K, Saini HS (2006) Kocuria himachalensis sp. nov., an actinobacterium isolated from the Indian Himalayas. Int J Syst Evol Microbiol 56:1971–1975PubMedCrossRefGoogle Scholar
  146. McIntosh D, Flano E, Grayson TH, Gilpin ML, Austin B, Villena AJ (1997) Production of putative virulence factors by Renibacterium salmoninarum grown in cell culture. Microbiology 143:3349–3356PubMedCrossRefGoogle Scholar
  147. McManus CJ, Kelley ST (2005) Molecular survey of aeroplane bacterial contamination. J Appl Microbiol 99:502–508PubMedCrossRefGoogle Scholar
  148. Meng F-X, Yang X-C, Yu PS, Pan J-M, Wang C-S, Xu X-W, Wu M (2010) Citricoccus zhacaiensis sp. nov., isolated from a bioreactor for saline wastewater treatment. Int J Syst Evol Microbiol 60:495–499PubMedCrossRefGoogle Scholar
  149. Mesa MG, Maule AG, Poe TP, Schreck CB (1999) Influence of bacterial kidney disease on smoltification in salmonids: is it a case of double jeopardy. Aquaculture 174:25–41CrossRefGoogle Scholar
  150. Michon J, Jeulin D, Lang J-M, Cattoir V (2010) Rothia aeria acute bronchitis: the first reported case. Infection 38:335–337PubMedCrossRefGoogle Scholar
  151. Migula W (1900) System der Bakterien. Handbuch der Morphologie, Entwicklungsgeschichte und Systematik der Bacterien, vol 2. Gustav Fischer Verlag, Jena, p 583Google Scholar
  152. Mongodin EF, Shapir N, Daugherty SC, DeBoy RT, Emerson JB, Shvartzbeyn A, Radune D, Vamathevan J, Riggs F, Grinberg V, Khouri H, Wackett LP, Nelson KE, Sadowsky MJ (2006) Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2(12):214CrossRefGoogle Scholar
  153. Monju A, Shimizu N, Yamamoto M, Oda K, Kawamoto Y, Ohkusu K (2009) First Case report of sepsis due to Rothia aeria in a neonate. Clin Microbiol 47:1605–1606CrossRefGoogle Scholar
  154. Mota RR, Marquez MC, Arahal DR, Mellado E, Ventosa A (1997) Polyphasic taxonomy of Nesterenkonia halobia. Int J Syst Bacteriol 47:1231–1235PubMedCrossRefGoogle Scholar
  155. Mukamolova GV, Kazarian K, Telkov M, Kaprelyants AS, Kell DB, Young M (2002) The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol Microbiol 46:611–621PubMedCrossRefGoogle Scholar
  156. Mukamolova GV, Murzin AG, Salina EG, Demina GR, Kell DB, Kaprelyants AS, Young M (2006) Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol 59:84–98PubMedCrossRefGoogle Scholar
  157. Murray CB, Evelyn TPT, Beacham TD, Barner LW, Ketcheson JE, Prosperi-Porta L (1992) Experimental induction of bacterial kidney disease in chinook salmon by immersion and cohabitation challenges. Dis Aquat Org 12:91–96CrossRefGoogle Scholar
  158. Nam Y-D, Seo M-J, Lim S-I, Park S-L (2012) Genome sequence of Kocuria atrinae C3-8, isolated from Jeotgal, a traditional Korean fermented seafood. J Bacteriol 194(21):5996PubMedCentralPubMedCrossRefGoogle Scholar
  159. Nataliya IK, Romanenkoa LA, Irisawab T, Ermakovaa SP, Kalinovskya AI (2011) Marine isolate Citricoccus sp. KMM 3890 as a source of a cyclic siderophore nocardamine with antitumor activity. Microbiol Res 166:654–661CrossRefGoogle Scholar
  160. Naylor HB, Burgi E (1956) Observations on abortive infection of Micrococcus lysodeikticus with bacteriophage. Virology 2:577–593PubMedCrossRefGoogle Scholar
  161. Nazina TN, Grigor’yan AA, Xue Y, Sokolova DS, Novikova EV, Tourova TP, Poltaraus AB, Belyaev SS, Ivanov MV (2002) Phylogenetic diversity of aerobic saprotrophic bacteria isolated from the Daqing oil field. Microbiology 71:91–97CrossRefGoogle Scholar
  162. Nel AJM, Tuffin IM, Sewell BT, Cowan DA (2011) Unique aliphatic amidase from a psychrotrophic and haloalkaliphilic Nesterenkonia isolate. Appl Environ Microbiol 77(11):3696–3702PubMedCentralPubMedCrossRefGoogle Scholar
  163. Nelly C, Borjana T, Zdravko L, Albena J, Bojidar J (2004) Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-Hexadecane. Z Naturforsch C 59:70–74Google Scholar
  164. Nielsen MB, Ingvorsen K (2012) Biodegradation of para-nitrophenol by Citricoccus nitrophenolicus strain PNP1T at high pH. Biodegradation. doi:10.1007/s10532-012-9559-4Google Scholar
  165. Nielsen MB, Kjeldsen KU, Ingvorsen K (2011) Description of Citricoccus nitrophenolicus sp. nov., a para-nitrophenol degrading actinobacterium isolated from a wastewater treatment plant and emended description of the genus Citricoccus Altenburger et al. (2002). Antonie van Leeuwenhoek 99:489–499PubMedCrossRefGoogle Scholar
  166. Nielsen KF, Månsson M, Rank C, Frisvad JC, Larsen TO (2011) Dereplication of microbial natural products by LC-DAD-TOFMS. J Nat Prod 74(11):2338–2348PubMedCrossRefGoogle Scholar
  167. Nilsson WB, Strom MS (2002) Detection and identification of bacterial pathogens of fish in kidney tissue using terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. Dis Aquat Org 48:175–185PubMedCrossRefGoogle Scholar
  168. Ntougias S, Zervakis GI, Ehaliotis C, Kavroulakis N, Papadopoulou KK (2006) Ecophysiology and molecular phylogeny of bacteria isolated from alkaline two-phase olive mill wastes. Res Microbiol 157:376–385PubMedCrossRefGoogle Scholar
  169. O’Connor G, Hoffnagle TL (2007) Use of ELISA to monitor bacterial kidney disease in naturally spawning chinook salmon. Dis Aquat Org 77:137–142PubMedCrossRefGoogle Scholar
  170. O’Mahony T, Rekhif N, Cavadini C, Fitzgerald GF (2001) The application of a fermented food ingredient containing ‘variacin’, a novel antimicrobial produced by Kocuria varians, to control the growth of Bacillus cereus in chilled dairy products. J Appl Microbiol 90:106–114PubMedCrossRefGoogle Scholar
  171. Oberreuter H, Seiler H, Scherer S (2002) Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy. Int J Syst Evol Microbiol 52:91–100PubMedGoogle Scholar
  172. Oh SK, Han KH, Ryu SB, Kang H (2000) Molecular cloning, expression, and functional analysis of a cis-prenyltransferase from Arabidopsis thaliana. Implications in rubber biosynthesis. J Biol Chem 275:18482–18488PubMedCrossRefGoogle Scholar
  173. Onishi H, Kamekura M (1972) Micrococcus halobius sp. nov. Int J Syst Bacteriol 22:233–236CrossRefGoogle Scholar
  174. Ordal EJ, Earp BJ (1956) Cultivation and transmission of the etiological agent of kidney disease in salmonid fishes. Proc Soc Exp Biol Med 92:85–88PubMedCrossRefGoogle Scholar
  175. Oudiz RJ, Widlitz A, Beckmann XJ, Camanga D, Alfie J, Brundage BH, Barst RJ (2004) Micrococcus-associated central venous catheter infection in patients with pulmonary arterial hypertension. Chest 126:90–94PubMedCrossRefGoogle Scholar
  176. Park EJ, Kim MS, Roh SW, Jung MJ, Bae JW (2010) Kocuria atrinae sp. nov., isolated from traditional Korean fermented seafood. Int J Syst Evol Microbiol 60:914–918PubMedCrossRefGoogle Scholar
  177. Parshetti GK, Telke A, Kalyani D, Govindwar S (2010) Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. J Hazard Mater 176:503–509PubMedCrossRefGoogle Scholar
  178. Parshetti GK, Supriya P, Dayanand CK, Ruey-an D, Govindwar SP (2012) Industrial dye decolorizing lignin peroxidase from Kocuria rosea MTCC 1532. Ann Microbiol 62:217–223CrossRefGoogle Scholar
  179. Pascho RJ, Chase D, McKibben CL (1998) Comparison of the membrane-filtration fluorescent antibody test, the enzyme-linked immunosorbent assay, and the polymerase chain reaction to detect Renibacterium salmoninarum in salmonid ovarian fluid. J Vet Diagn Invest 10:60–66PubMedCrossRefGoogle Scholar
  180. Peces R, Gago E, Tejada F, Laures AS, Alvarez-Grande J (1997) Relapsing bacteraemia due to Micrococcus luteus in a haemodialysis patient with a Perm-Cath catheter. Nephrol Dial Transplant 12:2428–2429PubMedCrossRefGoogle Scholar
  181. Powell M, Overturf K, Hogge C, Johnson K (2005) Detection of Renibacterium salmoninarum in chinook salmon, Oncorhynchus tshawytscha (Walbaum), using quantitative PCR. J Fish Dis 28:615–622PubMedCrossRefGoogle Scholar
  182. Prado B, Jara A, del Moral A, Sánchez E (2001) Numerical taxonomy of microorganisms isolated from goat cheese made in Chile. Curr Microbiol 43:396–399PubMedCrossRefGoogle Scholar
  183. Prauser H, Schumann P, Rainey FA, Kroppenstedt RM, Stackebrandt E (1997) Terracoccus luteus gen. nov., sp. nov., an LL-diaminopimelic acid-containing coccoid actinomycete from soil. Int J Syst Bacteriol 47:1218–1224PubMedCrossRefGoogle Scholar
  184. Prévot AR (1940) Manuel de classification et de determination des bacteries anaerobies. Masson et Cie, ParisGoogle Scholar
  185. Pribram E (1929) A contribution to the classification of microorganisms. J Bacteriol 18:361–394PubMedCentralPubMedGoogle Scholar
  186. Pukall R, Schumann P, Schutte C, Gols R, Dicke M (2006) Acaricomes phytoseiuli gen. nov., sp. nov., isolated from the predatory mite Phytoseiulus persimilis. Int J Syst Evol Microbiol 56:465–469PubMedCrossRefGoogle Scholar
  187. Rainey FA, Nobre MF, Schumann P, Stackebrandt E, da Costa MS (1997) Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol 47:510–514PubMedCrossRefGoogle Scholar
  188. Rauch ME, Graef HW, Rozenzhak SM, Jones SE, Bleckmann CA, Kruger R, Naik RR, Stone MO (2006) Characterization of microbial contamination in United States Air Force aviation fuel tanks. J Ind Microbiol Biotechnol 33:29–36PubMedCrossRefGoogle Scholar
  189. Reddy GSN, Prakash JSS, Prabahar V, Matsumoto GI, Stackebrandt E, Shivaji S (2003) Kocuria polaris sp. nov., an orange pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 53:183–187PubMedCrossRefGoogle Scholar
  190. Rogosa M, Cummins CS, Lelliott RA, Keddie RM (1974) Coryneform group of bacteria. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, pp 599–632Google Scholar
  191. Rosenberg E (1986) Microbial surfactants. Crit Rev Biotechnol 3:109–132CrossRefGoogle Scholar
  192. Rouse JD, Sabatini DA, Suflita GM, Harwell JH (1994) Influence of surfactants on microbial de gradation of organic compounds. Crit Rev Environ Sci Technol 24:325–370CrossRefGoogle Scholar
  193. Saito Y, Ogura K (1981) Biosynthesis of menaquinones. Enzymatic prenylation of 1,4-dihydroxy-2-naphthoate by Micrococcus luteus membrane fractions. J Biochem (Tokyo) 89:1445–1452Google Scholar
  194. Sakai M, Atsuta S, Kobayashi M (1989) Bacterial kidney disease in Masu salmon, Oncorhynchus masou. Physiol Ecol Jpn Spec 1:577–586Google Scholar
  195. Salser W (1978) Cloning cDNA sequences: a general technique for propagating eukaryotic gene sequences in bacterial cells. In: Chakrabarty AM (ed) Genetic engineering. CRC Press, West Palm Beach, pp 53–81Google Scholar
  196. Sánchez-Porro C, Martín S, Mellado E, Ventosa A (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300PubMedCrossRefGoogle Scholar
  197. Sanders JE, Fryer JL (1980) Renibacterium salmoninarum gen. nov., sp. nov., the causative agent of bacterial kidney disease in salmonid fishes. Int J Syst Bacteriol 30:496–502CrossRefGoogle Scholar
  198. Sanders JE, Pilcher KS, Fryer JL (1978) Relation of water temperature to bacterial kidney disease in coho salmon (Oncorhynchus kisutch), sockeye salmon (0.ne rka), and steelhead trout (Salmo gairdneri). J Fish Res Board Can 36:8–11CrossRefGoogle Scholar
  199. Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111:1093–1101PubMedCentralPubMedCrossRefGoogle Scholar
  200. Sarikhan S, Azarbaijani R, Yeganeh LP, Fazeli AS, Amoozegar MA, Salekdeh GH (2011) Draft genome sequence of Nesterenkonia sp. strain F, isolated from Aran-Bidgol Salt Lake in Iran. J Bacteriol 193(19):5580PubMedCentralPubMedCrossRefGoogle Scholar
  201. Schaal KP (1992) The genera Actinomyces, Arcanobacterium, and Rothia. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd edn. Springer, New York, pp 850–905Google Scholar
  202. Schäfer J, Martin K, Kämpfer P (2010) Citricoccus parietis sp. nov., isolated from a mould-colonized wall and emended description of Citricoccus alkalitolerans Li et al. 2005. Int J Syst Evol Microbiol 60:271–274PubMedCrossRefGoogle Scholar
  203. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedCentralPubMedGoogle Scholar
  204. Schleifer KH, Kloos WE, Kocur M (1981) The genus Micrococcus. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Springer, New York, pp 1539–1547Google Scholar
  205. Schütte C, van Baarlen P, Dijkman H, Dicke M (1998) Change in foraging behaviour of the predatory mite Phytoseiulus persimilis after exposure to dead conspecifics and their products. Entomol Exp Appl 88:295–300CrossRefGoogle Scholar
  206. Sehgal SN, Gibbons NE (1960) Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol 6:165–169PubMedCrossRefGoogle Scholar
  207. Seifert H, Kaltheuner M, Perdreau-Remington F (1995) Micrococcus luteus endocarditis: case report and review of the literature. Zentralbl Bakteriol 282:431–435PubMedCrossRefGoogle Scholar
  208. Selladurai BM, Sivakumaran S, Aiyar S, Mohamad AR (1993) Intracranial suppuration caused by Micrococcus luteus. Br J Neurosurg 7:205–207PubMedCrossRefGoogle Scholar
  209. Senson PR, Stevenson RM (1999) Production of the 57 kDa major surface antigen by a non-agglutinating strain of the fish pathogen Renibacterium salmoninarum. Dis Aquat Org 38:23–31PubMedCrossRefGoogle Scholar
  210. Seo YB, Kim DE, Kim GD, Kim HW, Nam SW, Kim YT, Lee JH (2009) Kocuria gwangalliensis sp. nov., an actinobacterium isolated from seawater. Int J Syst Evol Microbiol 59:2769–2772PubMedCrossRefGoogle Scholar
  211. Shi W, Takano T, Liu S (2012) Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil. World J Microbiol Biotechnol 28:2147–2157PubMedCrossRefGoogle Scholar
  212. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  213. Smith IW (1964) The occurrence and pathology of Dee disease. Freshw Salmon Fish Res 34:1–12Google Scholar
  214. Smith KJ, Neafie R, Yeager J, Skelton HG (1999) Micrococcus folliculitis in HIV-1 disease. Br J Dermatol 141:558–561PubMedCrossRefGoogle Scholar
  215. Snieszko SF, Griffin PJ (1955) Kidney disease in brook trout and its treatment. Prog Fish-Cult 17:3–13CrossRefGoogle Scholar
  216. Sozzi T, Maret R, Cerise L (1973) Isolation and some characteristics of two Micrococcus phages from Italian Salami, Type Varzi. Arch Mikrobiol 92:313–320PubMedCrossRefGoogle Scholar
  217. Stackebrandt E (2011) Genus V. Nesterenkonia. In: Whitman WB, Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, pp 636–642Google Scholar
  218. Stackebrandt E, Fiedler F (1979) DNA–DNA homology studies among strains of Arthrobacter and Brevibacterium. Arch Microbiol 120:289–295PubMedCrossRefGoogle Scholar
  219. Stackebrandt E, Schumann P (2000) Description of Bogoriellaceae fam. nov., Dermacoccaceae fam. nov., Rarobacteraceae fam. nov. and Sanguibacteraceae fam. nov. and emendation of some families of the suborder Micrococcineae. Int J Syst Evol Microbiol 50:1279–1285PubMedCrossRefGoogle Scholar
  220. Stackebrandt E, Wehmeyer U, Nader H, Fiedler F (1988) Phylogenetic relationship of the fish pathogenic Renibacterium salmoninarum to Arthrobacter, Micrococcus and related taxa. FEMS Microbiol Lett 50:117–120CrossRefGoogle Scholar
  221. Stackebrandt E, Koch C, Gvozdiak O, Schumann P (1995) Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45:682–692PubMedCrossRefGoogle Scholar
  222. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491CrossRefGoogle Scholar
  223. Stackebrandt E, Pauker O, Erhard M (2005) Grouping myxococci (Corallococcus) strains by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry: comparison with gene sequence phylogenies. Curr Microbiol 50:71–77PubMedCrossRefGoogle Scholar
  224. Staley JT (1968) Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942PubMedCentralPubMedGoogle Scholar
  225. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  226. Stamatakis AP, Ludwig T, Meier H (2005) RAxML-II: a program for sequential, parallel & distributed inference of large phylogenetic trees. Concur Comput: Pract Exper 17:1705–1723CrossRefGoogle Scholar
  227. Starliper CE (1996) Genetic diversity of North American isolates of Renibacterium salmoninarum. Dis Aquat Org 27:207–213CrossRefGoogle Scholar
  228. Szczerba I (2003a) Susceptibility to antibiotics of bacteria from genera Micrococcus, Kocuria, Nesterenkonia, Kytococcus and Dermacoccus. Med Dosw Mikrobiol 55:75–80PubMedGoogle Scholar
  229. Szczerba I (2003b) Occurrence and number of bacteria from the Micrococcus, Kocuria, Nesterenkonia, Kytococcus and Dermacoccus genera on skin and mucous membranes in humans]. Med Dosw Mikrobiol 55:67–74PubMedGoogle Scholar
  230. Szczerba I, Krzeminski Z (2002) Occurrence of bacteria in the mouth from genera of Micrococcus, Kocuria, Nesterenkonia, Kytococcus and Dermacoccus. Med Dosw Mikrobiol 54:29–34PubMedGoogle Scholar
  231. Takarada H et al (2008) Complete genome sequence of the soil Actinomycete Kocuria rhizophila. J Bacteriol 190:4139PubMedCentralPubMedCrossRefGoogle Scholar
  232. Tang SK, Wang Y, Chen Y, Lou K, Cao LL, Xu LH, Li WJ (2009a) Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 59:2025–2031PubMedCrossRefGoogle Scholar
  233. Tang SK, Wang Y, Lou K, Mao PH, Xu LH, Jiang CL, Kim CJ, Li WJ (2009b) Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China. Int J Syst Evol Microbiol 59:1316–1320PubMedCrossRefGoogle Scholar
  234. Taylor SL, Sumer SS (1986) Determination of histamine, cadaverine and putrescine. In: Kramer DE, Liston J (eds) Seafood quality determination. Proceedings of an international symposium. Elsevier Science, Amsterdam, pp 245–253Google Scholar
  235. Tiago I, Chung AP, Verissimo A (2004) Bacterial diversity in a nonsaline alkaline environment: heterotrophic aerobic populations. Appl Environ Microbiol 70:7378–7387PubMedCentralPubMedCrossRefGoogle Scholar
  236. Tumaikina YA, Turkovskaya OV, Ignatov VV (2008) Degradation of hydrocarbons and their derivatives by a microbial association on the base of Canadian pondweed. Appl Biochem Microbiol 45:382–388CrossRefGoogle Scholar
  237. Tvrzová L, Schumann P, Sedlacek I, Pacova Z, Sproer C, Verbarg S, Kroppenstedt RM (2005) Reclassification of strain CCM 132, previously classified as Kocuria varians, as Kocuria carniphila sp. nov. Int J Syst Evol Microbiol 55:139–142PubMedCrossRefGoogle Scholar
  238. Vargha M, Takáts Z, Konopka A, Nakatsu CH (2006) Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. J Microbiol Methods 66:399–409PubMedCrossRefGoogle Scholar
  239. Ventosa A, Marquez MC, Garabito MJ, Arahal DR (1998) Moderately halophilic gram-positive bacterial diversity in hypersaline environments. Extremophiles 2:297–304PubMedCrossRefGoogle Scholar
  240. Verrall AJ, Robinson PC, Ee Tan C, Mackie WG, Blackmore TK (2010) Rothia aeria as a cause of sepsis in a native joint. J Clin Microbiol 48:2648–2650PubMedCentralPubMedCrossRefGoogle Scholar
  241. Vladik P, Vitovec J, Cervinka S (1974) Taxonomy of gram-positive immobile Diplobacilli isolated from necrotizing nephroses in the American char and rainbos trout. Vet Med (Praha) 19:233–238Google Scholar
  242. von Eiff C, Kuhn N, Herrmann M, Weber S, Peters G (1996) Micrococcus luteus as a cause of recurrent bacteremia. Pediatr Infect Dis J 15:711–713CrossRefGoogle Scholar
  243. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  244. Wharton M, Rice JR, McCallum R, Gallis HA (1986) Septic arthritis due to Micrococcus luteus. J Rheumatol 13:659–660PubMedGoogle Scholar
  245. Wiens GD, Rockey DD, Wu Z, Chang J, Levy R, Crane S, Chen DS, Capri GR, Burnett JR, Sudheesh PS, Schipma MJ, Burd H, Bhattacharyya A, Rhodes LD, Kaul R, Strom MS (2008) Genome sequence of the fish pathogen Renibacterium salmoninarum suggests reductive evolution away from an environmental Arthrobacter ancestor. J Bacteriol 190:6970–6982PubMedCentralPubMedCrossRefGoogle Scholar
  246. Wiens WD, Chien M-S, Winton JR, Kaattari SL (1999) Antigenic and functional characterization of p57 produced by Renibacterium salmoninarum. Dis Aquat Org 37:43–52PubMedCrossRefGoogle Scholar
  247. Wieser M, Denner EBM, Kämpfer P, Schumann P, Tindall B, Steiner U, Vybiral D, Lubitz W, Maszenan AM, Patel BKC, Seviour RJ, Radax C, Busse H-J (2002) Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). Int J Syst Evol Microbiol 52:629–637PubMedGoogle Scholar
  248. Wolf K, Dunbar CE (1959) Test of 34 therapeutic agents for control of kidney disease in trout. Trans Am Fish Soc 88:117–124CrossRefGoogle Scholar
  249. Yang J, Liang L, Zhang Y, Li J, Zhang L, Ye F, Gan Z, Zhang KQ (2007) Purification and cloning of a novel serine protease from the nematode-trapping fungus Dactylellina varietas and its potential roles in infection against nematodes. Appl Microbiol Biotechnol 75:557–565PubMedCrossRefGoogle Scholar
  250. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rossello-Mora R (2008) The all-species living tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250PubMedCrossRefGoogle Scholar
  251. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living-tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  252. Yassin AF, Hupfer H, Siering C, Klenk HP, Schumann P (2011) Auritidibacter ignavus gen. nov., sp. nov., a novel bacterium of the family Micrococcaceae isolated from ear swab of a man with otitis externa, transfer of the family Yaniellaceae Li et al. 2008 to the family Micrococcaceae and emended description of the suborder Micrococcineae. Int J Syst Evol Microbiol 61:223–230PubMedCrossRefGoogle Scholar
  253. Yasuhira K, Tanaka Y, Shibata H, Kawashima Y, Ohara A, Kato D, Takeo M, Negoro S (2007) 6-Aminohexanoate oligomer hydrolases from the alkalophilic bacteria Agromyces sp. Strain KY5R and Kocuria sp. strain KY2. Appl Environ Microbiol 73:7099–7102PubMedCentralPubMedCrossRefGoogle Scholar
  254. Yoon J-H, Jung S-Y, Kim W, Nam S-W, Oh T-K (2006) Nesterenkonia jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 56:2587–2592PubMedCrossRefGoogle Scholar
  255. Young M, Artsatbanov V, Beller HR, Chandra G, Chater KF, Dover LG, Goh E-B, Kahan T, Kaprelyants AS, Kyrpides N, Lapidus A, Lowry SR, Lykidis A, Mahillon J, Markowitz V, Mavromatis K, Mukamolova GV, Oren A, Rokem JS, Smith MCM, Young DI, Greenblatt CL (2010) Genome sequence of the fleming strain of Micrococcus luteus, a simple free-living actinobacterium. J Bacteriol 192(3):841–860PubMedCentralPubMedCrossRefGoogle Scholar
  256. Yun JH, Roh SW, Jung MJ, Kim MS, Park EJ, Shin KS, Nam YD, Bae JW (2011) Kocuria salsicia sp. nov., isolated from salt-fermented seafood. Int J Syst Evol Microbiol 61:286–289PubMedCrossRefGoogle Scholar
  257. Zamakhchari M, Wei G, Dewhirst F, Lee J, Schuppan D, Oppenheim FG, Helmerhorst EJ (2011) Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract. PLoS One 6:1–10CrossRefGoogle Scholar
  258. Zgani I, Menut C, Seman M, Gallois V, Laffont V, Liautard J, Liautard JP, Criton M, Montero JL (2004) Synthesis of prenyl pyrophosphates as new potent phosphoantigens. J Med Chem 47(18):4600–4612PubMedCrossRefGoogle Scholar
  259. Zhang YQ, Schumann P, Yu LY, Liu HY, Zhang YQ, Xu LH, Stackebrandt E, Jiang CL, Li WJ (2007) Zhihengliuella halotolerans gen. nov., sp. nov., a novel member of the family Micrococcaceae. Int J Syst Evol Microbiol 57:1018–1023PubMedCrossRefGoogle Scholar
  260. Zhang J-Y, Liu X-Y, Jiang LS (2010) Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60:1897–1903PubMedCrossRefGoogle Scholar
  261. Zhao GZ, Li J, Qin S, Zhang YQ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. Int J Syst Evol Microbiol 59:2383–2387PubMedCrossRefGoogle Scholar
  262. Zhi X-Y, Li W-J, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608PubMedCrossRefGoogle Scholar
  263. Zhou G, Luo X, Tang Y, Zhang L, Yang Q, Qiu Y, Fang C (2008) Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. Int J Syst Evol Microbiol 58:1304–1307PubMedCrossRefGoogle Scholar
  264. Zhou Y, Wei W, Wang X, Lai R (2009) Proposal of Sinomonas flava gen. nov., sp. nov., and description of Sinomonas atrocyanea comb. nov. to accommodate Arthrobacter atrocyaneus. Int J Syst Evol Microbiol 59:259–263PubMedCrossRefGoogle Scholar
  265. Zhou Y, Chen X, Zhang Y, Wang W, Xu JF (2012) Description of Sinomonas soli sp. nov., reclassification of Arthrobacter echigonensis and Arthrobacter albidus (Ding et al. 2009) as Sinomonas echigonensis comb. nov. and Sinomonas albida comb. nov., respectively, and emended description of the genus Sinomonas. Int J Syst Evol Microbiol 62:764–769PubMedCrossRefGoogle Scholar
  266. Zhuang WQ, Tay JH, Maszenan AM, Krumholz LR, Tay ST (2003) Importance of gram-positive naphthalene-degrading bacteria in oil-contaminated tropical marine sediments. Lett Appl Microbiol 36:251PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Syed G. Dastager
    • 1
    Email author
  • Srinivasan Krishnamurthi
    • 2
  • N. Rameshkumar
    • 3
  • Mahesh Dharne
    • 1
  1. 1.CSIR-National Chemical LaboratoryNCIM-Resource CenterPuneIndia
  2. 2.CSIR-Institute of Microbial TechnologyChandigarhIndia
  3. 3.Biotechnology DivisionNII-Culture Collection, CSIR-National Institute for Interdisciplinary Science and TechnologyTrivandrumIndia

Personalised recommendations